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Abstract: Any change in the geometric configuration of the existing road affects other dependent
elements such as travel time, fuel consumption, and existing pavement. This paper quantifies
these effects and finds an optimum geometric configuration. Three separate models are developed
in this research: (1) the travel time model which predicts vehicles flow speed on the specified
geometric condition, traffic composure, and evaluates the imposed costs to the road users; (2) the
fuel consumption model, which estimates needed propulsive force and anticipated fuel for vehicles
passing through the road; and (3) the pavement rehabilitation cost model considering two main
constraints of existing pavement condition and project line elevation. The developed pavement
rehabilitation model proposes the best solution for pavement rehabilitation practice and computes
associated costs. Particle Swarm Optimization (PSO) is used to find the optimum solution in a
minimization problem search space. The proposed model is applied to a real-world case study.
Results show that there is an extremely less tendency for change, even with the existence of adverse
geometric conditions, when there is a relatively good pavement condition. In the case of deteriorated
pavement conditions, economic justification for geometric modification is required.

Keywords: sustainable maintenance; geometric design; Particle Swarm Optimization (PSO);
optimization; longitudinal profile; fuel consumption; travel time; pavement rehabilitation

1. Introduction

1.1. Problem Statement

Maintenance, rehabilitation, and modification of existing roads impose remarkable human and
financial resources to road owners and road users. There is a need for robust management to sustain
the appropriate condition of the road and minimize the rehabilitation costs. Road rehabilitation mostly
divides into two different categories: (1) the geometric modification of the road which would be
conducted in a certain condition such as accident vulnerability prevention, traffic flow enhancement,
access adjustment, etc., and (2) pavement rehabilitation which would be conducted on a regular
basis and depends on the pavement condition. It may be done all over the road pavement, such as a
complementary overlay, which mostly applies in the second half of the pavement designed life and may
apply in certain segments of the pavement that locally suffer from deteriorated conditions. Any change
in the geometric design of an existing roadway causes a high capital investment in the construction
because of excavation, embankment, pavement construction, and other existing constraints, as well as
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travel time and fuel consumption. The sensitivity of these parameters and their impacts on overall
cost are different in nature.

This paper aims to develop a framework for geometric changes of an existing road, measures
the impact on dependent parameters, and optimizes variation by establishing a model for geometric
modification of vertical roadway alignment. Since the geometric changes of the existing roadway
affect the traffic flow and fuel consumption (user costs), two separate models need to be established
to calculate the associated costs. We therefore use the Particle Swarm Optimization (PSO) algorithm
in combination with the developed pavement rehabilitation cost model; the best solution is achieved
within a minimization problem.

In the following sections, the geometric components of the vertical alignment are described.
After reviewing the previous research background of road alignment optimization models, the
developed models for cost estimation (travel time cost, fuel consumption cost, and pavement
rehabilitation cost) are discussed in detail. With the introduction of the optimization model, all the
required information is gathered in the PSO framework to propose an optimum solution. A real-world
case study is conducted to evaluate the palpability of this model and the results are discussed.

1.2. Research Background

The first generations of road alignment optimization models have been developed in the late
60s [1,2]. With advancement in computer process capabilities in the 70s, this model progressed
accordingly [3–5] and, nowadays, there is a rich bibliographic background. There are numerous
models which can be considered in three main categories: (1) optimization methods; (2) dimension and
number of optimization objectives; and (3) cost functions and level of detail with which these models
have been used. There is a wide range of optimization methods for road alignment model that can
be categorized into classic and metaheuristic methods. Classic methods include mixed integer linear
programming, dynamic programming [6], mixed integer linear programming [7,8], etc. Metaheuristic
methods including Genetic Algorithm (GA) [9] and swarm intelligent-based methods (e.g., PSO [10,11]).
There are some advanced methods which use the Combination of GA and Geographical Information
System (GIS). This pair of GIS and GA models are known as Highway Alignment Optimization (HAO)
models [12–16].

If there is more than one dependent variable in optimization, all variables convert into one
mutual dependent value which is usually cost and the problem is solved as a single-objective problem.
In some cases, bi-objective [17] and multi-objective [18] frameworks are proposed which provide
a wider selection range for decision makers. With the evolution of models, more complicated
and detailed cost functions and various road conditions embed into models to cover different
settings and enhance the flexibility and versatility of models. Different road circumstances, such
as regional route locations [5], forest roads [19], permafrost regions [20], ecologically sensitive area [21],
and environmental constraints [22], were investigated with their specific design characteristics.
Several cost functions for highway alignment optimization models were proposed by Jong and
Schonfeld [13]. Various objectives, such as minimization of fuel consumption and improving safety [23],
sight distance [24], roadside slope and block regions [7], and optimization in a pre-allocated corridor
with more accuracy [25], were studied in recent researches. Table 1 shows the summary of relevant
researches over the past four years and their innovations.
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Table 1. Recent highway alignment optimization models in the past four years.

Authors/Year Optimization Method Contribution Contribution Type

Mondal et al. [25],
2015

mixed integer linear
programming

Optimization with more
restriction and in a specified
corridor with more precision

with restricted area.

new condition detailed
design

Hare et al. [7],
2015

mixed integer linear
programming

Considering natural blocks
(river, mountains, etc.) and side
slope in the design procedure.

detailed design elements
new design parameters

Hirpa et al. [17],
2016 MOGA, DMS, and WS

Provides a biobjective model for
optimization using three
different multiobjective
optimization models.

New optimization
framework

Casal et al. [26],
2017

Sequential Quadratic
Programming

Optimization of horizontal
alignment considering

reconstruction.

new condition new
algorithm

Davey et al. [21],
2017 GA

Ecologically sensitive area
considering animal migration

model.
new condition

Wang et al. [20],
2017 route scheme model

Road design considering
permafrost regions using route

scheme optimization model.

new condition a new
optimization algorithm

Babapour et al.
[19], 2018 GA and PSO New condition requirement for

forest roads and its restrictions. new condition

Vázquez-Méndez
et al. [27], 2018

NOMAD, SQP, GA, and
Pswarm

Using a different optimization
method and using a

combinational approach of these
methods.

combination of
optimization methods.

Current Study,
2019 PSO

Optimization of existing road
vertical alignment considering
existing pavement condition in
geometric modification design.

new condition
combining two

rehabilitation practice
types

Although the optimization models have been propagated in the last decades, the rehabilitation
and reconstruction models are in their infancy, except for some recent models [26]. Most of the recent
researches contributed to cover diverse conditions and provide a solution for each one. Developed
countries are currently dealing with large size existing roadway networks and high maintenance cost
of these roadways, which highlights the necessity for expanding the research on rehabilitation and
modification of existing roads. The main contribution of this research is focused on the horizon of
alignment optimization with a rehabilitation model of the existing road by proposing a framework for
pavement rehabilitation design.

2. Methods

An overview of the proposed method is shown in Figure 1. The cost models used in the proposed
method in this research including fuel consumption cost related to the travel time of passing vehicles
and pavement rehabilitation accompanied costs are discussed in detail.
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Figure 1. An overview of the proposed method.

2.1. Cost Components

2.1.1. Fuel Consumption Estimation

Fuel consumption of a vehicle is sensitive to grades in vertical alignment and directly depends
on road geometric design particularly resisting forces applied to the vehicle as shown in Figure 2.
These forces are grade resistance, rolling resistance, the internal resistance of vehicle, and air resistance.
Vehicle internal resistance can be neglected in the model because it is relatively constant in different
geometric conditions for a single vehicle.
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Figure 2. The propulsive force applied to move the vehicle on a gradient.

The fuel consumption model, which is deployed in this research, considers three main forces,
including the grade resistance, the internal resistance of the vehicle, and air resistance. For a vehicle,
this force is simply calculated as

W = Rrr + RG + RA = mgCrcos(∝) + mg sin(∝) +
A f ρairCa

2
V2 (1)

where W is the total required propulsive force, RG is the gravity resistance force, Rrr is rolling resistance
force of moving vehicle, RA is air resistance force, m is mass of vehicle, g is gravitational acceleration,
Cr is rolling resistance coefficient, ∝ is grade angle, Af is a front area of the vehicle, ρair is the air density
of the vehicle, Ca is the drag coefficient, and V is the vehicle speed.
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There exist five categories of car—Recreational Vehicle (RV), bus, empty truck, and loaded
truck—that are defined for different vehicle weights and characteristics. In the proposed model, it
is also assumed that the vehicle moves with constant cruise speed. In order to neutralize friction
and gravity forces, there is a need for a compensating force to maintain the constant speed. Figure 3
shows the change of needed propulsive force in a route with a sample longitudinal profile for five
different vehicle types. The model shows that for heavier vehicles in steep upward slopes the needed
propulsive force increases sharply (see the propulsive force for loaded truck between 2 + 600 and 2 +
700). In contrast, in steep downward slopes, a need for braking action exists for heavy vehicles. The
red dotted line shows the minimum average grade which imposes minimum fuel consumption cost.
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Equation (2) is used to quantify the needed fuel for movement of vehicles on designed geometric
composure of road (VF): this is the estimate of the equivalent fuel to provide the needed propulsive
force (W) using fuel consumption rate (rf is in Liter/Joule).

VF = r f ×W (2)

In order to calculate the extra fuel consumption due to the geometric configuration of the road,
the fuel consumption in the base condition needs to be subtracted from the total consumption.
Fuel consumption in base condition is defined as an amount of fuel consumption from starting
point to the endpoint passing a straight line as shown in the red-dashed line in Figure 3. The extra fuel
consumption is calculated as Equation (3):

C f ,model = C f ,new − C f ,basic (3)

where Cf,model is the extra fuel consumption cost due to geometric change used in the model, Cf,new is
fuel consumption cost of the new condition of the road, and Cf,basic is fuel consumption cost in the
base condition.
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2.1.2. Travel Time Cost

In the Highway Capacity Manual (HCM), a comprehensive procedure to evaluate traffic speed
consequent travel time has been presented. This is discussed in the second volume of HCM
(uninterrupted flow) in Chapter 11 (basic freeway segments). This method has been adapted for
travel time computations. In the proposed model, it is assumed that (1) the studied freeway segments
has three lanes with 3.65 m width for each lane and 1.8 m shoulder at right side with PHF (Peak
Hour Factor) = 0.85, FFS (Free Flow Speed) = 110 km/h, and a flow rate (in prevail condition) of
1600 pc/h/lane; (2) there is no on-ramps/off-ramps or merge/diverge zone; and (3) that the same
conditions apply to all proposed project lines in the base conditions of the studied segments, including
good weather and visibility, no accidents, no work zone activity, and pavement deterioration does not
affect the traffic stream.

Since the freeway is in service and the traffic data is available, the values of traffic parameters are
determined based on an on-site survey of the existing freeway. There are multiple steps required in
order to calculate the travel time for freeway segments as follows.

• Vehicle demand volume and speeds

In the first step, demand volume should be converted from prevailing condition (which is
evaluated on site) into the equivalent base condition to accommodate variations in PHF, the number
of lanes, the grade value and grade changes, traffic configuration, and the driver’s familiarity of the
roadway. Equation (4) quantifies the effect of changing each of these factors on demand flow rate:

vp =
V

PHF× N × fHV × fp
(4)

fHV =
1

1 + PT(ET − 1) + PR(ER − 1)
(5)

where vp is the demand flow rate under equivalent base condition (pc/h/ln); V is demand volume
under prevailing conditions (veh/h), which is estimated on site; PHF is Peak-Hour Factor; N is
the number of lanes in analysis direction; fHV is an adjustment factor for heavy vehicles (bus,
truck, and recreational vehicles) when there is a critical condition of slope and length of slope for
vertical alignment of the road; and fp is an adjustment factor to consider the effects of unfamiliar
drivers. The commuter vehicles have more familiarity and less negative effect on the traffic stream.
The recreational vehicles also have less familiarity and more negative effects on the traffic stream.
This number ranges between 0.85 (for completely unfamiliar driver population) and 1 (for absolutely
familiar drivers).

fHV is derived from Equation (5), where PT and Et are the proportion of trucks in traffic stream
and equivalent factor for trucks, respectively, and PR and ER are the proportion and equivalent
factor for recreational vehicles, respectively. The vehicle equivalent factor has different values for the
different grade conditions of roadways, including general terrain, specific upgrades, and downgrades.
For moderate and flat slopes, the equivalent values of trucks, buses, and recreational vehicles can be
derived from Table 2.

Table 2. Passenger car equivalent by type of terrain.

Vehicle Type/Terrain Type Level Rolling Mountainous

Trucks and Buses 1.5 2.5 4.5
Recreational Vehicles 1.2 2 4

When the tangent’s grades and its length intensify, the speed reduction of heavy vehicles increases
and, consequently, impacts the other vehicles on the highway. This effect depends on grade value and
grade length percentage of heavy vehicles on the roadway. When the tangent’s grades and its length
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are intensified, the speed of grades between 2% and 3%, and longer than 0.5 miles or 3% and longer
than 0.25 mile, would be considered as ‘special upgrades’.

The developed traffic model calculates this value based on each of the segment slope’s
characteristics and measures the effect of the geometric change on vehicle speed. In upgrades, the speed
reduction of heavy vehicles occurs more rapidly and it takes longer to recover the speed. This speed
reduction affects the speed of the following vehicles and consequently the flow of vehicles. In longer
and sharper slopes this effect intensifies. In contrast with upgrades, the speed reduction of heavy
vehicles is due to the use of low gears to avoid speeding up for better control of the vehicles on
downgrades. This affects the speed of other following vehicles.

• Speed based on existing condition

After determining vp based on adjusted existing roadway configurations, the average speed of
passing vehicles is calculated. This equation proposed in HCM [28] is based on FFS and flow rates of
passing vehicles. For FFS = 110 km/h:

VAdjusted =

{
70 ( f lowrate ≤ 1200)

70− 0.00001160
(
vp − 1200

)2; ( f lowrate > 1200)
(6)

where VAdjusted is adjusted passing vehicles average speed based on local traffic and the geometric
and roadway configuration. This value is needed to calculate the travel time of passing vehicles. vp is
calculated based on the existing condition of traffic and roadway configuration.

• Quantification of travel time cost

After determining the average speed of traveling vehicles, the overall time of travel between
the starting point and endpoint can be calculated by dividing this distance by the average speed of
traveling vehicles. The average occupancy rate of each type of vehicles is determined based on the
on-site survey study. The value of time for each type of vehicle can be calculated using Equation (7):

Ctt =

Ddp

∑
j=1

Vtypes

∑
i=1

AADTj

ATSj
× Pij ×Oij ×Ui × wi (7)

where Ctt is the cost of travel time for all vehicles in all design period days; Ddp is total days in the
design period; Vtypes is a number of vehicle types; AADT is Annual Average Daily Traffic which passes
in all lanes; ATS is Average Travel Speed; Oij is average occupancy of vehicle type; Pij is a percentage
of vehicle type (ith) in all vehicles; Ui is hourly wage rate; and wi is the value of time derived from
Table 3.

Table 3. The value of time for the passengers of different vehicles.

Vehicle Type Occupancy Rate Percent of Vehicle Type Recommended Value of Time *

CAR 1.5 80
For driver: 60% of wage

For passenger: 40% of wage

SUV 1.3 5
For driver: 60% of wage

For passenger: 40% of wage

VAN 6 2 50% of wage
TRUCK 1.2 6 100% of total compensation

BUS 14 7 50% of wage

* recommended values are based on user and nonuser benefit cost.

• Extra travel time cost due to geometric changes



Sustainability 2019, 11, 1659 8 of 20

To calculate travel time due to the road geometric configuration and specify the exclusive effects of
geometric changes on travel time, it is necessary to separate it from the base condition of the roadway.
The base condition is defined to calculate the minimum travel time cost between starting and endpoint
of the roadway. Any geometric change may increase this cost. The base condition is defined as a
simplest geometric composure in longitudinal profile which is a straight line with a constant slope as
shown the red dashed line in Figure 3. The exclusive geometric cost for travel time in the model can be
calculated as

Ctt,model = Ctt,new − Ctt,basic (8)

where Ctt,new is the cost of the entire travel time of the new configuration of geometric design and Ctt,basic
is the calculated travel time in the base geometric configuration of the roadway longitudinal profile.

2.1.3. Pavement Rehabilitation Cost

This research proposes a new model for the existing pavement structure. Therefore, selecting
and estimating construction means and methods are more complicated in comparison with the new
construction. Pavement reconstruction design depends on two main factors: (1) the difference between
a new project line (PL) and existing ground (GL) and (2) existing pavement condition. Both of these
two factors are important to choose a rehabilitation strategy. Figure 4 schematically shows the layers
of existing pavement and its condition over new PL. The position of different PLs in comparison with
existing pavement layers is shown in this figure.
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There are different conditions based on existing pavement elevation and new project line elevation:

1. In general rehabilitation practice, a complimentary layer applies on the existing pavement
to enhance pavement efficacy for applied loads (H1 = minimum complimentary overlay
layer’s depth).

2. When the difference between Pl and GL increases and project line elevation exceeds H1

(H1 ≤ ∆H < H2) an overlay material would be used to cover this difference.
3. With a greater increase in ∆H (H2 ≤ ∆H < H3) and exceeding the summation of the minimum

allowable thickness of binder and minimum allowable thickness of the overlay layer,
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(∆H > Hminoverlay + Hminbinder), a cheaper (in comparison with overlay) layer of binder would
be used below the overlay layer.

4. With increasing ∆H (H3 ≤ ∆H < H4), filling this depth with asphalt concrete makes the
rehabilitation cost increase sharply. Another solution is to remove the existing pavement, applying
an additional adjustment base (cheaper material) layer and then reconstructing the other top
layers of the pavement. In other words, instead of filling the gap between PL and GL with an
expensive layer of asphalt concrete, the cheaper layer of the base would fill this gap.

5. If the difference increases more (∆H > H4), the full depth reclamation of pavement, embankment
to reach decent elevation and reconstruction of all pavement applies.

Damages occur in the pavement structure when it is exposed to loads of passing vehicles.
Pavement damages may occur in any layer of pavement (overlay, binder, base, and subbase or
subgrade). A conceptual “modified ground line” is introduced based on the severity and depth of
deteriorations to estimate rehabilitation cost of damaged parts and associate it with the geometric
terms. This modified ground line (GL*) shows the top layer of pavement where lower layers do not
suffer from major damage. The modified ground level concept (GL*) is illustrated in Figure 5 and
GL-GL* shows the deteriorated depth of pavement.
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Figure 5. Different conditions of the longitudinal profile for PL, GL, and GL* (vertically exaggerated).

As shown in Figure 5, there are three different conditions of existing pavement condition. In the
first segment, the pavement has a good condition so it has a minor difference between GL and GL*.
These minor damages are only in the overlay layer and can be repaired with milling and adding
an overlay layer. In the second segment (L2), there is damage to the lower layers of pavement.
The subgrade may need to be replaced or stabilized in this section. Hence, it is essential to reclaiming
the existing pavement in full depth. Subgrade rehabilitation and then new construction of pavement
should be executed. In the third segment, the asphalt concrete including overlay and binder has
major deteriorations that it has to be replaced with new asphalt concrete. In this case, the difference
between GL and GL* is equal to asphalt concrete pavement thickness. The modified ground line (GL*)
concept is a practical tool for understanding the existing pavement conditions and deteriorated depth.
It converts the pavement condition into a geometric pattern to consider in the geometric design of the
longitudinal profile. The pattern in Table 4 is used to select proper treatment to quantify the pavement
rehabilitation practice. The accompanied cost for each of these practice types calculated based on the
unit cost [29].

There is a rehabilitation cost for treatment of existing pavement. This cost is divided into two
main categories: (1) the existing pavement rehabilitation practice, which includes all costs related
to repair of the pavement (Crehab), and (2) complementary overlay on the entire pavement (Coverlay).
These costs are geometric-independent. Therefore, the geometric-dependent cost can be achieved from

Cp,model = Cp,new − (Crehab + Coverlay) (9)

where Cp,model is the geometric cost of pavement rehabilitation practice and Cp,new is the total cost of
pavement repair.
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Table 4. Practice type selection and its practical details based on different states of PL, GL, and GL*.

Practice Type PL, GL, and GL* Condition Construction Details

1 PL-GL > H1
H1 < PL-GL* < H2

milling of existing pavement (constant depth)
practicing overlay layer (variable depth)

2 PL-GL > H1
H2 < PL-GL* < H3

milling of existing pavement (constant depth)
practicing binder layer (variable depth)

practicing overlay layer (constant depth)

3 PL-GL > H1
H3 < PL-GL* < H4

Hot mix asphalt removal
practice base or subbase layer and compaction

(variable depth)
practice tack coat and binder (constant depth)

practice overlay (constant depth)

4 PL-GL > H1
PL-GL* > H4

Hot mix asphalt removal
practice Fill material to achieve appropriate

depth (variable depth)
practice Base and Subbase layers

(constant depth)
practice tack coat and binder (constant depth)

practice overlay (constant depth)

5 PL-GL < H1

Full Depth Reclamation (FDR)
excavation practice to reach appropriate depth

(variable depth)
practice base and subbase layers

(constant depth)
practice tack coat and binder (constant depth)

practice overlay (constant depth)

2.2. Geometric Components

2.2.1. Geometric Composure of Vertical Alignment

The main components of a vertical alignment in the geometric configuration are grades (upgrade
and downgrade) and curves (sag and crest). These curves, based on applicability, have circular or
parabolic equations. For roadways, the parabolic curve is used with an equivalent vertical axis centered
on the vertical point of intersection. If the outward tangent of the curve has a greater value than the
inward grade, the curve is concave (sag); otherwise, it is considered a convex (crest) curve. Figure 6
shows the configuration of the parabolic longitudinal curve.
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The two intersecting tangents have a linear equation in the first and second tangents, as shown in
Equations (10) and (11):

Y = y1 + G1(X− x1) (10)
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Y = y2 + G2(X− x2) (11)

The curve has a parabolic equation in form of

Y = aX2 + bX + c (12)

In which a, b, and c are

a =
A

2Ls
(13)

b = G1 −
A× x1

Ls
(14)

c = y1 − G1 × x1 +
A× x1

2

2Ls
(15)

2.2.2. Geometric Restrictions of Vertical Alignment Components

• Grades

There are maximum and minimum grade restrictions for highway longitudinal alignment.
Absolute maximum restrictions have been implied to avoid excessive deceleration of heavy vehicles.
The minimum grade also assures better drainage of the roadway. The desirable minimum grade for
proper drainage is 0.20 percent. On the start and endpoints of the project, the slope and elevation of
the new project line should be compatible with existing road alignment. This condition is considered
in the configuration of every project lines.

• Curves

Minimum stopping sight distance is a design control for vertical curve length. In vertical curves,
this distance depends on slope change (A) and the rate of vertical curvature (K). K represents the
needed horizontal distance in meters to make a one percent change in gradient. The K value varies
in different types of curves (sag vs. crest) and design speeds. The absolute value of the change in
gradient (g) also has a restriction for sag and crest vertical curves:

For Crest Curves

{
g ≤ 425

2S−L L ≤ s

g ≤ 425
S2 L > s

(16)

For Sag Vertical Curves

{
g ≤ 122+3.5S

2S−L L ≤ s

g ≤ L(122+3.5S)
S2 L > s

(17)

where g is the absolute algebraic difference in gradient (%), L is the length of the vertical curve (m),
and S is sight distance (m). For divided multilane highways, if there is no opposing traffic stream,
the minimum length for passing maneuver will not be an applicable criterion.

2.2.3. Applying Evolutionary Change for Each Intersecting Points of Tangents (IPS)

In the optimization procedure, the change of IPs leads to the evolution of the solution. This change
should be compatible with design criteria satisfies all technical requirements for longitudinal direction.
In the first step, the affected length of each IP should be determined. For each presumed IP change,
the inward and outward tangents and curve length of that IP would change. Furthermore, variation in
the slope of these tangents affects the delta angle (A) of the previous and next IPs and, consequently,
it changes the curves of two adjacent IPs. Figure 7 shows the affected length of changing one IP.
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For every change in each IP, there are three changing components: change in km of each IP (x),
elevation of each IP (y), and length of curve Ls.

• “x” variation restrictions

In the optimization procedure, the “x” component moves in the solution space and there is a
restriction for each IP’s x coordinate movement. A changing domain for x is defined as the mid-distance
between two adjacent IPs (x ∈

[
xi−1+xi

2 , xi+1+xi
2

]
).

• “y” variation restrictions

Assuming x position, the change of y should be bounded. There are several components which
restrict the y boundary. It comprised of maximum and minimum allowable slopes for inward and
outward tangents, minimum curve length for changing IP, and its adjacent curves. Some subjective
changes due to the change in IP arise in two neighboring curves. In order to justify this curve for the
new condition, it would change proportional to the change of angle difference (A) for these IPs.

As is shown in Figure 7, the change of IPj affects the adjacent tangents gradient, i.e., IPj−1 and
IPj+1 (and therefore curve length). To adopt this change, the new curve length (Ls2) would be

Ls2 = Ls1 ×
A2

A1
× K2

K1
(18)

where Ls1, A1, K1 are the length of the curve, angular change, and curve length coefficient before the
change of IP, respectively, and Ls2, A2, K2 are the length of the curve, angular change, and the curve
length coefficient after a change of IP, respectively.

• ” Ls” variation restrictions

As previously mentioned (in Equations (16) and (17)), the minimum curve length should satisfy
the sight distance requirements. Therefore, the minimum curve length is based on sight distance and
corresponding equations. The maximum length of the curve for ‘ith’ IP is

Lsmin = K.A (19)

Lsmax = min
{

xi − xi−1

2
,

xi+1 − xi
2

}
(20)

2.3. Optimization Method—Particle Swarm Optimization (PSO)

2.3.1. General Formulations

Particle Swarm Optimization (PSO) is a population-based stochastic optimization method inspired
by the social behavior of agents [30]. This system is initiated with a population of random solutions
and searches for optima by updating generations. In PSO, every single solution is a particle in the
search space. All of the particles have fitness values that are evaluated by the fitness function. Every
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particle has a velocity which orients the moving of the particles. The particles move in the problem
space by following the current optimum particles.

This method is initialized with a group of random particles and then searches for optima based on
updating these particles in every iteration. Each particle is updated by the two best values including
Personal Best (Pb) and Global best (Gb). Pb is the optimized value which one particle achieved and Gb
is the optimized value achieved between all particles. With these two values, the particles move in
solution space. The movement pattern is defined with

vi
k+1 = wvi

k + c1r1

(
Pb

i − xi
k

)
+ c2r2

(
Gb − xi

k

)
(21)

xi
k+1 = xi

k + vi
k+1 (22)

where vi
k is the velocity of ith particle in kth iteration; r1 and r2 are random numbers generated

uniformly between 0 and 1; c1 is the coefficient of personal best for one particle and c2 is the global best
coefficient; w is the inertia factor of particle movement; and xi

k is the current solution of ith particle.
The first term of this equation represents the effect of inertia of particle, the second term is related
to the effect of previous particle’s experiences, and the third term represents social communication
between all particle experiences.

In this research, the optimum finding problem defines as minimization of all costs due to the
change of vertical alignment subjected to geometric constraints. A four-step procedure is defined to
solve this minimization problem with the PSO algorithm: (1) Define the initial condition of the PSO
model; (2) create random solutions by number of particles and find the global best and the personal
best; (3) PSO optimization main loop; and (4) the termination condition. In the following subsections
this process is described in more detail.

2.3.2. Initial Condition of PSO Model

In this step, the optimization problem has been defined as a minimization problem:

minimize ∑(Ct + C f + CP);

subjectedto : Geometric Constraints

where Ct, Cf, and Cp are the costs of travel time, fuel consumption, and pavement repair of the proposed
vertical alignment, respectively.

To construct a PSO framework, a solution space and solution matrix should be defined to resemble
the vertical alignment characteristics. This matrix has a 3 × N dimension, which N is the number of
IPs on the vertical curve. Each IP has a kilometer value (x), elevation value (y), and curve length (Ls).
The number of IPs is the same as an existing condition. Figure 8 shows the matrix resemblance of
geometric configuration for vertical alignment of the highway.
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In the next step, a number of particles and iterations should be defined. The number of particles
mostly depends on the nature of optimization problems such as search space, number of variables,
and the nature of the movement of particles. The number of particles is basically determined based on a
trial-and-error method and usually considers problem dimensionality three or four times. The number
of iterations is also determined by the quality of answers.

Then, the PSO coefficients of movement inertia coefficient (w), the personal experience related
coefficient (c1), and social coefficient (c2) are determined. These coefficients have been studied by
Clerc and Kennedy [31] using a theoretical approach to make the algorithm work efficiently by the
following equations.

vi
k+1 = χ

[
vi

k + c1r1

(
Pi

b − xi
k

)
+ c2r2

(
Gb − xi

k

)]
(23)

xi
k+1 = xi

k + vi
k+1 (24)

where χ is the constriction coefficient. The other parameters are the same as Equation (21). The most
efficient value for χ is [31]:

χ =
2∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ (25)

where ϕ = c1 + c2 > 4 and the values of constriction coefficients c1, and c2:

χ = 0.729, c1 = c2 = 2.05

These coefficients describe the particle’s movement and communication pattern. When these
coefficients do not define precisely, the optimization procedure will not expand in search space and
converge properly and as a result, the final answer will not be unreliable. If the global best coefficient
is set to higher than the standard values, then exploration in the search space will not be adequately
achieved and the final answer may not be an optimum solution as shown in Figure 9a. In contrast,
if the personal best coefficient sets to inappropriate higher values, the vulnerability of getting stuck
in local optima increases as shown in Figure 9b. This is due to the lack of movement toward the best
solution and because each particle mostly sticks to improve its personal answer and communication
and experiences exchange with other particles weakens. To tune the communication between particles
while sticking to particle experiences, this coefficient should be defined properly (Figure 9c).
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2.3.3. Create Random Solution by Number of Particles

After finding the PSO framework, the random solutions (particles) are developed by applying
geometric restrictions of vertical alignment. The proposed model was developed in MATLAB.
The random solution particle (i) is a 3 × N matrix, which N is the number of IPs in vertical alignment.

particle(i) =

 x1

y1

Ls1

x2

y2

Ls2

. . .

. . .

. . .

xN−1

yN−1

LsN−1

xN
yN
LsN


i
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In the next step, all the particles are evaluated with different functions to calculate travel time,
fuel consumption, and pavement construction practice costs, separately. The total cost for each particle
is then obtained. Since there is no previous experience for any of the particles, this value is assigned
as a personal best for each particle. The minimum value among all particles is reflected as the global
best cost (Gb.cost) and its geometric configuration is used as the global best position (Gb.position) in the
evolution procedure. In this step, the PSO procedure is defined for n particles and m iterations as the n
× m matrix. The first column is filled with values and other columns are remained empty and will be
filled during PSO evolutionary main loop.

Initial Particles Iteration (1) Iteration (2) Iteration (m) x1

y1

Ls1

x2

y2

Ls2

. . .

. . .

. . .

xN−1

yN−1

LsN−1

xN
yN
LsN


1,1




1,2




1,3

. . .




1,m x1

y1

Ls1

x2

y2

Ls2

. . .

. . .

. . .

xN−1

yN−1

LsN−1

xN
yN
LsN


2,1




2,2




2,3

. . .




2,m
...

...
...

...
... x1

y1

Ls1

x2

y2

Ls2

. . .

. . .

. . .

xN−1

yN−1

LsN−1

xN
yN
LsN


n,1




n,2




n,3

. . .




n,m


2.3.4. PSO Main Loop

The developed matrix in the previous section is completed in cyclic iterations. In each
iteration, Gb among all particles and the Pb of each particle should be updated and, accordingly,
the movement equation for each particle changes during the evolution of solutions. Figure 10 shows
the optimization procedure.
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The important factor is to ensure the achievement of the mature answer. In this model, the maximum
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number of iterations without improvement of the objective function which is the total cost is used as
the termination condition.

3. Data Collection and Setup

A real-world case study was conducted to evaluate and validate the proposed model in this
research. The case study is a one-way three-lane highway with 4 + 500 m length. The optimum
geometric design of highway under two different conditions is studied: (1) actual existing pavement
in good condition with some local defects and (2) the hypothesized condition with the same geometric
configuration as the first case but with assumed deteriorated pavement in some segments of the
road. In other words, between stations of (0 + 185) to (2 + 105) all pavement layers are considered
as deteriorated layers. All other geometric and pavement conditions stay the same. Figure 11 shows
the longitudinal profile and deteriorated depth of the existing pavement for both cases. The basic
parameters used in the case study are listed in Table 5.
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Table 5. Case study assumptions.

Traffic Dependent Variables

Car percent, occupancy rate 81%, 2.1 person AADT 86400 veh/day
Recreational vehicle percent, occupancy

rate 4%, 3.7 person FFS 112 km/h

Bus percent, occupancy rate 6%, 17.5 person V 1200 veh/h
Truck percent, occupancy rate 9%, 1.8 person PHF 0.91

Geometric Configuration

Number of lanes 3 highway length 4500 m
The width of each lane 3.7 m maximum slope 5%

Right shoulder, left shoulder 1.8 m, 0.5 m Ksag, Kcrest (63, 95)

Fuel Consumption Parameters

Car characteristics (weight, A, Ca) (1400 kg, 2.24 m2, 0.35) rgas 3.1 × 10−8

RV characteristics (weight, A, Ca) (2900 kg, 4.18 m2, 0.51) rdiesel 3.52 × 10−8

Bus characteristics (weight, A, Ca) (16,000 kg, 8.5 m2, 0.7) air density 1.202 kg/m3

Loaded truck characteristics (weight, A, Ca) (8500 kg, 9.88 m2, 0.85) Crr 0.013
Empty truck characteristics (weight, A, Ca) (27,500 kg, 9.88 m2, 0.8)
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4. Results and Discussions

For both scenarios of the case study, the cost evaluation models for travel time, fuel consumption,
and pavement construction were applied. These costs were optimized using the proposed PSO-based
optimization model to achieve the best solution. In both cases, the results of the cost function for
fuel consumption are mostly the same while there are some major differences in travel time cost and
pavement rehabilitation cost.

The optimized solution in the first condition lies on the existing ground. Since there is a relatively
good condition for most of the segments of the pavement, changing the project line imposes a high cost
on road rehabilitation practice and, consequently, this change was limited. In contrast, in the second
case, where there is a deteriorated pavement condition between stations (0 + 185) to (2 + 105), this high
sensitivity of change did not exist. Hence, there is a tendency of alteration to reduce the slope and
positive effects on fuel consumption cost and travel time cost of the road. Figure 12 shows a minor
reduction in fuel consumption but a major change in Free Flow Speed of vehicles between (0 + 185) to
(2 + 105), as shown in Figure 13.
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To achieve a better understanding of the variation trend for cost variables, a sensitivity analysis
was conducted for these two conditions. These cases, which have been previously introduced,
have been shown in Figure 14 with (1) for the first and (2) for the second case study. The sensitivity
analysis performed with changing the geometric configuration of the longitudinal profile with altering
one IP’s elevation. The third IP, which is located at (1 + 375) km of the existing roadway, was moved
vertically between (−5, 5) m with 1 cm increment. In both cases, the pavement conditions have two
different pavement conditions of good and deteriorated. Figure 15 shows the trend of change in the
variables. Due to the same geometric condition, the function for fuel cost and travel time cost is the
same in both conditions, but there are two pavement cost functions. The total cost is also shown for
both conditions. The cost functions used in the proposed model are the costs depend on the geometric
changes of the roadway.
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The results show that in the good pavement condition there is a high sensitivity even in minor
changes. This is because of changes in an expensive layer of asphalt. When the project line lies below
the existing pavement, the compulsory deterioration of existing pavement imposes a high cost into
reconstruction practice. Also, as shown in Figure 14, there is a low sensitivity to change of geometric
configuration when there is a poor pavement condition. Which in this case, other factors would be
dominant and geometric change would have an economic justification.

There are some limitations on developed cost models, especially on fuel consumption and
construction cost models. In fuel consumption model, all passing traffic has been categorized into five
vehicle types. This causes some approximation into the model. Adding more categories, results in
more accurate modeling.

For simplification of model on evaluation of existing pavement condition, in each section,
all cross-sections have been considered with the same pavement deterioration. When the number of
lanes increases, this would increase the model’s cost assessment accuracy.

As discussed in the literature review, a new generation of optimization methods mostly applies to
extend new conditions of the road into models. This research addressed the vertical road alignment
optimization of existing separated multilane highways. Considering other aspects and conditions of
this paper also would be studied in future works. The cost functions used in this study are applied
to divided multilane rural highways. Other types of roads have different inherent characteristics,
especially in traffic and safety concepts and would be more explored in future studies. There are
also other types of pavements (such as concrete pavements, gravel, and even unpaved roads) which
would be extended to this model. Adding other parameters such as emission-related costs, adding
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construction time and its dependent closure time for users would make the current model more
versatile and turns it into a more adaptable model for different conditions.

5. Conclusions

In this paper, an optimization model has been developed to propose the best geometric
configuration of the existing road based on cost functions of the road. The main cost functions
of the road are travel time cost, fuel consumption cost, and pavement consumption cost. Using a
PSO model, the best geometric configuration of the longitudinal alignment of the road has been
proposed which impose a minimum cost for the road users and owners. When applying a case
study, the applicability of the model has been shown. The case study results show that when there
is a poor pavement condition more inclination to geometric modification exists in a way that fuel
consumption and travel time cost reduction achieves on the other hand when there is a good pavement
condition or noncritical geometric configuration, there is no economic justification for changing the
geometric composure of the road. The proposed model provides the optimum configuration of the
project line and accordingly determines the reconstruction type which might be used as an aid for the
decision-making process for the rehabilitation of existing roads.
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