How Can a Firm Innovate When Embedded in a Cluster?—Evidence from the Automobile Industrial Cluster in China
Abstract
:1. Introduction
2. Literature Review
2.1. Industrial Cluster and Innovation
2.2. Knowledge Management
2.3. Absorptive Capacity
2.4. Innovation Performance
2.5. Knowledge Management and Absorptive Capacity
2.6. Absorptive Capacity and Innovation Performance
2.7. Cross-Level Effect of Innovation Milieu
3. Methodology
3.1. Study Industry
3.2. Questionnaire Design
3.3. Sample
3.4. Analysis of Normality and Common Method Bias
4. Results
4.1. Exploratory Factor Analysis
4.2. Reliability and Validity Analysis
4.3. Model Fit Analysis of the Structural Equation Model at the Firm Level
4.4. Path Analysis of Multilevel Structural Equation Model
4.4.1. Null Model
4.4.2. Structural Equation Model at the Firm Level
4.4.3. Mediated Effect Analysis
4.4.4. Cross-Level Effect Analysis
5. Discussion
6. Conclusions and Implications
6.1. Conclusions
6.2. Theoretical Implications
6.3. Practical Implications
6.4. Limitations and Further Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patterson, M.; Warr, P.; West, M. Organizational climate and company productivity: The role of employee affect and employee level. J. Occup. Organ. Psychol. 2004, 77, 193–216. [Google Scholar] [CrossRef] [Green Version]
- Ritala, P.; Hurmelinna-Laukkanen, P. Incremental and radical innovation in coopetition—The role of absorptive capacity and appropriability. J. Prod. Innov. Manag. 2013, 30, 154–169. [Google Scholar] [CrossRef]
- Ferraris, A.; Santoro, G.; Dezi, L. How MNC’s subsidiaries may improve their innovative performance? The role of external sources and knowledge management capabilities. J. Knowl. Manag. 2017, 21, 540–552. [Google Scholar] [CrossRef]
- Hofmann, D.A. An overview of the logic and rationale of hierarchical linear models. J. Manag. 1997, 23, 723–744. [Google Scholar] [CrossRef]
- Snijders, T.A. Multilevel Analysis. International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 879–882. [Google Scholar]
- Marshall, A.; Marshall, M.P. The Economics of Industry; Macmillan and Company: London, UK, 1920. [Google Scholar]
- Krugman, P. Increasing returns and economic geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. Geographic concentration in US manufacturing industries: A dartboard approach. J. Political Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef]
- Delgado, M.; Porter, M.E.; Stern, S. Defining clusters of related industries. J. Econ. Geogr. 2015, 16, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.E. The competitive advantage of nations. Compet. Intell. Rev. 1990, 1, 14. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Feldman, M.P. R&D spillovers and the geography of innovation and production. Am. Econ. Rev. 1996, 86, 630–640. [Google Scholar]
- Lawson, C.; Lorenz, E. Collective learning, tacit knowledge and regional innovative capacity. Reg. Stud. 1999, 33, 305–317. [Google Scholar] [CrossRef]
- Pinch, S.; Henry, N.; Jenkins, M.; Tallman, S. From ‘industrial districts’ to ‘knowledge clusters’: A model of knowledge dissemination and competitive advantage in industrial agglomerations. J. Econ. Geogr. 2003, 3, 373–388. [Google Scholar] [CrossRef]
- Bathelt, H.; Malmberg, A.; Maskell, P. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Prog. Hum. Geogr. 2004, 28, 31–56. [Google Scholar] [CrossRef]
- Giuliani, E. Role of technological gatekeepers in the growth of industrial clusters: Evidence from Chile. Reg. Stud. 2011, 45, 1329–1348. [Google Scholar] [CrossRef]
- Guo, J.; Guo, B. How do innovation intermediaries facilitate knowledge spillovers within industrial clusters? A knowledge-processing perspective. Asian J. Technol. Innov. 2013, 21, 31–49. [Google Scholar] [CrossRef]
- Lai, Y.L.; Hsu, M.S.; Lin, F.J.; Chen, Y.M.; Lin, Y.H. The effects of industry cluster knowledge management on innovation performance. J. Bus. Res. 2014, 67, 734–739. [Google Scholar] [CrossRef]
- Mueller, E.F.; Jungwirth, C. What drives the effectiveness of industrial clusters? Exploring the impact of contextual, structural and functioning determinants. Entrep. Reg. Dev. 2016, 28, 424–447. [Google Scholar] [CrossRef]
- Stewart, T.; Ruckdeschel, C. Intellectual capital: The new wealth of organizations. Perform. Improv. 1998, 37, 56–59. [Google Scholar] [CrossRef]
- Sveiby, K.E. The New Organizational Wealth: Managing & Measuring Knowledge-Based Assets; Berrett-Koehler Publishers: San Francisco, CA, USA, 1997. [Google Scholar]
- Alavi, M.; Leidner, D.E. Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Q. 2001, 25, 107–136. [Google Scholar] [CrossRef]
- Belso-Martínez, J.A.; Molina-Morales, F.X.; Mas-Verdu, F. Clustering and internal resources: Moderation and mediation effects. J. Knowl. Manag. 2011, 15, 738–758. [Google Scholar] [CrossRef]
- Casanueva, C.; Castro, I.; Galán, J.L. Informational networks and innovation in mature industrial clusters. J. Bus. Res. 2013, 66, 603–613. [Google Scholar] [CrossRef]
- Ferraris, A.; Santoro, G.; Bresciani, S. Open innovation in multinational companies’ subsidiaries: The role of internal and external knowledge. Eur. J. Int. Manag. 2017, 11, 452–468. [Google Scholar] [CrossRef]
- Hussinki, H.; Ritala, P.; Vanhala, M.; Kianto, A. Intellectual capital, knowledge management practices and firm performance. J. Intellect. Cap. 2017, 18, 904–922. [Google Scholar] [CrossRef]
- Obeidat, B.Y.; Tarhini, A.; Masa’deh, R.E.; Aqqad, N.O. The impact of intellectual capital on innovation via the mediating role of knowledge management: A structural equation modelling approach. Int. J. Knowl. Manag. Stud. 2017, 8, 273–298. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Absorptive capacity: A new perspective on learning and innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Lane, P.J.; Salk, J.E.; Lyles, M.A. Absorptive capacity, learning, and performance in international joint ventures. Strateg. Manag. J. 2001, 22, 1139–1161. [Google Scholar] [CrossRef] [Green Version]
- Zahra, S.A.; George, G. Absorptive capacity: A review, reconceptualization, and extension. Acad. Manag. Rev. 2002, 27, 185–203. [Google Scholar] [CrossRef]
- Lane, P.J.; Koka, B.R.; Pathak, S. The reification of absorptive capacity: A critical review and rejuvenation of the construct. Acad. Manag. Rev. 2006, 31, 833–863. [Google Scholar] [CrossRef]
- Flor, M.L.; Cooper, S.Y.; Oltra, M.J. External knowledge search, absorptive capacity and radical innovation in high-technology firms. Eur. Manag. J. 2018, 36, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.J.; Fey, C.; Yildiz, H.E. Fostering integration through HRM practices: An empirical examination of absorptive capacity and knowledge transfer in cross-border M&As. J. World Bus. 2018. [Google Scholar] [CrossRef]
- Zirger, B.J.; Maidique, M.A. A model of new product development: An empirical test. Manag. Sci. 1990, 36, 867–883. [Google Scholar] [CrossRef]
- Ancona, D.G.; Caldwell, D.F. Bridging the boundary: External activity and performance in organizational teams. Adm. Sci. Q. 1992, 37, 634–665. [Google Scholar] [CrossRef]
- Alegre, J.; Lapiedra, R.; Chiva, R. A measurement scale for product innovation performance. Eur. J. Innov. Manag. 2006, 9, 333–346. [Google Scholar] [CrossRef]
- Govindarajan, V.; Kopalle, P.K. The usefulness of measuring disruptiveness of innovations ex post in making ex ante predictions. J. Prod. Innov. Manag. 2006, 23, 12–18. [Google Scholar] [CrossRef]
- Malhotra, A.; Gosain, S.; Sawy, O.A.E. Absorptive capacity configurations in supply chains: Gearing for partner-enabled market knowledge creation. MIS Q. 2005, 29, 145–187. [Google Scholar] [CrossRef]
- Todorova, G.; Durisin, B. Absorptive capacity: Valuing a reconceptualization. Acad. Manag. Rev. 2007, 32, 774–786. [Google Scholar] [CrossRef]
- Tortoriello, M. The social underpinnings of absorptive capacity: The moderating effects of structural holes on innovation generation based on external knowledge. Strateg. Manag. J. 2015, 36, 586–597. [Google Scholar] [CrossRef]
- Martín-de Castro, G. Knowledge management and innovation in knowledge-based and high-tech industrial markets: The role of openness and absorptive capacity. Ind. Mark. Manag. 2015, 47, 143–146. [Google Scholar] [CrossRef]
- Camisón, C.; Forés, B. Knowledge creation and absorptive capacity: The effect of intra-district shared competences. Scand. J. Manag. 2011, 27, 66–86. [Google Scholar] [CrossRef] [Green Version]
- Denicolai, S.; Ramirez, M.; Tidd, J. Overcoming the false dichotomy between internal R&D and external knowledge acquisition: Absorptive capacity dynamics over time. Technol. Forecast. Soc. Chang. 2016, 104, 57–65. [Google Scholar]
- Bloodgood, J.M. Knowledge acquisition and firm competitiveness: The role of complements and knowledge source. J. Knowl. Manag. 2019, 23, 46–66. [Google Scholar] [CrossRef]
- Rafique, M.; Hameed, S.; Agha, M.H. Impact of knowledge sharing, learning adaptability and organizational commitment on absorptive capacity in pharmaceutical firms based in Pakistan. J. Knowl. Manag. 2018, 22, 44–56. [Google Scholar] [CrossRef]
- Martinez-Conesa, I.; Soto-Acosta, P.; Carayannis, E.G. On the path towards open innovation: Assessing the role of knowledge management capability and environmental dynamism in SMEs. J. Knowl. Manag. 2017, 21, 553–570. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strateg. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef]
- Kohlbacher, M.; Weitlaner, D.; Hollosi, A.; Grünwald, S.; Grahsl, H.P. Innovation in clusters: Effects of absorptive capacity and environmental moderators. Compet. Rev. Int. Bus. J. 2013, 23, 199–217. [Google Scholar] [CrossRef]
- Ferreras-Méndez, J.L.; Newell, S.; Fernández-Mesa, A.; Alegre, J. Depth and breadth of external knowledge search and performance: The mediating role of absorptive capacity. Ind. Mark. Manag. 2015, 47, 86–97. [Google Scholar] [CrossRef]
- Lau, A.K.; Lo, W. Regional innovation system, absorptive capacity and innovation performance: An empirical study. Technol. Forecast. Soc. Chang. 2015, 92, 99–114. [Google Scholar] [CrossRef]
- Tzokas, N.; Kim, Y.A.; Akbar, H.; Al-Dajani, H. Absorptive capacity and performance: The role of customer relationship and technological capabilities in high-tech SMEs. Ind. Mark. Manag. 2015, 47, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Kotabe, M.; Jiang, C.X.; Murray, J.Y. Examining the complementary effect of political networking capability with absorptive capacity on the innovative performance of emerging-market firms. J. Manag. 2017, 43, 1131–1156. [Google Scholar] [CrossRef]
- Rangus, K.; Slavec, A. The interplay of decentralization, employee involvement and absorptive capacity on firms’ innovation and business performance. Technol. Forecast. Soc. Chang. 2017, 120, 195–203. [Google Scholar] [CrossRef]
- García-Sánchez, E.; García-Morales, V.J.; Martín-Rojas, R. Influence of Technological Assets on Organizational Performance through Absorptive Capacity, Organizational Innovation and Internal Labour Flexibility. Sustainability 2018, 10, 770. [Google Scholar] [CrossRef]
- Najafi-Tavani, S.; Najafi-Tavani, Z.; Naudé, P.; Oghazi, P.; Zeynaloo, E. How collaborative innovation networks affect new product performance: Product innovation capability, process innovation capability, and absorptive capacity. Ind. Mark. Manag. 2018, 73, 193–205. [Google Scholar] [CrossRef]
- Chaudhary, S.; Batra, S. Absorptive capacity and small family firm performance: Exploring the mediation processes. J. Knowl. Manag. 2018, 22, 1201–1216. [Google Scholar] [CrossRef]
- Albort-Morant, G.; Leal-Rodríguez, A.L.; De Marchi, V. Absorptive capacity and relationship learning mechanisms as complementary drivers of green innovation performance. J. Knowl. Manag. 2018, 22, 432–452. [Google Scholar] [CrossRef]
- Hughes, P.; Hodgkinson, I.R.; Hughes, M.; Arshad, D. Explaining the entrepreneurial orientation–performance relationship in emerging economies: The intermediate roles of absorptive capacity and improvisation. Asia Pac. J. Manag. 2018, 35, 1025–1053. [Google Scholar] [CrossRef]
- Xie, X.; Zou, H.; Qi, G. Knowledge absorptive capacity and innovation performance in high-tech companies: A multi-mediating analysis. J. Bus. Res. 2018, 88, 289–297. [Google Scholar] [CrossRef]
- Romijn, H.; Albaladejo, M. Determinants of innovation capability in small electronics and software firms in southeast England. Res. Policy 2002, 31, 1053–1067. [Google Scholar] [CrossRef]
- Caloghirou, Y.; Kastelli, I.; Tsakanikas, A. Internal capabilities and external knowledge sources: Complements or substitutes for innovative performance? Technovation 2004, 24, 29–39. [Google Scholar] [CrossRef]
- Yam, R.C.M.; Lo, W.; Tang, E.P.Y.; Lau, A.K.W. Analysis of sources of innovation, technological innovation capabilities, and performance: An empirical study of Hong Kong manufacturing industries. Res. Policy 2011, 40, 391–402. [Google Scholar] [CrossRef]
- Pirola-Merlo, A.; Mann, L. The relationship between individual creativity and team creativity: Aggregating across people and time. J. Organ. Behav. 2004, 25, 235–257. [Google Scholar] [CrossRef]
- Eisenbeiss, S.A.; van Knippenberg, D.; Boerner, S. Transformational leadership and team innovation: Integrating team climate principles. J. Appl. Psychol. 2008, 93, 1438–1446. [Google Scholar] [CrossRef]
- Benner, M.J.; Tushman, M.L. Exploitation, exploration, and process management: The productivity dilemma revisited. Acad. Manag. Rev. 2003, 28, 238–256. [Google Scholar] [CrossRef]
- Gupta, A.K.; Smith, K.G.; Shalley, C.E. The interplay between exploration and exploitation. Acad. Manag. J. 2006, 49, 693–706. [Google Scholar] [CrossRef]
- Baker, W.E.; Sinkula, J.M. The synergistic effect of market orientation and learning orientation on organizational performance. J. Acad. Mark. Sci. 1999, 27, 411–427. [Google Scholar] [CrossRef]
- Ritter, T.; Gemünden, H.G. The impact of a company’s business strategy on its technological competence, network competence and innovation success. J. Bus. Res. 2004, 57, 548–556. [Google Scholar] [CrossRef]
- Bentler, P.M.; Chou, C.P. Practical issues in structural modeling. Sociol. Methods Res. 1987, 16, 78–117. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Lin, X.; Li, S.; Niu, W. Is Southern Xinjiang Really Unsafe? Sustainability 2018, 10, 4639. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
Variable | Number of Companies (Percent) | |||||
---|---|---|---|---|---|---|
Province | Hubei | Shandong | Jiangsu | shanghai | Anhui | others |
90 (13.7%) | 79 (12.0%) | 77 (11.7%) | 64 (9.7%) | 49 (7.4%) | 299 (45.4%) | |
Employee | 100 or less | 101–300 | 301–500 | 501–1000 | 1001 or above | |
195 (29.6%) | 202 (30.7%) | 81 (12.3%) | 101 (15.3%) | 111 (16.9%) | ||
Annual revenue (million yuan) | 50 or less | 50–200 | 200–500 | 500–1000 | 1000 + | |
198 (30.1%) | 204 (31.0%) | 120 (18.2%) | 59 (9.0%) | 109 (16.6%) | ||
Age (year) | 5 or less | 6–10 | 11–15 | 16–20 | 21–25 | 26 or above |
8 (1.2%) | 135 (20.5%) | 252 (38.3%) | 154 (23.4%) | 84 (12.8%) | 24 (3.6%) |
Indicators | Knowledge Management | Developmental Learning | Transformational Learning | Explorative Learning | Innovation Performance |
---|---|---|---|---|---|
KM1 | 0.842 | 0.146 | 0.132 | 0.154 | 0.181 |
KM2 | 0.820 | 0.189 | 0.162 | 0.205 | 0.175 |
KM3 | 0.819 | 0.154 | 0.170 | 0.149 | 0.152 |
KM4 | 0.829 | 0.173 | 0.163 | 0.113 | 0.113 |
KM5 | 0.786 | 0.077 | 0.034 | 0.246 | 0.147 |
TL1 | 0.103 | 0.063 | 0.868 | 0.068 | 0.178 |
TL2 | 0.113 | 0.093 | 0.888 | 0.097 | 0.117 |
TL3 | 0.193 | 0.054 | 0.815 | 0.066 | 0.143 |
TL4 | 0.129 | 0.109 | 0.910 | 0.040 | 0.080 |
EL1 | 0.174 | 0.142 | 0.043 | 0.822 | 0.142 |
EL2 | 0.205 | 0.110 | 0.087 | 0.817 | 0.171 |
EL3 | 0.162 | 0.072 | 0.073 | 0.848 | 0.190 |
EL4 | 0.186 | 0.087 | 0.074 | 0.820 | 0.132 |
DL1 | 0.135 | 0.864 | 0.084 | 0.122 | 0.102 |
DL2 | 0.184 | 0.877 | 0.086 | 0.100 | 0.203 |
DL3 | 0.150 | 0.882 | 0.100 | 0.105 | 0.146 |
DL4 | 0.162 | 0.896 | 0.062 | 0.090 | 0.118 |
IP1 | 0.178 | 0.166 | 0.146 | 0.180 | 0.822 |
IP2 | 0.206 | 0.196 | 0.142 | 0.160 | 0.780 |
IP3 | 0.170 | 0.105 | 0.163 | 0.114 | 0.759 |
IP4 | 0.126 | 0.122 | 0.104 | 0.221 | 0.875 |
Variable | Indicators | FL | SFL | SE | T Value | CR | Cronbach’ α | AVE |
---|---|---|---|---|---|---|---|---|
Knowledge Management | KM1 | 1 | 0.866 | 0.923 | 0.922 | 0.707 | ||
KM2 | 0.922 | 0.883 | 0.056 | 16.463 *** | ||||
KM3 | 0.883 | 0.844 | 0.045 | 19.642 *** | ||||
KM4 | 0.892 | 0.838 | 0.040 | 22.176 *** | ||||
KM5 | 0.840 | 0.767 | 0.066 | 12.770 *** | ||||
Explorative Learning | EL1 | 1 | 0.809 | 0.894 | 0.893 | 0.677 | ||
EL2 | 1.004 | 0.830 | 0.059 | 16.944 *** | ||||
EL3 | 0.971 | 0.854 | 0.068 | 14.267 *** | ||||
EL4 | 0.936 | 0.798 | 0.055 | 16.938 *** | ||||
Transformational Learning | TL1 | 1 | 0.860 | 0.920 | 0.918 | 0.742 | ||
TL2 | 0.999 | 0.883 | 0.033 | 29.843 *** | ||||
TL3 | 0.865 | 0.788 | 0.036 | 24.090 *** | ||||
TL4 | 0.956 | 0.911 | 0.041 | 23.546 *** | ||||
Developmental Learning | DL1 | 1 | 0.831 | 0.935 | 0.935 | 0.784 | ||
DL2 | 1.028 | 0.921 | 0.054 | 19.22 *** | ||||
DL3 | 0.997 | 0.878 | 0.036 | 27.407 *** | ||||
DL4 | 1.044 | 0.908 | 0.054 | 19.354 *** | ||||
Innovation Performance | IP1 | 1 | 0.854 | 0.892 | 0.889 | 0.675 | ||
IP2 | 0.945 | 0.807 | 0.032 | 29.935 *** | ||||
IP3 | 0.836 | 0.715 | 0.066 | 12.679 *** | ||||
IP4 | 0.958 | 0.900 | 0.066 | 14.570 *** |
Variable | KM | EL | TL | DL | IP |
---|---|---|---|---|---|
KM | 0.840 | ||||
EL | 0.448 | 0.823 | |||
TL | 0.342 | 0.217 | 0.861 | ||
DL | 0.387 | 0.293 | 0.230 | 0.885 | |
IP | 0.440 | 0.428 | 0.350 | 0.378 | 0.822 |
Mean | 3.83 | 3.52 | 3.47 | 3.64 | 3.42 |
S.D. | 0.74 | 0.83 | 0.85 | 0.82 | 0.78 |
Indicator | CMIN/DF | SRMR | RMSEA | TLI | CFI |
---|---|---|---|---|---|
Value | 2.913 | 0.048 | 0.054 | 0.962 | 0.967 |
Criterion | <3 | <0.08 | <0.08 | >0.9 | >0.9 |
Path | Standardized Coefficient | Standard Error | p |
---|---|---|---|
KM→EL | 0.497 | 0.033 | *** |
KM→TL | 0.375 | 0.037 | *** |
KM→DL | 0.433 | 0.034 | *** |
EL→IP | 0.370 | 0.037 | *** |
TL→IP | 0.216 | 0.037 | *** |
DL→IP | 0.251 | 0.038 | *** |
Path | Point Estimation | Product of Coefficients | Bootstrapping | ||||
---|---|---|---|---|---|---|---|
Bias-Corrected 95% CI | Percentile 95% CI | ||||||
SE | Z Value | Min. | Max. | Min. | Max. | ||
Indirect Effects | |||||||
KM→EL→IP | 0.183 | 0.036 | 5.105 | 0.124 | 0.272 | 0.118 | 0.262 |
KM→TL→IP | 0.081 | 0.024 | 3.414 | 0.043 | 0.135 | 0.042 | 0.135 |
KM→DL→IP | 0.109 | 0.030 | 3.678 | 0.062 | 0.181 | 0.058 | 0.173 |
Total Indirect Effects | |||||||
KM→IP | 0.373 | 0.039 | 9.604 | 0.299 | 0.450 | 0.301 | 0.439 |
MODEL | M1 | M2 | M3 | M4 |
---|---|---|---|---|
DV | IP | EL→IP | TL→IP | DL→IP |
Innovation Milieu | 0.254 ** (0.090) | 0.028 * (0.012) | 0.014 (0.010) | 0.002 (0.005) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Han, S.; Shen, T. How Can a Firm Innovate When Embedded in a Cluster?—Evidence from the Automobile Industrial Cluster in China. Sustainability 2019, 11, 1837. https://doi.org/10.3390/su11071837
Li S, Han S, Shen T. How Can a Firm Innovate When Embedded in a Cluster?—Evidence from the Automobile Industrial Cluster in China. Sustainability. 2019; 11(7):1837. https://doi.org/10.3390/su11071837
Chicago/Turabian StyleLi, Shuaishuai, Suyang Han, and Tiyan Shen. 2019. "How Can a Firm Innovate When Embedded in a Cluster?—Evidence from the Automobile Industrial Cluster in China" Sustainability 11, no. 7: 1837. https://doi.org/10.3390/su11071837
APA StyleLi, S., Han, S., & Shen, T. (2019). How Can a Firm Innovate When Embedded in a Cluster?—Evidence from the Automobile Industrial Cluster in China. Sustainability, 11(7), 1837. https://doi.org/10.3390/su11071837