Analysis of Three-Dimensional Space Expansion Characteristics in Old Industrial Area Renewal Using GIS and Barista: A Case Study of Tiexi District, Shenyang, China
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Landscape Index Analysis
3.2. Built-Up Land Patches
3.3. City Skylines
3.4. Relationship between Height and Floor Area of High-Rise Buildings
4. Results
4.1. Analyzing Indices
4.2. Renewal of Building Land Patches
4.3. Variations in City Skylines
4.4. High-Rise Building Height and Floor Area
5. Discussion
5.1. Driving Forces of Urban Expansion
5.2. Comparisons with the Results of Related Studies
5.3. Urban Renewal Differences between Tiexi and Ruhr
5.4. Future Urban Expansion of Tiexi
5.5. Urban Expansion and City Skyline
5.6. Urban Expansion and High-Rise Building Height and Floor Area
5.7. Evaluation of Urban Renewal
5.8. Sustainability and Urban Renewal
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marris, P. The social implications of urban redevelopment. J. Am. Inst. Plan. 1962, 28, 180–186. [Google Scholar] [CrossRef]
- Metzger, J.T. Rebuilding harlem: Public housing and urban renewal, 1920–1960. Plan. Perspect. 1994, 9, 255–296. [Google Scholar] [CrossRef]
- Robert, S. The International Building Exhibition (IBA) Emscher Park, Germany: A Model for Sustainable Restructuring? Eur. Plan. Stud. 2002, 10, 77–97. [Google Scholar] [CrossRef]
- Yu, B.; Liu, H.; Wu, J.; Hu, Y.; Zhang, L. Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landsc. Urban Plan. 2010, 98, 210–219. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, Y.; Xiong, Z. Extraction of three-dimensional architectural data from quickbird images. J. Indian Soc. Remote Sens. 2013, 42, 409–416. [Google Scholar] [CrossRef]
- Shi, L.; Shao, G.; Cui, S.; Li, X.; Lin, T.; Yin, K.; Zhao, J. Urban three-dimensional expansion and its driving forces—A case study of Shanghai, China. Chin. Geogr. Sci. 2009, 19, 291–298. [Google Scholar] [CrossRef]
- Bhatta, B. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. Int. J. Remote Sens. 2009, 30, 4733–4746. [Google Scholar] [CrossRef]
- Jiao, L. Urban land density function: A new method to characterize urban expansion. Landsc. Urban Plan. 2015, 139, 26–39. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Deng, X.; Seto, K.C. Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China. Landsc. Urban Plan. 2012, 108, 131–139. [Google Scholar] [CrossRef]
- Al-Shalabi, M.; Billa, L.; Pradhan, B.; Mansor, S.; Al-Sharif, A.A.A. Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: The case of Sana’a metropolitan city, Yemen. Environ. Earth Sci. 2012, 70, 425–437. [Google Scholar] [CrossRef]
- Wang, H.; He, S.; Liu, X.; Dai, L.; Pan, P.; Hong, S.; Zhang, W. Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China. Landsc. Urban Plan. 2013, 110, 99–112. [Google Scholar] [CrossRef]
- Chow, T.E. An agent-integrated irregular automata model of urban land-use dynamics. Int. J. Geogr. Inf. Sci. 2014, 28, 2281–2303. [Google Scholar] [CrossRef]
- Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D.; Breitkopf, U.; Jung, J. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256–271. [Google Scholar] [CrossRef]
- Jawak, S.D.; Panditrao, S.N.; Luis, A.J. Airborne lidar and high resolution satellite data for rapid 3d feature extraction. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 573–580. [Google Scholar] [CrossRef]
- Sohn, G.; Dowman, I. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J. Photogramm. Remote Sens. 2007, 62, 43–63. [Google Scholar] [CrossRef]
- Moallem, P. Automatic building extraction in dense urban areas through GeoEye multispectral imagery. Int. J. Remote Sens. 2014, 35, 5094–5119. [Google Scholar] [CrossRef]
- Zia, A.; Liang, J.; Zhou, J.; Gao, Y. 3D Reconstruction from Hyperspectral Images. In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 5–9 January 2015; pp. 318–325. [Google Scholar] [CrossRef]
- Liu, C.; Wu, H.; Zhang, Y. Extraction of urban 3d features from lidar data fused with aerial images using an improved mean shift algorithm. Surv. Rev. 2011, 43, 402–414. [Google Scholar]
- Brunner, D.; Lemoine, G.; Bruzzone, L.; Greidanus, H. Building height retrieval from vhr sar imagery based on an iterative simulation and matching technique. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1487–1504. [Google Scholar] [CrossRef]
- Feng, D.; Chen, W. Structure filling and matching for three-dimensional reconstruction of buildings from single high-resolution sar image. IEEE Geosci. Remote Sens. Lett. 2016, 13, 752–756. [Google Scholar] [CrossRef]
- Zhai, W.; Shen, H.; Huang, C.; Pei, W. Fusion of polarimetric and texture information for urban building extraction from fully polarimetric sar imagery. Remote Sens. Lett. 2016, 7, 31–40. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, B.; Devereux, B. Urban landscape pattern analysis based on 3d landscape models. Appl. Geogr. 2014, 55, 82–91. [Google Scholar] [CrossRef]
- Zhang, P. Spatiotemporal features of the three-dimensional architectural landscape in Qingdao, China. PLoS ONE 2015, 10, e0137853. [Google Scholar] [CrossRef]
- Ali, S.S. Pixel- and Feature-Level Fusions of Aerial Imagery with LiDAR Data for Landscape Object Extraction; Flinders University: South Australia, Adelaide, Australia, 2011. [Google Scholar]
- Vozikis, G.; Fraser, C.; Jansa, J. Alternative Sensor Orientation Models for High Resolution Satellite Imagery; Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation: Potsdam, Germany, 2003; Volume 12, pp. 179–186. [Google Scholar]
- Willneff, J.; Poon, J. (Eds.) Georeferencing from orthorectified and non-orthorectified high-resolution satellite imagery. In Proceedings of the 13th Australasian Remote Sensing and Photogrammetry Conference, Canberra, Australia, 20–24 November 2006. [Google Scholar]
- Fraser, C.S.; Rottensteiner, F.; Weser, T.; Willneff, J. Application of a generic sensor orientation model to spot 5, QuickBird and ALOS imagery. In Proceedings of the Asia Conference and Remote Sensing, Kuala Lumpur, Malaysia, 12–16 November 2007; pp. 1–7. [Google Scholar]
- Wang, J.W.; Jiang, Y.; Zheng, G.Q. Research on the three-dimensional information extraction of urban buildings from single qiuckbird remote sensing image. Appl. Mech. Mater. 2011, 90–93, 3298–3302. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, Y.L.; Li, Z.G.; Li, W.F.; Ye, M.T. Preliminary theory of three-dimensional urban landscape ecology. Acta Ecol. Sin. 2007, 7, 2972–2982. (In Chinese) [Google Scholar]
- Zhang, P.F.; Hu, Y.-M. Variations of three-dimensional architecture landscape at different spatial scales. Chin. J. Ecol. 2013, 32, 1319–1325. [Google Scholar] [CrossRef]
- Chen, T.; Liu, M.; Hu, Y.M.; Chang, X.K.; Li, C.L.; Xu, Y.Y.; Shi, T. Differentiation characteristics of three-dimensional landscape pattern in Shenyang. Chin. J. Ecol. 2015, 34, 2621–2627. (In Chinese) [Google Scholar]
- Qin, J.; Fang, C.; Wang, Y.; Li, G.; Wang, S. Evaluation of three-dimensional urban expansion: A case study of Yangzhou City, Jiangsu Province, China. Chin. Geogr. Sci. 2015, 25, 224–236. [Google Scholar] [CrossRef]
- Qiao, W.; Liu, Y.; Wang, Y.; Liu, Y. Analysis on the characteristics of three-dimensional urban space expansion in Nanjing since 2000. Geogr. Res. 2015, 34, 666–676. [Google Scholar] [CrossRef]
- Yang, J.; Guo, A.; Xi, J.; Ge, Q.; Li, X. Spatial-temporal differentiation of three-dimensional urban landscape pattern: A case study of Zhongshan District in Dalian. Geogr. J. 2017, 4, 646–656. (In Chinese) [Google Scholar] [CrossRef]
- Taubenböck, H.; Wiesner, M.; Felbier, A.; Marconcini, M.; Esch, T.; Dech, S. New Dimensions of Urban Landscapes: The Spatio-Temporal Evolution from a Polynuclei Area to a Mega-Region Based on Remote Sensing Data. Appl. Geogr. 2014, 47, 137–153. [Google Scholar] [CrossRef]
- Frolking, S.; Milliman, T.; Seto, K.C.; Friedl, M.A. A Global Fingerprint of Macro-Scale Changes in Urban Structure from 1999 to 2009. Environ. Res. Lett. 2013, 8, 024004. [Google Scholar] [CrossRef]
- Semboloni, F. The growth of an urban cluster into a dynamic self-modifying spatial pattern. Environ. Plan. B Plan. Des. 2000, 27, 549–564. [Google Scholar] [CrossRef]
- Czamanski, D.; Benguigui, L.; Roth, R. Modeling cities in 3D: A cellular automaton approach. Environ. Plan. B Plan. Des. 2008, 35, 413–430. [Google Scholar] [CrossRef]
- Qin, J.; Fang, C.; Wang, Y. The Three-dimensional Urban Growth Simulating Based on Cellular Automata. J. Geo-Inf. Sci. 2013, 15, 662–671. [Google Scholar] [CrossRef]
- Lin, J.; Huang, B.; Chen, M.; Huang, Z. Modeling urban vertical growth using cellular automata—Guangzhou as a case study. Appl. Geogr. 2014, 53, 172–186. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Willig, M.R.; Dey, D.K.; Wang, G.; You, L. Bayesian Markov chain random field cosimulation for improving land cover classification accuracy. Math. Geosci. 2015, 47, 123–148. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Zhang, C.; Li, X. Incorporating spectral similarity into Markov chain geostatistical cosimulation for reducing smoothing effect in land cover post classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1082–1095. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Zhang, C.; Ouimet, W.B. Detecting horizontal and vertical urban growth from medium resolution imagery and its relationships with major socioeconomic factors. Int. J. Remote Sens. 2017, 38, 3704–3734. [Google Scholar] [CrossRef]
- Chen, B.; Bao, Z. The Role of Landscape Index in Landscape Planning. Planner 2004, 20, 112–114. (In Chinese) [Google Scholar] [CrossRef]
- Dong, F. “Move the East and Transform the West”: Mode selection of revitalizing old industrial bases in Tiexi, Shenyang. Land Resour. 2007, 5, 23–27. (In Chinese) [Google Scholar]
- Pan, X.Z.; Zhao, Q.G.; Chen, J.; Liang, Y.; Sun, B. Analyzing the variation of building density using high spatial resolution satellite images: The example of Shanghai city. Sensors 2008, 8, 2541–2550. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, Z. Discussion of Multi-dimensional urban spatial growth. In Urban Planning in China, Urban and Rural Planning from the Perspective of Ecological Civilization, Proceedings of the Annual Conference of Urban Planning in China, Dalian, China, 1–5 December 2008; Dalian Press: Dalian, China, 2008. (In Chinese) [Google Scholar]
- Sun, Y.; Zhao, S.; Qu, W. Quantifying spatiotemporal patterns of urban expansion in three capital cities in northeast china over the past three decades using satellite data sets. Environ. Earth Sci. 2015, 73, 7221–7235. [Google Scholar] [CrossRef]
- Wang, M.L.; Bing, L.F.; Xi, F.M.; Wu, R.; Geng, Y. Spatiotemporal patterns and driving forces of land use change in industrial relocation area: A case study of old industrial area in Tiexi of Shenyang, Northeast China. Chin. J. Appl. Ecol. 2013, 24, 1969–1976. (In Chinese) [Google Scholar]
- Wu, D.W.; Zhang, X.L.; Mao, H.Y.; Wu, H. Socio-economic driving forces of land-use change in Fuzhou, the southeastern coastal area of China. In Proceedings of the IEEE International Workshop on Earth Observation and Remote Sensing Applications, Beijing, China, 30 June–2 July 2008. [Google Scholar]
- Report on the Work of Tiexi Government. Available online: https://wenku.baidu.com/view/e767909c988fcc22bcd126fff705cc1755275fea.html (accessed on 20 February 2019). (In Chinese).
- Yang, J. Transformation and renewal of old industrial cities. Res. Urban Dev. 2008, s1, 137–140. (In Chinese) [Google Scholar]
- Goch, S. Betterment without airs: Social, cultural, and political consequences of de-industrialization in the Ruhr. Int. Rev. Soc. Hist. 2002, 47, 224–232. [Google Scholar] [CrossRef]
- Salaske, C. Deindustrialisierung und Restrukturierung-Das Ruhrgebiet im Wandel (1957–2007); Universität zu Köln: Köln, Germany, 2007. [Google Scholar]
- Chen, T. Study on the Decline and Transition of German Ruhr Industrial Zone. Ph.D. Thesis, Jilin University, Jilin, China, 2009. (In Chinese). [Google Scholar]
- Zhang, P. Institutional and cultural factors of renovation of Tiexi industrial zone in Shenyang. Hum. Geogr. 2006, 21, 45–49. (In Chinese) [Google Scholar] [CrossRef]
- Li, X. Review and reflection on the development of Tiexi based on the theory of urban transition. J. Shenyang Norm. Univ. (Soc. Sci. Ed.) 2014, 38, 19–21. (In Chinese) [Google Scholar]
- Shenyang Statistical Information Network. Available online: http://www.sysinet.gov.cn (accessed on 16 September 2017). (In Chinese)
- Wang, X.; Wang, R.; Wang, M.Y. Research on the relation of city skyline and city: Taking Hong Kong as an example. Appl. Mech. Mater. 2014, 584–586, 330–334. [Google Scholar] [CrossRef]
- Yusoff, N.A.H.; Noor, A.M.; Ghazali, R. City skyline conservation: sustaining the premier image of Kuala Lumpur. Procedia Environ. Sci. 2014, 20, 583–592. [Google Scholar]
- Shenyang Statistical Bulletin of National Economic and Social Development 2017. Available online: https://www.sohu.com/a/236903716_100010372 (accessed on 20 February 2019). (In Chinese).
- Laprise, M.; Lufkin, S.; Rey, E. An indicator system for the assessment of sustainability integrated into the project dynamics of regeneration of disused urban areas. Build. Environ. 2015, 86, 29–38. [Google Scholar] [CrossRef]
- Wrigley, N.; Guy, C.; Lowe, M. Urban regeneration, social inclusion and large store development: The seacroft development in context. Urban Stud. 2002, 39, 2101–2114. [Google Scholar] [CrossRef]
- Seo, J.K. Re-urbanisation in regenerated areas of Manchester and Glasgow: new residents and the problems of sustainability. Cities 2002, 19, 113–121. [Google Scholar] [CrossRef]
- Adams, D.; Hastings, E.M. Urban renewal in Hong Kong: Transition from development corporation to renewal authority. Land Use Policy 2001, 18, 245–258. [Google Scholar] [CrossRef]
- Ho, D.C.W.; Yau, Y.; Poon, S.W.; Liusman, E. Achieving sustainable urban renewal in Hong Kong: Strategy for dilapidation assessment of high rises. J. Urban Plan. Dev.-Asce 2012, 138, 153–165. [Google Scholar] [CrossRef]
- Lee, G.K.L.; Chan, E.H.W. The analytic hierarchy process (AHP) approach for assessment of urban renewal proposals. Soc. Indic. Res. 2008, 89, 155–168. [Google Scholar] [CrossRef]
- Chan, E.H.W.; Yung, E.H.K. Is the development control legal framework conducive to a sustainable dense urban development in Hong Kong? Habitat Int. 2004, 28, 409–426. [Google Scholar] [CrossRef]
- Krieger, J.; Higgins, D.L. Housing and health: Time again for public health action. J. Inf. 2002, 92. [Google Scholar] [CrossRef]
- Couch, C.; Dennemann, A. Urban regeneration and sustainable development in Britain-the example of the Liverpool Ropewalks Partnership. Cities 2000, 17, 137–147. [Google Scholar] [CrossRef]
- Zheng, H.W.; Shen, G.Q.; Wang, H. A review of recent studies on sustainable urban renewal. Habitat Int. 2014, 41, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Li, X.; Li, Y. Ten years’ development review and reflection of Tiexi district, Shenyang. Shanghai Urban Plan. 2015, 5, 110–115. (In Chinese) [Google Scholar]
Indicator | Expression | Description |
---|---|---|
Average building height (AH) | AH is the average height of all buildings in the study area. Reflects the average building height and urban expansion in the vertical direction. Hij is the height of jth building of class i; ni is the number of class i buildings. | |
Floor area ratio (FAR) | FAR is the ratio of overall floorage to land area in a certain area. Reflects urban expansion in the vertical direction. For the same research object, the higher the FAR number is, the taller buildings will be. H is the building height; F is the building floor area; C is a constant (C = 3.0 m), which corresponds to the average height of one story; and A is the total land area. | |
Average volume (AV) | AV is the average of all building volumes within the study area. Reflects the average volume of urban buildings and the space they occupy in the vertical direction. The higher AV number is, the larger average size of urban buildings and space occupied by the city’s vertical direction will be. Vi is the volume of the ith building; n is the number of buildings. | |
Building evenness index (BEI) | BEI is the extraction of a root of ratio of standard deviation of building volume to urban area. Reflects the evenness of buildings in a three-dimensional space. Generally, the bigger the BEI value is, the more uneven the distribution of buildings will be. Vi is the volume of the ith building; AV is the average volume of buildings; A is the total land area; and n is the number of buildings. | |
Space congestion degree (SCD) | SCD refers to the sum of all the buildings’ volumes as percentage of urban volume. Reflects the congestion of buildings in a three-dimensional space. The larger the SCD value, the more crowded the urban space. Vi is the volume of the ith building; max{Hi} is the maximum building height; n is the number of buildings; and A is the total land area. |
Year | AH (m) | FAR | AV (m3) | BEI | SCD (%) |
---|---|---|---|---|---|
1997 | 9.74 | 0.87 | 10,695.81 | 347.17 | 1.86 |
2002 | 11.80 | 1.22 | 13,468.23 | 383.11 | 2.60 |
2005 | 12.65 | 1.14 | 12,747.07 | 366.06 | 2.42 |
2008 | 16.78 | 1.41 | 16,387.26 | 765.11 | 3.01 |
2011 | 19.34 | 1.58 | 17,557.92 | 857.24 | 3.38 |
Year | Multi-Story Building | Mid-Rise Building | High-Rise Building | Super High-Rise Building | ||||
---|---|---|---|---|---|---|---|---|
East-West | North-South | East-West | North-South | East-West | North-South | East-West | North-South | |
1997 | 1297.26 | 1575.78 | 1113.60 | 1542.70 | 1100.01 | 1546.59 | ||
2002 | 1337.52 | 1585.76 | 1255.89 | 1574.18 | 1684.70 | 2389.41 | ||
2005 | 1366.05 | 1366.05 | 1307.63 | 1791.00 | 1383.13 | 2303.07 | ||
2008 | 1382.75 | 1621.43 | 1426.51 | 1700.34 | 1264.16 | 1914.41 | 1244.13 | 2001.63 |
2011 | 1409.01 | 1636.13 | 1424.40 | 1671.86 | 1293.26 | 1797.12 | 1593.77 | 2071.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, M.; Hu, Y.; Li, C.; Xiong, Z. Analysis of Three-Dimensional Space Expansion Characteristics in Old Industrial Area Renewal Using GIS and Barista: A Case Study of Tiexi District, Shenyang, China. Sustainability 2019, 11, 1860. https://doi.org/10.3390/su11071860
Xu Y, Liu M, Hu Y, Li C, Xiong Z. Analysis of Three-Dimensional Space Expansion Characteristics in Old Industrial Area Renewal Using GIS and Barista: A Case Study of Tiexi District, Shenyang, China. Sustainability. 2019; 11(7):1860. https://doi.org/10.3390/su11071860
Chicago/Turabian StyleXu, Yanyan, Miao Liu, Yuanman Hu, Chunlin Li, and Zaiping Xiong. 2019. "Analysis of Three-Dimensional Space Expansion Characteristics in Old Industrial Area Renewal Using GIS and Barista: A Case Study of Tiexi District, Shenyang, China" Sustainability 11, no. 7: 1860. https://doi.org/10.3390/su11071860
APA StyleXu, Y., Liu, M., Hu, Y., Li, C., & Xiong, Z. (2019). Analysis of Three-Dimensional Space Expansion Characteristics in Old Industrial Area Renewal Using GIS and Barista: A Case Study of Tiexi District, Shenyang, China. Sustainability, 11(7), 1860. https://doi.org/10.3390/su11071860