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Abstract: The numerous choices between climate change scenarios makes decision-making difficult
for the assessment of climate change impacts. Previous studies have used climate models to
compare performance in terms of simulating observed climates or preserving model variability
among scenarios. In this study, the Katsavounidis-Kuo-Zhang algorithm was applied to select
representative climate change scenarios (RCCS) that preserve the variability among all climate change
scenarios (CCS). The performance of multi-model ensemble of RCCS was evaluated for reference
and future climates. It was found that RCCS was well suited for observations and multi model
ensemble of all CCS. Using the RCCS under RCP (Representative Concentration Pathway) 8.5, the
future extreme precipitation was projected. As a result, the magnitude and frequency of extreme
precipitation increased towards the farther future. Especially, extreme precipitation (daily maximum
precipitation of 20-year return-period) during 2070-2099, was projected to occur once every 8.3-year.
The RCCS employed in this study is able to successfully represent the performance of all CCS,
therefore, this approach can give opportunities managing water resources efficiently for assessment
of climate change impacts.

Keywords: climate change scenario; impact assessment; CMIP5; Katsavounidis-Kuo-Zhang;
representative climate change scenario

1. Introduction

Due to climate change, heavy rainfall events associated with meso-scale convective processes
frequently occur during the East Asian summer monsoon [1–3]. The average temperature over North
Korea has risen by 1.9 °C as observed over the past 100 years, which is the second highest increase
worldwide. Generally, both climate change scenarios and long-term observations have been employed
in assessing the impacts from climate change. In order to investigate trends from the observed
hydrological variables in South and North Korea, Kim et al. [4] analyzed daily precipitation data
of North Korea from 1983 to 2007 and of South Korea over a period of 35 years from 1973 to 2007.
This study identified a clear decrease in summer precipitation across North Korea. By contrast, the
opposite occurred in South Korea. Sung et al. [5] assessed meteorological hazards based on trends
in precipitation for the Korean peninsula. The results suggested that the Annual Daily Maximum
Precipitation (ADMP) in North Korea increased at four sites and decreased at three sites. North Korea
is known to be under threat from climate change, and was ranked 2nd in the world in 2009 on the
Global Climate Risk Index [6,7].

Climate change scenarios have been extensively used to assess impacts from extreme events [8–12],
but the Global Circulation Models (GCMs) include significant uncertainties. For impact assessment
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concerning extremities of climate, it is necessary to quantify uncertainties caused by different dynamic
systems, grid sizes simulated and parametrization physics. To quantify the uncertainty in climate
change scenarios, many studies recommend the use of multi-models [13–17] or the selection of
representative scenarios [18,19]. Several studies have suggested that scenarios should be weighted
appropriately for the ensemble results [20,21]. To weight scenarios, Bayesian updating methods
have been widely used to weight different members or models [22–24]. The previous studies
demonstrated that the performance of predictability of the multi-model forecast assigning appropriate
weights on individual models using Bayesian updating scheme can be enhanced. Nonetheless,
the Intergovernmental Panel on Climate Change (IPCC) adopts the ‘one-model-one-vote’ for the
CMIP3 (Coupled Model Inter-comparison Project Phase 3) and CMIP5 projections, assuming that
the likelihood of each scenario is the same [25]. The use of as many models as possible has been
recommended. However, the consideration of multiple scenarios is costly and time-consuming work
so it can be difficult to make decisions. Therefore, studies have been conducted to select a few specific
(representative) scenarios.

Until now, scenarios have been mainly selected based on the performance in reproducing the
historical (observed) climate, but the reproducibility of past climate cannot guarantee the future climate
projection. Therefore, in recent research, a methodology has been developed that can reflect inter-model
variability to select a subset of the GCM [26,27]. In order to select suitable representative scenarios,
cluster analysis such as k-means has primarily been used [28,29]. After Katsavounidis et al. [30]
proposed the Katsavounidis-Kuo-Zhang (KKZ) algorithm, Cannon et al. [31] and Chen et al. [32]
demonstrated the superiority of the KKZ algorithm over approaches based on clustering in terms of
preserving the entire inter-model variability. Seo et al. [18] then employed the KKZ algorithm to select
a subset of GCMs based on indices associated with extreme changes in climate.

Climate change scenarios produced on a national level contain high-quality data with different
dynamics that may be a good choice for producing all possible outcomes. However, for countries
that are trying to assess impacts using limited resources, it may be preferable to assess climate change
impacts using selected representative scenarios. In this case, it may be a reasonable alternative to use
techniques that can capture as extensive a range of inter-model variability in the future as possible
while keeping the number of GCMs used at a minimum. For instance, despite the urgency to assess
impacts using climate change scenarios in North Korea, there are few case studies projecting extreme
precipitation in North Korea in the future. Hence, the first goal of this study is to select climate
change scenarios which can represent inter-model variability using downscaled GCMs at a local scale.
The second goal is to evaluate the ensemble mean of the selected scenarios by comparing observation
with the ensemble mean of all the scenarios. Along with an evaluation of the performance of the
representative scenarios, this study aims to predict the possibility of extreme precipitation in the future
of North Korea.

2. Materials and Methods

2.1. Overview

In this study, we used an MME (Multi-Model Ensemble) approach, which combines results from
multiple models in order to project changes in and return periods of possible extreme precipitation in
North Korea. Figure 1 illustrates the overall process of this study. By employing the daily precipitation
series from 25 CMIP5 climate projections that were downscaled using a statistical downscaling scheme,
we collected the annual maximum daily precipitation in North Korea. The KKZ algorithm was used
to select representative climate change scenarios (RCCS) for extreme precipitation as defined from
observations of a 20-year period of precipitation. We projected the frequency and magnitude of extreme
precipitation using the Generalized Extreme Value (GEV) distribution both for the reference period
(1980~2005) and for the three 30-year future periods (F1: 2011~2040, F2: 2041~2070, and F3: 2071~2100)
(Figure 1).
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Figure 1. The procedure utilized for this study. 

2.2. Climate Change Scenarios 

North Korea is the northern region of the Korea Peninsula, divided by the Military Demarcation 
Line (MDL), which was established in the armistice agreement of July 1953. The area covers 123,138 
km2, thereby occupying 55.1% of the total 223,477 km2 of the Korean Peninsula (Figure 2, Kwon et al., 
2019). Since North Korea is in contact with Manchu and Siberia to the north, it is relevant as the 
connection between continent and ocean. More than 80% of the country is mountainous, and North 
Korea has a continental climate with four seasons. The long winter season brings very cold and clear 
weather, with numerous snow storms that result from the northern Siberian winds. The summers 
are extremely hot, humid, and rainy because of the southern monsoon winds that bring moist air 
from the Pacific Ocean. 

Figure 1. The procedure utilized for this study.

2.2. Climate Change Scenarios

North Korea is the northern region of the Korea Peninsula, divided by the Military Demarcation
Line (MDL), which was established in the armistice agreement of July 1953. The area covers
123,138 km2, thereby occupying 55.1% of the total 223,477 km2 of the Korean Peninsula (Figure 2,
Kwon et al., 2019). Since North Korea is in contact with Manchu and Siberia to the north, it is relevant
as the connection between continent and ocean. More than 80% of the country is mountainous, and
North Korea has a continental climate with four seasons. The long winter season brings very cold and
clear weather, with numerous snow storms that result from the northern Siberian winds. The summers
are extremely hot, humid, and rainy because of the southern monsoon winds that bring moist air from
the Pacific Ocean.
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The monthly precipitation from 27 stations over North Korea was analyzed to identify both 
monthly and seasonal variability (Figure 3). July and August receive the highest annual precipitation 
at 48.1% of the total annual rainfall (969.3 mm), with relatively low precipitation in winter and 
spring. The amount of precipitation in July is increasing; in July 2013, rainfall for this month alone 
reached 811.2 mm (as shown in Figure 3a). The Gaema Plateau in the North receives less 
precipitation than other regions, with both the area around the Chungcheon River and the region 
near the MDL suffering from the highest amounts of rainfall in North Korea (as shown in Figure 3b). 
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Figure 3. Precipitation characteristics over North Korea. 

This study employed climate change scenarios at local scale of 27 weather stations from which 
the 25 GCMs for the scenarios were downscaled (Table 1). Using climate projections at the grid 
points of each GCM, we applied a statistical downscaling method to downscale to the weather 
stations as in Figure 2. In Coupled Model Inter-comparison Project Phase 5 (CMIP5) we used the 
RCP (Representative Concentration Pathways) 8.5 scenario which represents the pathway using the 
highest greenhouse gas emissions. 

Figure 2. Weather stations in North Korea.

The monthly precipitation from 27 stations over North Korea was analyzed to identify both
monthly and seasonal variability (Figure 3). July and August receive the highest annual precipitation
at 48.1% of the total annual rainfall (969.3 mm), with relatively low precipitation in winter and spring.
The amount of precipitation in July is increasing; in July 2013, rainfall for this month alone reached
811.2 mm (as shown in Figure 3a). The Gaema Plateau in the North receives less precipitation than
other regions, with both the area around the Chungcheon River and the region near the MDL suffering
from the highest amounts of rainfall in North Korea (as shown in Figure 3b).
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Figure 3. Precipitation characteristics over North Korea.

This study employed climate change scenarios at local scale of 27 weather stations from which
the 25 GCMs for the scenarios were downscaled (Table 1). Using climate projections at the grid points
of each GCM, we applied a statistical downscaling method to downscale to the weather stations as in
Figure 2. In Coupled Model Inter-comparison Project Phase 5 (CMIP5) we used the RCP (Representative
Concentration Pathways) 8.5 scenario which represents the pathway using the highest greenhouse
gas emissions.

The APCC (APEC Climate Center) Integrated Modeling (AIMS) produced downscaled climate
projection data of South Korea using two BCSD (Bias-Correction Spatial Disaggregation) methods [17];
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the SQM (Simple Quantile Method) and Spatial Disaggregation with Quantile Delta Mapping
(SDQDM) [33] which can retain long-term temporal trends in climate. This study used the SDQDM
method to downscale future projections of daily precipitation and temperature of 25 GCMs from
CMIP5 under RCP 8.5 to locations of the 27 weather stations.

Table 1. 25 GCMs from CMIP5 used for this study.

No. GCMs Resolution
(degree) Institution

1 CanESM2 2.813 × 2.791 Canadian Centre for Climate Modelling and Analysis

2 CCSM4 1.250 × 0.942

National Center for Atmospheric Research3 CESM1-BGC 1.250 × 0.942

4 CESM1-CAM5 1.250 × 0.942

5 CMCC-CM 0.750 × 0.748
Centro Euro-Mediterraneo per I Cambiamenti Climatici

6 CMCC-CMS 1.875 × 1.865

7 CNRM-CM5 1.406 × 1.401 Centre National de Recherches Meteorologiques

8 CSIRO-Mk3-6-0 1.875 × 1.865 Commonwealth Scientific and Industrial Research Organisation and
Queensland Climate Change Center of Excellence

9 FGOALS-g2 2.791 × 2.813
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

10 FGOALS-s2 2.813 × 1.659

11 GFDL-CM3 2.500 × 2.000

Geophysical Fluid Dynamics Laboratory12 GFDL-ESM2G 2.000 × 2.023

13 GFDL-ESM2M 2.500 × 2.023

14 HadGEM2-AO 1.875 × 1.250
Met Office Hadley Centre

15 HadGEM2-CC 1.875 × 1.250

16 INM-CM4 2.000 × 1.500 Institute for Numerical Mathematics

17 IPSL-CM5A-LR 3.750 × 1.895

Institute Pierre-Simon Laplace18 IPSL-CM5A-MR 2.500 × 1.268

19 IPSL-CM5B-LR 3.750 × 1.895

20 MIROC-ESM 2.813 × 2.791
Japan Agency for Marine-Earth Science and Technology

21 MIROC-ESM-CHEM 2.813 × 2.791

22 MPI-ESM-LR 1.875 × 1.865
Max Planck Institute for Meteorology (MPI-M)

23 MPI-ESM-MR 1.875 × 1.865

24 MRI-CGCM3 1.125 × 1.122 Meteorological Research Institute

25 NorESM1-M 2.500 × 1.895 Norwegian Climate Centre

2.3. Theory

The KKZ algorithm [30] was applied to select representative climate change scenarios—GCMs in
this study—for North Korea. The KKZ algorithm was designed to select models that cover the spread
of an ensemble with sufficient characterization of high-density regions in multi-variate space [18,34].
Given the N number of GCMs and the P number of climate variables, the KKZ algorithms were applied
as follows:

1. For the first GCM, the model that is located closest to the centroid of the ensemble; i.e., the model
with the lowest sum of squared errors (SSE) at the centroid across all of the climate variables is
determined, as shown by Equation (1):

SSE =
P

∑
p=1

N

∑
i=1

(yip − yp)
2 (1)

where yip is the value of the pth climate variable for the ith model, and yp is the centroid value of
the pth climate variable across all the models. For the second GCM, the model that lies farthest
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from the first model is selected. The p-space Euclidean distance is used to calculate the distance,
d(i, j), between the two models (the ith and jth GCMs):

d(i, j) =

√√√√ P

∑
p=1

(yip − yjp)
2 (2)

2. For selection of the rest of the GCMs (from the 3rd to the last selection)

(i) the distances from each remaining model to the previously selected models are calculated;
(ii) only the lowest distance among those calculated in step 3(i) for each remaining model

is retained;
(iii) the model with the maximum distance among those chosen in step 3(ii) is determined as

the next model.

3. Step 3 is repeated until all the models have been selected in order. Readers are referred to Seo
and Kim [19] for an example of the step-by-step procedure used with a simple bi-variate case.

The GEV distribution has been widely used to describe extremities in hydro-meteorological
variables [35–37]; because the GEV distribution includes three different limiting distributions of
extreme value depending on the shape parameter value. The cumulative distribution function, which
estimates the non-exceedance probability, can be estimated by Equation (3) and its solution is estimated
using Equation (4) [38]:

F(x) =

{
exp[−(1− κ x−ξ

α )
1/κ

], κ 6= 0
exp[− exp(− x−ξ

α )], κ = 0
(3)

x =

{
ξ + α

κ

{
1− [− log(P)]κ

}
, κ 6= 0

ξ − α log[− log(P)], κ = 0
(4)

where ξ, α, and κ are location, scale, and shape parameters, respectively. Because the GEV is represented
by ξ + α/κ ≤ x < ∞ for κ < 0, it follows that if κ < 0, the distribution has a thicker right-hand tail.
We used the GEV type II distribution. Among the parameters estimation scheme, the method of
L-moment is not sensitive to outliers because of the order statistics of the data [39]. In this study, the
method of L-moment was applied to estimate the parameters. Klein Tank et al. [40] suggested a return
period of 20 years for evaluating the magnitude and frequency of rare events that lie far in the tails of
the probability distribution of weather variables. We selected extreme precipitation as a target under a
20-year return period.

3. Scenario Selection and Evaluation

3.1. RCCS Selection

All the GCMs were placed into order by the KKZ algorithm corresponding to both the total
annual precipitation and extreme event (1-day maximum precipitation) variables during the reference
period (F3, 2071-2010). RCCS were then selected, and ranking from 1st to 5th, GCMs chosen were:
FGOALS-s2, GFDL-ESM2G, HadGEM2-CC, CanESM2, and IPSL-CM5A-MR. It is anticipated that
uncertainties in precipitation can be explained by the RCCS. The performance of the RCCS is discussed
in the following section.

3.2. Evaluation of Performance during the Reference Period

Many studies have quantified the uncertainty among scenarios through use of a MME of climate
change scenarios (CCS), and the weight of the MME has been determined by comparing the model
simulations with observations over a reference period [41,42]. Five scenarios were selected as the
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RCCS for extreme precipitation in North Korea, and the ensemble mean of these scenarios is expected
to be similar to the ensemble mean of all scenarios. Therefore, in this section, the simulated and
observed monthly precipitation for the reference period was compared to assess the performance of the
precipitation simulation. Figure 4 shows the monthly precipitation determined from all CCS, the RCCS,
each scenario of RCCS, and observation. Results indicated that most of the scenarios reflected the
monthly and seasonal variability apparent from observation. The correlation coefficient was compared,
of which FGOALS-s2 was the lowest at 0.81. All CCS and RCCS were 0.98, which highly correlated
with observation. The rest were all above 0.95.
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We evaluated the performance and effectiveness of the RCCS by comparing the difference between
all CCS, RCCS, each scenario of RCCS and observation (Figure 5). At Changjon, which is a region
with high precipitation (see Figure 2), simulated precipitations in most scenarios were lower than
observations. However, simulated precipitation was greater than observation for Pungsan, Sinpo,
Anju, Pyongyang, and Singye, all of which have less annual mean precipitation. The absolute deviation
between each scenario was calculated and compared with the mean value of total absolute deviation.
Results showed that the all CCS maintained the best performance, which was the smallest at 48.5mm.
The RCCS was the next best at 50.1mm, which is not significantly different from the results of all CCS.
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To confirm the performance of the simulations for extreme precipitation caused by climate
change, we compared the 20-year frequency precipitation of all CCS, RCCS, each scenario of RCCS,
and observation for the reference period. Table 2 shows the estimated values of GEV distribution
parameters—location, scale and shape parameters—for each scenario. Figure 6 shows the probability
density function (PDF) for each scenario. The location and scale parameters were largely estimated
from comparisons of the scenarios with the observations. The extreme precipitation in the scenarios
was greater than the observations, and the variation across the scenarios was significant. The median of
the PDFs of the scenarios moved to the right when compared to observation, and the horizontal widths
of the PDFs were wider. Thus, it is projected that magnitude and frequency of extreme precipitation
will increase in comparison to observation.
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Table 2. Generalized Extreme Value (GEV) parameters of each scenario for the reference period.

Data
GEV Parameter

Location Scale Shape

Observation 80.618 28.585 −0.107
All CCS 95.510 36.541 −0.092

FGOALS−s2 92.094 34.936 −0.177
GFDL-ESM2G 91.938 38.509 −0.107
HadGEM2-CC 94.081 33.118 −0.060

CanESM2 93.565 32.818 −0.173
IPSL-CM5A-MR 95.620 35.775 −0.112

RCCS 93.460 35.031 −0.126
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4. Discussion

4.1. An Evaluation of the Performance for Future Analysis

We compared the performance of the scenarios over the reference period in Section 3, and
confirmed that the performance of the RCCS was adequate. This section compares the projection
performance of the RCCS with the extreme precipitation of the late 21st century. First, we compared
the magnitude of extreme precipitation for each scenario in the F3 (2071~2100) period. Figure 7 shows
the difference between the RCCS, each five scenarios of RCCS and all CCSs in F3. The darker red and
blue colors in the figure point to large differences from all CCS. As a result of comparing the spatial
distribution of the differences, RCCS was smaller than all CCS (as shown in Figure 7a). The spatial
averaged absolute deviation (range) in each scenario was calculated and quantitatively analyzed. As a
result, the mean absolute deviations of RCCS, FGOALS-s2, GFDL-ESM2G, HadGEM2-CC, CanESM2,
and IPSL-CM5A-MR were calculated at 12.8, 22.7, 23.5, 47.7, 55.5, and 43.9 mm, respectively. The RCCS
was the smallest, and it was confirmed that there were under- and over-estimations in five scenarios
corresponding to the RCCS around the MDL (as shown in Figure 7b–f). While CanESM2 (Figure 7e)
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produced the most over-estimated value, in contrast, IPSL-CM5A-MR (Figure 7f) produced the most
under-estimated value.
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Next, we investigated the changes in the return period of extreme precipitation in F3 as compared
to the reference period (20 years). Figure 8 shows the difference between the RCCS, the five scenarios
included in the RCCS, and all CCS, where the darker green and brown colors of the figure mean
significant differences from all CCS.

As shown in Figure 8a, use of the RCCS led to the smallest difference from all CCS. As a
result, the mean absolute deviations of RCCS, FGOALS-s2, GFDL-ESM2G, HadGEM2-CC, CanESM2,
and IPSL-CM5A-MR were calculated at 1.9, 3.9, 4.0, 6.4, 3.9 and 5.7 years, respectively. In terms
of differences in spatial distribution, there was significant variability when comparing all CCS to
HadGEM2-CC and IPSL-CM5A-MR. This is because the spatial variability (among sites) increased due
to the wide horizontal band of the PDFs obtained by HadGEM2-CC and IPSL-CM5A-MR (Figure 9).
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4.2. Future Projections Based on RCCS

The performance of the RCCS and all CCS during the reference and future (F3) periods was
similarly assessed. We also projected the magnitude and frequency of extreme precipitation throughout
the 21st century, F1 (2011~2040), F2 (2041~2070) and F3 (2071~2100) using RCCS as presented in
Figure 10. The average for the 20-year precipitation frequency of the 25 GCMs changed gradually
from the reference period and through the F1, F2 and F3 periods. The 20-year precipitation frequency
during the reference period was 227.0 mm/day (Figure 10a); this was expected to increase by 5.2% (F1),
27.9% (F2), and 39.9% (F3) in comparison with the present (Figure 10b–d). As a result of comparing
the spatial distribution, larger precipitation was projected near the upper- and mid- Chuncheon River
and around the MDL adjacent to South Korea. The region including the Anju and Huichon stations
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at the mid- and upstream Cheongcheon River is an area undergoing high precipitation because of a
topographic effect. In regions near the MDL, the rate of increase in precipitation is very high compared
to other regions, and Pyongyang, Singye and Kaesong were expected to increase by more than 50%
compared to the present.
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A non-stationarity was noticed in the 20-year precipitation frequency over time, and the 20-year
return period in the current climate was expected to decrease in the future. Therefore, we projected
the changed return periods for the 20-year frequency precipitation of the reference period (as shown
in Figure 11). The spatially averaged return period in F1 was 20.7 years (Figure 11a), and climate
change accelerated the return period to 11.7 years and 8.3 years in F2 and F3, respectively (as shown in
Figure 11b,c). In particular, an extreme precipitation event in F3 was expected to occur every 4.4years
in Changjon, located on the east coast of North Korea (Figure 11).

Generally, the PDF changes with time due to climate change, which means that the location
and scale parameters of GEV distribution also increase over time, and the shape parameter becomes
smaller [17]. Similar to previous studies, changes to the GEV parameters caused the location parameters
from the present to F3 to increase from 93.5 to 127.0 and the scale parameters to increase from 35.0
to 50.2. The shape parameter decreased from −0.121 to −0.126. This means that the magnitude and
frequency of extreme precipitation events would increase during future periods as compared to the
reference period (as shown in Figure 12). The upper tail of GEV-PDF in the future would become
thicker due to the decrease of the shape parameters, and therefore, the occurrence probability of
extreme precipitation would increase.
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5. Conclusions

The assessment of future changes in climate extremes has been challenging due to the intrinsic
uncertainty associated with the use of different scales and mechanisms across a wide range of climate
models. MME has been widely used for handling this uncertainty; meanwhile, the IPCC argued that
likelihood of each model should be considered equally. Nonetheless, it is complicated and difficult to
formulate decisions due to the large computational costs that arise in considering large numbers of
climate change scenarios. Hence, this study selected the RCCS using the KKZ algorithm in order to
assess the impact of climate change on extreme precipitation in North Korea. The selected RCCS were
then evaluated by comparing with observation and all CCS. Finally, the magnitude and frequency of
extreme precipitation in North Korea was projected for three future periods using RCCS. As a result,
RCCS successfully retained the full range of variability and the same mean value across all months
that was obtained by all CCS. The mean summer precipitation for North Korea as calculated from
observation, all CCS, and RCCS was therefore 494, 533, and 536 mm, respectively.

Using RCCS for North Korea, extreme precipitation in North Korea was projected for three future
periods. Compared to the present, although a slight decrease in extreme precipitation events was
expected in F1, there was an increasing trend found in the magnitude and frequency of extreme
precipitation from F1 through to F3. This is because the values of the location and scale parameters
of GEV increase with projection further into the future. Moreover, since the value of the shape
parameters displayed a decreasing trend, it was projected that the probability of occurrence of extreme
precipitation events will increase in the future. When compared to previous study, Kwon et al. [41]
and the current study both show consistent results, that is, 8.3 and 8.8 years for the return period of
extreme precipitation under Kwon et al. [41] and the current study, respectively. Thus, the current
study is able to deal with all the potential uncertainties arising from all the models by using only the
RCCS, which is a subset of all the models.

There was a higher likelihood of extreme precipitation in Pyongyang, Singye, and Kaesong where
are located near to the MDL. In these regions, extreme precipitation events have been caused mainly
by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma
front supplying water vapor to the East China Sea. Lee et al. [43] indicated that these synoptic-scale
features under current conditions are similar to those of future extreme events, using HadGEM3-RA
simulations. Lee et al. [44] examined future changes in precipitation over Northeast Asia and Korea
using five RCM simulations and indicated that extreme precipitation events are mainly associated
with the southwest-to-northeast evolution of large-scale low-pressure systems in both current and
future climates. The projected extreme precipitation events can cause frequent river erosion and
sediment transport in these regions. The environmental impacts of sedimentation include loss of
aquatic habitat, changes in fish migration, decrease in fishery resources, and so forth. There are also
negative impacts of erosion, which include water pollution, siltation, and reduction in water storage
capacity. Therefore, appropriate adaptive plans should be established. The recently announced policy
about forest restoration would be one of them. Furthermore, in these regions, since the North-Han
and Imjin River watersheds share both territories of South and North Korea, cooperative adaptation
strategies to mitigate problems caused by future extreme precipitation should be established.

In this study, it is confirmed that the extreme precipitation obtained by the MME of the selected
scenarios (RCCS) can fully account for all the scenarios (all CCS). The novelty of this study stems
from the fact that there have been few studies addressing the impact of climate change with regards
to extreme precipitation, although North Korea is known to be susceptible to significant threat from
future climate change. Furthermore, it would be worth evaluating the future prospects of changes in
flood volumes in North Korea, utilizing the RCCS.
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