Heterogeneity in the Chemical Composition of Biofertilizers, Potential Agronomic Use, and Heavy Metal Contents of Different Agro-Industrial Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Characterization of the Agroindustrial Residues Used in the Aerobic Biofertilizer
2.2. Preparation of the Aerobic Biofertilizer
2.3. Determination of the Chemical Properties of the Aerobic Biofertilizer
2.4. Acquisition of Data on the Chemical Composition and Heavy Metal Concentrations of Different Biofertilizers
Acquisition of Secondary Data
2.5. Statistical Analyses
3. Results
3.1. Chemical Composition of Agroindustrial Residue
3.1.1. Micronutrients of Agro-Industrial Waste Properties
3.1.2. Heavy Metals Analysis of Agro-Industrial Waste Properties
3.2. Physical and Chemical Characteristics of Biofertilizers Obtained from Different Raw Materials
4. Discussion
4.1. Chemical Properties of Agroindustrial and Heavy Metal Concentrations of Raw Materials
4.2. Acquisition of Data on the Chemical Composition Different Biofertilizers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012, 1–12. [Google Scholar] [CrossRef]
- Xiang, W.; Zhao, L.; Xu, X.; Qin, Y.; Yu, G. Mutual information flow between beneficial microorganisms and the roots of host plants determined the bio-functions of biofertilizers. Am. J. Plant Sci. 2012, 3, 1115–1120. [Google Scholar] [CrossRef]
- Biofertilizers Market Size, Share & Trends Analysis Report by Product (Nitrogen Fixing, Phosphate Solubilizing), by Application (Seed Treatment, Soil Treatment), and Segment Forecasts, 2012–2022. Available online: https://www.grandviewresearch.com/industry-analysis/biofertilizers-industry (accessed on 12 September 2018).
- Nath Bhowmik, S.; Das, A. Biofertilizers: A Sustainable Approach for Pulse Production. In Legumes for Soil Health and Sustainable Management; Meena, R., Das, A., Yadav, G., Lal, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 445–485. [Google Scholar] [CrossRef]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N. Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Front. Plant Sci. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Ansari, M.F.; Tipre, D.R.; Dave, S.R. Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatal. Agric. Biotechnol. 2015, 4, 17–24. [Google Scholar] [CrossRef]
- Buragohain, S.; Sarma, B.; Nath, D.J.; Gogoi, N.; Meena, R.S.; Lal, R. Effect of 10 years of biofertiliser use on soil quality and rice yield on an Inceptisol in Assam, India. Soil Res. 2018, 56, 49–58. [Google Scholar] [CrossRef]
- Wang, H.Y.; Liu, S.; Zhai, L.M.; Zhang, J.Z.; Ren, T.Z.; Fan, B.Q.; Liu, H. Preparation and utilization of phosphate biofertilizers using agricultural waste. J. Integr. Agric. 2015, 14, 158–167. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of food industry waste for high-value products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef]
- Paiva, P.E.; Sá, F.V.; Mesquita, E.F.; Barbosa, M.A.; Souto, L.S.; Souza, M.F.; Lourival, F.C.; Bertino, A.M.P. Growth and efficiency of water use of papaya cultivars (Carica papaya L.) under doses of bovine biofertilizer in hydroponics cultivation. Afr. J. Agric. Res. 2015, 10, 2315–2321. [Google Scholar] [CrossRef]
- Bócoli, M.E.; Mantovani, J.R.; Miranda, J.M.; Marques, D.J.; Silva, A.B. Soil chemical properties and maize yield under application of pig slurry biofertilizer. Rev. Bras. Eng. Agríc. Ambient 2016, 20, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Manciulea, I.; Dumitrescu, L.; Bogatu, C.; Draghici, C.; Lucaci, D. Compost based on biomass wastes used as biofertilizers or as sorbents. Nearly Zero Energy Communities 2018, 1, 566–585. [Google Scholar] [CrossRef]
- Orts, Á.; Tejada, M.; Parrado, J.; Paneque, P.; García, C.; Hernández, T.; Gómez-Parrales, I. Production of biostimulants from okara through enzymatic hydrolysis and fermentation with Bacillus licheniformis: Comparative effect on soil biological properties. Environ. Technol. 2018, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Corvellec, H. Sustainability objects as performative definitions of sustainability: The case of food-waste-based biogas and biofertilizers. J. Mater. Cult. 2016, 21, 383–401. [Google Scholar] [CrossRef] [Green Version]
- Jastrzębska, M.; Saeid, A.; Kostrzewska, M.K.; Baśladyńska, S. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants. Open Chem. 2018, 16, 35–49. [Google Scholar] [CrossRef] [Green Version]
- AMA BRASIL. Produção e Importação de Fertilizantes. Available online: http://amabrasil.agr.br/web/portfolio-item/producao-e-importacao-de-fertilizantes/ (accessed on 22 November 2018).
- FAOSTAT 2018. FAOSTAT (Database). Available online: http://data.fao.org/ref/262b79ca-279c-4517-93de-ee3b7c7cb553.html?version=1.0 (accessed on 30 November 2018).
- Souza, C.C.; Frainer, D.M.; Neto, J.F.; Carvalho, L.M.; Dos Santos, H.W.; Lemes, L.H.B. Análise do padrão sazonal e da variação dos preços do milho aos produtores do estado de São Paulo, Brasil. Rev. Ciênc. Agr. 2017, 40, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, T.; De Zen, S. A cadeia de pecuária de corte no Brasil: Evolução e tendências. Rev. IPecege 2017, 3, 85–99. [Google Scholar] [CrossRef]
- Fess, T.L.; Benedito, V.A. Organic versus Conventional cropping sustainability: A comparative system analysis. Sustainability 2018, 10, 272. [Google Scholar] [CrossRef]
- Cestonaro, T.; Costa, M.S.S.; Costa, L.A.; Rozatti, M.A.T.; Pereira, D.C.; Lorin, H.E.F.; Carneiro, L.J. The anaerobic co-digestion of sheep bedding and ≥50% cattle manure increases biogas production and improves biofertilizer quality. Waste Manag. 2015, 46, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.M.; Cardoso, S.S.; Lucas, F.T.; Melo, A.V. Effect of application leaf in biofertilizers arugula seedlings production under different substrates. Nucleus 2017, 14, 177–188. [Google Scholar] [CrossRef]
- Dębska, B.; Długosz, J.; Piotrowska-Długosz, A.; Banach-Szott, M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration- results from a field-scale study. J. Soils Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef]
- Andrade, F.H.A.; Alves, A.S.; Araujo, C.S.P.; Sousa, V.F.O.; Oliveira, D.S.; Neto, B.M.A.; Silva, F.A.; Morais, R.R. Cattle manure and liquid biofertilizer for biomass production of yellow passion fruit seedlings. Afr. J. Agric. Res. 2017, 12, 1430–1436. [Google Scholar] [CrossRef]
- Bomfim, C.A. Biofertilizante Hortbio®: Características Microbiológicas e Efeito na Qualidade da Alface. Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 2016. [Google Scholar]
- Islas-Valdez, S.; Lucho-Constantino, C.A.; Beltrán-Hernández, R.I.; Gómez-Mercado, R.; Vázquez-Rodríguez, G.A.; Herrera, J.M.; Jiménez-González, A. Effectiveness of rabbit manure biofertilizer in barley crop yield. Environ. Sci. Pollut. Res. 2017, 24, 25731–25740. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Glic, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 2–16. [Google Scholar] [CrossRef]
- Polechońska, L.; Klink, A.; Dambiec, M.; Rudecki, A. Evaluation of Ceratophyllum demersum as the accumulative bioindicator for trace metals. Ecol. Indic. 2018, 93, 274–281. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen total. In Methods of Soil Analysis; Sparks, D.L., Ed.; America Society of Agronomy: Madison, WI, USA, 1996; Part 3; pp. 1085–1121. [Google Scholar]
- Empresa Brasileira de Pesquisa (EMBRAPA) 2018. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/946012/1/folder20hortbio.pdf (accessed on 11 October 2018).
- Bonfim, F.P.; Honório, I.C.; Reis, I.L.; Pereira, A.J.; Souza, D.B. Caderno dos Microrganismos-Instruções Práticas Sobre Uso Ecológico e Social do EM; Universidade Federal de Viçosa: Viçosa, Brazil, 2011; pp. 2–32. [Google Scholar]
- Fageria, N.K.; Nascente, A.S. Management of soil acidity of South American soils for sustainable crop production. Adv. Agron. 2014, 128, 221–275. [Google Scholar] [CrossRef]
- Dwivedi, B.S.; Singh, V.K.; Meena, M.C.; Dey, A.; Datta, S.P. Integrated nutrient management for enhancing nitrogen use efficiency. Ind. J. Fertil. 2016, 12, 62–71. [Google Scholar]
- Brazil. Ministry of Agriculture Livestock and Food Supply, 2004. Resolution n° 4.954, of January 14, 2004. Available online: http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2004/Decreto/D4954.htm (accessed on 25 January 2018).
- Haraldsen, T.K.; Andersen, U.; Krogstad, T.; Sørheim, R. Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley. Waste Manag. Res. 2011, 29, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Bai, Z.; Jin, B.; Xiao, R.; Zhuang, G. Bioconversion of wastewater from sweet potato starch production to Paenibacillus polymyxa biofertilizer for tea plants. Sci. Rep. 2014, 4131, 1–7. [Google Scholar] [CrossRef]
- Medeiros, R.F.; Cavalcante, L.F.; Mesquita, F.O.; Rodrigues, R.M.; Sousa, G.G.; Diniz, A.A. Crescimento inicial do tomateiro-cereja sob irrigação com águas salinas em solo com biofertilizantes bovino. Rev. Bras. Eng. Agríc. Ambient 2011, 15, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Morgado, B.; Gómez, I.; Parrado, J.; García-Martínez, A.M.; Aragón, C.; Tejada, M. Obtaining edaphic biostimulants/biofertilizers from different sewage sludges. Effects on soil biological properties. Environ. Technol. 2015, 36, 2217–2226. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.R.A.; Souza, C.F.; Matos, A.T.; Santos, N.T.; Ferreira, W.F.M. Concentração de nutrientes em plantas de milho, adubadas com biofertilizantes, obtidos na digestão anaeróbia da manipueira. Eng. Agric. 2011, 19, 236–243. [Google Scholar] [CrossRef]
- Mekki, A.; Arous, F.; Aloui, F.; Sayadi, S. Treatment and valorization of agro-wastes as biofertilizers. Waste Biomass Valor 2017, 8, 611–619. [Google Scholar] [CrossRef]
- Nath, G.; Singh, K.; Singh, D.K. Chemical analysis of vermicomposts/vermiwash of different combinations of animal, agro and kitchen wastes. Aust. J. Basic Appl. Sci. 2009, 3, 3671–3676. Available online: https://www.researchgate.net/publication/228359651 (accessed on 21 October 2018).
- Ma, Y.; Yin, Y.; Liu, Y. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizers. Bioresour. Technol. 2017, 241, 448–453. [Google Scholar] [CrossRef]
- Fatima, B.; Zahrae, M.F.; Razouk, R. Chitin/Chitosan’s Bio-Fertilizer: Usage in Vegetative Growth of Wheat and Potato Crops; IntechOpen: London, UK, 2018; pp. 331–354. [Google Scholar] [CrossRef]
- Chatterjee, R. Influence of nutrient sources on growth, yield and economics of organic lettuce production under foothills of eastern Himalayan region. Emirates J. Food Agric. 2015, 27, 460–462. Available online: http://www.ejfa.me/0.9755/ejfa.2015.04.046 (accessed on 18 October 2018). [CrossRef]
- Möller, K. Assessment of Alternative Phosphorus Fertilizers for Organic Farming: Meat and Bone Meal; Institute of crop Science University Hohenheim: Stuttgart, Germany, 2015; pp. 1–8. Available online: https://improve-p.uni-hohenheim.de/uploads/media/moeller2015-factsheet-Meat-and-bone-meal.pdf (accessed on 12 September 2018).
- Mattar, E.P.L.; Junior, F.E.F.; Oliveira, E. Caracterização fisico-quimica de cinza de osso bovino para avaliação do seu potencial uso agrícola. Pesqui. Agropecu. Trop. 2014, 44, 65–70. Available online: http://www.redalyc.org/articulo.oa?id=253030054007 (accessed on 26 September 2018). [CrossRef]
- Withers, P.J.A.; Elser, J.J.; Hilton, J.; Ohtake, H.; Schipper, W.J.; Dijk, K.C. Greening the global phosphorus cycle: How green chemistry can help achieve planetary P sustainability. Green Chem. 2015, 17, 2087–2099. [Google Scholar] [CrossRef]
- Simons, A.M.; Blalock, G.; Nesin, B. Indigenous Bone Fertilizer for Food Security and Growth; Cornell University Press: Ithaca, NY, USA, 2017; pp. 1–36. [Google Scholar]
- Ylivainio, K.; Uusitalo, R.; Turtola, E. Meat bone meal and fox manure as P sources for ryegrass (Lolium multiflorum) grown on a limed soil. Nutr. Cycl. Agroecosyst. 2008, 81, 267–278. [Google Scholar] [CrossRef]
- Chen, L.; Kivelä, J.; Helenius, J.; Kangas, A. Meat bone meal as fertiliser for barley and oat. Agric. Food Sci. 2011, 20, 235–244. [Google Scholar] [CrossRef]
- Kwiaton, M.; Hazle, P.; Morris, D.; Fleming, R.; Webster, K.; Venier, L.; Aubin, I. Island Lake Biomass Harvest Research and Demonstration Area: Establishment Report—Information Report GLC-X-11; Canadian Forest Service, Natural Resources Canada, 2014; p. 82. Available online: http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/36086.pdf (accessed on 16 November 2018).
- Vestergård, M.; Bang-Andreasen, T.; Buss, S.M.; Cruz-Paredes, C.; Bentzon-Tilia, S.; Ekelund, F.; Kjøller, R.; Mortensen, H.L.; Rønn, R. The relative importance of the bacterial pathway and soil inorganic nitrogen increase across an extreme wood-ash application gradient. GCB Bioenergy 2018, 10, 320–334. [Google Scholar] [CrossRef] [Green Version]
- Basak, B.B.; Sarkar, B.; Sanderson, P.; Naidu, R. Waste mineral powder supplies plant available potassium: Evaluation of chemical and biological interventions. J. Geochem. Explor. 2018, 186, 114–120. [Google Scholar] [CrossRef]
- Lima, R.C.M.; Stamford, N.P.; Santos, C.E.R.S.; Junior, M.A.L.; Dias, S.H.L. Eficiência e efeito residual de biofertilizantes de rochas com PK e enxofre com Acidithiobacillus em alface. Hortic. Bras. 2007, 25, 402–407. [Google Scholar] [CrossRef]
- Sharma, L.; Brigaityte, O.; Honer, K.; Kalfaoglu, E.; Slinksiene, R.; Streimikis, V.; Sviklas, A.M.; Baltrusaitis, J. Carnallite-Derived Solid Waste as Potassium (K) and Magnesium (Mg) Source in Granulated Compound NPK Fertilizers. Sustain. Chem. Eng. 2018, 6, 9427–9433. [Google Scholar] [CrossRef]
- IBRAM, Instituto Brasileiro de Mineração. Informações e Análises da Economia Mineral Brasileira, 6th ed.; IBRAM: Brasília, Brazil, 2011; p. 65. [Google Scholar]
- Qin, J.; Frederik, M.; Ekelund, F.; Rønn, R.; Christensen, S.; Arjen, G.; Groot, D.; Hindborg, L.; Skov, S.; Henning, P. Wood ash application increases pH but does not harm the soil. Environ. Pollut. 2017, 224, 581–589. [Google Scholar] [CrossRef]
- Kolahchi, Z.; Jalali, M. Kinetics of nutrient release from different organic residues using a laboratory system. Arch. Agron. Soil Sci. 2012, 58, 1013–1051. [Google Scholar] [CrossRef]
- Noyce, G.L.; Fulthorpe, R.; Gorgolewski, A.; Hazlett, P.; Tran, H.; Basiliko, N. Soil microbial responses to wood ash addition and forest fi re in managed Ontario forests. Appl. Soil Ecol. 2016, 107, 368–380. [Google Scholar] [CrossRef]
- Benbi, D.K.; Thind, H.S.; Sharma, S.; Brar, K.; Toor, A.S. Bagasse ash application stimulates agricultural soil C sequestration without inhibiting soil enzyme activity. Commun. Soil Sci. Plant Anal. 2017, 48, 1822–1833. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, X.; Chen, Y.; Dong, J.; Shi, J. Effect of exogenous substances on soil organic and inorganic carbon sequestration under maize stover addition. Soil Sci. Plant Nutr. 2017, 1–8. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Berry, W.L.; Wheeler, R.M. Sodium—A functional plant nutrient. Crit. Rev. Plant Sci. 2003, 22, 391–416. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.C.; Bergamini, C.N.; Leonardo, O.R.; Gonçalves, M.P.; Zenatti, D.C.; Hermes, E. Effect of biofertilizer obtained by anaerobic digestion of cassava effluent on the development of crambe plants. Rev. Bras. Eng. Agríc. Ambient 2017, 21, 681–685. [Google Scholar] [CrossRef] [Green Version]
- Voća, N.; Krička, T.; Ćosić, T.; Rupić, V.; Jukić, Ž.; Kalambura, S. Digested residue as a fertilizer after the mesophilic process of anaerobic digestion. Plant Soil Environ. 2005, 51, 262–266. Available online: https://www.agriculturejournals.cz/publicFiles/50967.pdf (accessed on 11 November 2018). [CrossRef]
- Alburquerque, J.A.; Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Mondal, T.; Datta, J.K.; Mondal, N.K. An alternative eco-friendly approach for sustainable crop production with the use of indigenous inputs under old alluvial soil zone of Burdwan, West Bengal, India. Arch. Agron. Soil Sci. 2015, 61, 55–72. [Google Scholar] [CrossRef]
- Huang, H.; Yu, N.; Wang, L.; Gupta, D.K.; He, Z.; Wang, K.; Zhu, Z.; Yan, X.; Li, T.; Yang, X. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour. Technol. 2011, 102, 11034–11038. [Google Scholar] [CrossRef] [PubMed]
- Bauddh, K.; Singh, R.P. Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis. Ecol. Eng. 2015, 74, 93–100. [Google Scholar] [CrossRef]
- Du, C.; Abdullah, J.J.; Greetham, D.; Fu, D.; Yu, M.; Li, S.; Lu, D. Valorization of food waste into biofertiliser and its field application. J. Clean. Prod. 2018, 1–51. [Google Scholar] [CrossRef]
- Guimarães, P.T.G.; Alvarez, V.H.; Ribeiro, A.C. Recomendações para o uso Corretivos e Fertilizantes em Minas Gerais—5a Aproximação; CFSEMG: Viçosa, Brazil, 1999; pp. 13–20. [Google Scholar]
- Brasil. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. Resolução CONAMA n° 420. Define Critérios e Valores Orientadores de Qualidade do solo Quanto a Presença de Substâncias Químicas e Estabelece Diretrizes no Gerenciamento Ambiental; Diário Oficial da República Federativa do Brasil: Brasília, Brazil, 2009.
- Polprasert, C. Organic Waste Recycling Technology and Management, 3rd ed.; IWA Publishing: Bangkok, Thailand, 2007; 515p. [Google Scholar]
- Manyuchi, M.M.; Chitambwe, T.; Phiri, A.; Muredzi, P.; Kanhukamwe, Q. Effect of vermicompost, vermiwash and application time on soil physicochemical properties. Int. J. Chem. Environ. Eng. 2013, 4, 216–220. Available online: https://www.researchgate.net/profile/Mercy_Manyuchi/publication/264806048 (accessed on 16 November 2018).
- Kiehl, E.J. Fertilizantes Orgânicos; Ceres: Piracicaba, Brazil, 1985; 492p. [Google Scholar]
Materials a | N | C | P | K | Ca | Mg | S | Na |
---|---|---|---|---|---|---|---|---|
% | g kg−1 | |||||||
Cottonseed meal | 5.57 ± 0.98 | 32.32 ± 0.98 | 7.45 ± 0.22 | 16.58 ± 0.67 | 2.06 ± 0.03 | 4.46 ± 0.18 | 2.78 ± 0.04 | 0.38 ± 0.05 |
Castor bean meal | 6.72 ± 0.29 | 27.94 ± 0.25 | 7.50 ± 0.34 | 14.44 ± 0.61 | 6.40 ± 0.08 | 5.37 ± 0.18 | 4.03 ± 0.19 | 0.54 ± 0.10 |
Corn meal | 1.11 ± 0.50 | - | 1.13 ± 0.06 | 3.80 ± 0.10 | 0.19 ± 0.03 | 0.52 ± 0.004 | 0.83 ± 0.01 | 0.49 ± 0.02 |
Blood meal | 12.34 ± 0.49 | 35.37 ± 0.43 | 2.32 ± 0.38 | 5.40 ± 0.18 | 5.26 ± 0.42 | 0.22 ± 0.02 | 5.01 ± 0.25 | 15.42 ± 0.5 |
Seeds meal | 4.88 ± 0.03 | 38.91 ± 1.57 | 4.35 ± 0.48 | 34.83 ± 0.79 | 4.02 ± 0.33 | 2.53 ± 0.34 | 2.62 ± 0.50 | 1.04 ± 0.01 |
Bone meal | 0.03 ± 0.01 | 2.22 ± 0.01 | 44.88 ± 1.55 | ND | 141.98 ± 13.2 | 55.55 ± 4.30 | 4.34 ± 0.06 | 3.49 ± 0.18 |
Ash | 0.040 ± 0.01 | - | 7.62 ± 0.07 | 84.44 ± 1.25 | 175.32 ± 3.42 | 34.53 ± 2.33 | 6.64 ± 0.18 | 21.62 ± 0.16 |
Biofertilizer | 0.45 | 20.00 | 0.81 | 2.93 | 3.91 | 1.00 | 0.46 | - |
Materials a | Fe | Mn | Co | Cu | Zn |
---|---|---|---|---|---|
mg kg−1 | |||||
Cottonseed meal | 80.80 ± 6.51 | 14.30 ± 0.09 | ND | ND | 50.91 ± 1.56 |
Castor bean meal | 202.67 ± 20.66 | 54.93 ± 2.28 | ND | ND | 109.44 ± 3.81 |
Corn meal | 63.13 ± 2.08 | 2.65 ± 0.06 | ND | ND | 11.81 ± 0.61 |
Blood meal | 3453.33 ± 124.93 | 13.67 ± 0.94 | ND | ND | 27.77 ± 1.49 |
Crushed seeds | 172.67 ± 29.01 | 29.97 ± 5.00 | ND | ND | 58.44 ± 6.43 |
Bone meal | 823.67 ± 117.3 | 27.33 ± 0.97 | ND | ND | ND |
Ash | 15133.3 ± 777.9 | 1096.67 ± 2.72 | ND | 706.40 ± 85.96 | 276.77 ± 21.56 |
Biofertilizer | 121.15 | ND | ND | ND | 8.76 |
Heavy Metals | Cottonseed Meal c | Castor Bean Meal c | Corn Meal c | Blood Meal c | Seeds Meal c | Bone Meal c | Ash | Decree 4.954 a | CONAMA No. 460 b | Hortbio d |
mg kg−1 | ||||||||||
Cd * | LOQ | 109.9 ± 0.0 | 0.91 ± 0.36 | 4.9 ± 0.6 | 26.7 ± 2.3 | LOQ | LOQ | 3 | 3 | 0.1 |
Cu | LOQ | LOQ | LOQ | LOQ | LOQ | LOQ | 706.4 ± 85.9 | - | 200 | LOQ |
Ni | LQ | LOQ | LOQ | LOQ | LOQ | LOQ | LOQ | 70 | 70 | LOQ |
Pb | LOQ | LOQ | 3.9 ± 1.3 | LOQ | LOQ | LOQ | LOQ | 150 | 180 | LOQ |
Biofertilizer | pH | EC | C | N | C/N | P | K | S | Ca | Mg | Fe | Na | Zn | Cd | Pb | Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dS m−1 | g L−1 | mg L−1 | ||||||||||||||
1 | 6 | 5.9 | 200.3 | 4.5 | 4.5 | 0.81 | 2.93 | 0.46 | 3.91 | 1 | 121.15 | - | 8.76 | 0.1 | - | Biofertilizer in study |
2 | 7.6 | 11.2 | - | 1.8 | - | 0.43 | 2.7 | - | - | - | - | - | - | - | - | [21] |
3 | 6.27 | - | - | 87 | - | 6.3 | 14.7 | 5.5 | 0.31 | 0.52 | - | 9600 | 1.58 | - | - | [35] |
4 | 8.02 | - | - | 2.2 | - | 0.23 | 1.13 | 0.1 | 0.73 | 0.14 | - | 640 | 1.15 | - | - | [35] |
5 | - | - | 1.4 | 0.2 | 7 | - | 0.075 | - | 0.55 | 0.13 | 0.01 | - | - | - | - | [22] |
6 | 6.8 | - | 15.4 | 1.64 | 9.39 | 0.068 | 0.42 | 0.064 | 6.5 | 1.6 | 0.23 | 0.87 | [36] | |||
7 | 5.25 | 7.1 | - | 8 | - | 0.4 | 6.95 | - | 1.08 | 0.72 | - | - | - | - | - | [24] |
8 | - | 6.16 | - | - | - | - | 0.82 | 0.19 | 0.45 | 0.12 | - | 205.67 | - | - | - | [37] |
9 | - | - | - | 1.8 | - | 0.25 | 3 | 0.35 | 0.12 | - | 350 | - | - | - | [23] | |
10 | 6.77 | 5.34 | 4 | 0.5 | 8 | 0.54 | 0.32 | - | 0.217 | 0.12 | 9.56 | 130 | - | - | - | [26] |
11 | - | - | - | 1.4 | - | 0.8 | 0.42 | 0.6 | 4.93 | 0.55 | 1.02 | - | 5.33 | 0.13 | 0.33 | [38] |
12 | - | - | - | 2.2 | - | 0.93 | 0.3 | 0.5 | 2.8 | 0.42 | 0.62 | - | 3 | 0.07 | 0.22 | [38] |
13 | 5.01 | 6.93 | 30.5 | 20.7 | 2 | 2.22 | 19.24 | - | - | - | - | 33980 | - | - | - | [39] |
14 | 7.2 | 9.69 | 18 | 2.1 | 8.62 | 0.002 | 1.4 | - | 3.75 | 0.003 | 0.18 | - | 62 | - | - | [40] |
15 | 8.1 | - | 2.3 | 0.4 | 6 | 0.5 | 0.7 | 0.24 | 0.58 | 0.26 | 6.36 | - | 3.72 | - | - | [11] |
CV (%) | 14 | 32 | 160 | 222 | 34 | 150 | 152 | 162 | 98 | 90 | 203 | 170 | 168 | 41 | 52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cajamarca, S.M.N.; Martins, D.; da Silva, J.; Fontenelle, M.R.; Guedes, Í.M.R.; de Figueiredo, C.C.; Pacheco Lima, C.E. Heterogeneity in the Chemical Composition of Biofertilizers, Potential Agronomic Use, and Heavy Metal Contents of Different Agro-Industrial Wastes. Sustainability 2019, 11, 1995. https://doi.org/10.3390/su11071995
Cajamarca SMN, Martins D, da Silva J, Fontenelle MR, Guedes ÍMR, de Figueiredo CC, Pacheco Lima CE. Heterogeneity in the Chemical Composition of Biofertilizers, Potential Agronomic Use, and Heavy Metal Contents of Different Agro-Industrial Wastes. Sustainability. 2019; 11(7):1995. https://doi.org/10.3390/su11071995
Chicago/Turabian StyleCajamarca, Sabrina Magaly Navas, Douglas Martins, Juscimar da Silva, Mariana Rodrigues Fontenelle, Ítalo Moraes Rocha Guedes, Cícero Célio de Figueiredo, and Carlos Eduardo Pacheco Lima. 2019. "Heterogeneity in the Chemical Composition of Biofertilizers, Potential Agronomic Use, and Heavy Metal Contents of Different Agro-Industrial Wastes" Sustainability 11, no. 7: 1995. https://doi.org/10.3390/su11071995
APA StyleCajamarca, S. M. N., Martins, D., da Silva, J., Fontenelle, M. R., Guedes, Í. M. R., de Figueiredo, C. C., & Pacheco Lima, C. E. (2019). Heterogeneity in the Chemical Composition of Biofertilizers, Potential Agronomic Use, and Heavy Metal Contents of Different Agro-Industrial Wastes. Sustainability, 11(7), 1995. https://doi.org/10.3390/su11071995