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Abstract: Container terminals help countries to sustain their economic development. Improving the
operational efficiency in a container terminal is important. In past research, genetic algorithms
(GAs) have been widely used to cope with seaside operational problems, including the berth
allocation problem (BAP) and quay crane assignment problem (QCAP) individually or simultaneously.
However, most GA approaches in past studies were dedicated to generate time-invariant QC
assignment that does not adjust QCs assigned to a ship. This may underutilize available QC capacity.
In this research, three hybrid GAs (HGAs) have been proposed to deal with the dynamic and discrete
BAP (DDBAP) and the dynamic QCAP (DQCAP) simultaneously. The three HGAs supports variable
QC assignment in which QCs assigned to a ship can be further adjusted. The three HGAs employ
the same crossover operator but a different mutation operator and a two-stage procedure is used.
In the first stage, these HGAs can generate a BAP solution and a QCAP solution that is time-invariant.
The time-invariant QC assignment solution is then further transformed into a variable one in the
second stage. Experiments have been conducted to investigate the effects of the three HGA and the
results showed that these HGAs outperformed traditional GAs in terms of fitness value. In particular,
the HGA3 with Thoros mutation operator had the best performance.

Keywords: berth allocation problem (BAP); quay crane assignment problem (QCAP); hybrid genetic
algorithm (HGA); variable QC assignment

1. Introduction

Maritime transport is essential to a country as it plays a major role for international trading that
can sustain economic development. It is noted that about 60% of the maritime transports employed
containers, with a growth rate of 6.4% each year [1]. This shows that container terminals are important
infrastructure sustaining global economic development. How to improve the operational efficiency in
a container terminal is definitely an important issue.
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Being an integrated part of the global transportation network, container terminals help deliver
various products to consumers. Due to its importance, improving the operational efficiency of a
container terminal is necessary. In a container terminal there are three operational areas: seaside,
yard and landside [2]. Among them, the operations in the seaside area are considered critical as they
depend on the berth and quay crane, which are two rare resources that can affect the performance of a
container terminal considerably. This has motivated us to focus on improving the operations in the
seaside area.

There are three famous seaside operational problems in a container terminal. They are the berth
allocation problem (BAP), quay cranes assignment problem (QCAP), and quay cranes scheduling
problem (QCSP). In this research, both BAP and QCAP are simultaneously focused. The BAP is a
problem of allocating berths to ships while the QCAP is a problem of assigning QCs to ships. In the
past, various approaches have been proposed to cope with the BAP and QCAP simultaneously
or individually, and these approaches can be exact or approximate. The exact approaches aim
to solve problems to optimality. This kind of approaches, however, is fond likely to become
computationally intractable when dealing with a problem of practical size, due to non-deterministic
polynomial (NP)-hard [3]. Consequently, approximate approaches have been popular, especially
heuristics/metaheuristics have become increasingly used. One of the metaheuristics, the genetic
algorithm (GA) approaches have been playing the major role in dealing with seaside operational
problems [3].

Before dealing with a BAP, understanding its types is necessary. It is found that a BAP usually
features two main factors: the arrival time of ship and the configuration of a quay used to accommodate
calling ships. When taking the factor of arrival time of ship into consideration, a BAP is featured
as a static or dynamic one. In the static BAP, this only considers arrived ships while in the dynamic
BAP (DBAP) it also takes incoming ships into account. Due to the fact that ships continue to come
during BAP planning, the DBAP is thus focused in this research. When taking the factor of quay
configuration, a BAP can be featured as a discrete or continuous one. The discrete BAP separates a quay
into fixed sections to accommodate calling ships while the continuous BAP treats the quay entirely as
a continuous line so as to accommodate ships as much as possible at one time. Both types of quay
configuration exist in the world. However, this research only focuses on the dynamic and discrete BAP
(DDBAP). Accordingly, the version of dynamic QCAP (DQCAP) is focused in this research to align with
the dynamic BAP that also considers incoming ships [2].

The BAP and QCAP were often solved separately [4–7]. One disadvantage of a separate
study is that it tends to result in poor overall system performance due to the lack of considering
interrelationships among different levels of seaside operational problems simultaneously [8]. Another
disadvantage found for a BAP-only study is that it often needs to assume fixed handling times for
ships because these handling times cannot be estimated based on their assigned number of QCs [6].
For improvement, it has been suggested to solve the seaside operational problems in an integrated
way [8]. With respect to the approaches for dealing with the seaside operational problems, it is found
that GAs have been widely used [4]. Relevant studies include [9–13]. However, when dealing with
the QCAP, these GA approaches have been mostly used to yield time-invariant QC assignment based
on a planning framework with fixed time intervals. One disadvantage found for the time-invariant
QC assignment is that it cannot best utilize available QCs that have been released by leaving ships.
As a result, overall QC capacity will not be best utilized. The disadvantage found for the planning
framework that employs fixed time intervals is that it may waste some QC capacity as a QC has to
be assigned to a fixed time interval fully. For example, a QC is assigned to a 1 h-interval planning
framework to work for a ship but in fact that ship only requires a QC capability of 45 min. As a result
this, planning will lead to 15 min of spare time for this QC. For improvement, in this research the
variable QC assignment and the variable-interval planning framework are introduced. The variable
QC assignment allows QC adjustment to a ship to best utilize released QCs while the variable-interval
planning framework only allocates necessary QC capacity to a ship.
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To overcome the disadvantages mentioned above, in this research three hybrid GAs (HGAs)
have been developed to cope with the DDBAP together with the DQCAP. Based on a variable-time
planning framework, each of the HGAs hybrids a specific GA with an event-based heuristic to generate
variable QC assignment. These HGAs have a same crossover operator (Two-Point Crossover, TPX) but
a different mutation operator. Specifically, HGA1 uses Swap mutation; HGA2 adopts Thoras mutation;
HGA3 employs Thoros mutation. A variable QC assignment is derived through a two-stage procedure.
Our experiments showed the HGAs with variable QC assignment outperformed a traditional GA with
time-invariant QC assignment. Among the three HGAs, the HGA3 with Thoros mutation has the best
performance in terms of fitness value (FV).

The other part of this paper is organized as follows. Section 2 provides a literature review.
Section 3 mainly focuses on defining and formulating the simultaneous DDBAP and DQCAP. Section 4
formulates the simultaneous DDBAP and DQCAP. Section 4 introduces GA models and the HGAs
developed in this research. Section 5 reports experimental methods and discusses experimental results.
Finally, Section 6 gives a conclusion and highlights directions of future research.

2. Literature Review

2.1. Berth Allocation Problem (BAP)-Only Studies

BAP-only studies are reviewed as follows. Brown et al. [14] is one early study focusing solving
the static BAP. In that study, the authors used an integer programming model (IPM) to find optimal
ship-to-berth assignments. However, that study was based on a naval port that has different situations
and conditions from a commercial port. Focusing on the commercial ports in Japan, Imai et al. [15]
moved to deal with the DBAP study, taking into ship priority into consideration. Finally, the authors
concluded the First Come First Served (FCFS) rule is unsuitable to find an optimal ship-to-berth
assignment in terms of throughput. It is found that to be more practical recent studies have increasingly
focused on the dynamic BAP (DBAP) due to the fact that ships continue to call when BAP planning.
For example, Imai et al. [16] dealt with the DBAP by using a subgradient approach. In Reference [17],
the authors further proposed a GA approach to solve the same problem as they found the solution
procedure of the subgradient approach was still too complicated. In Reference [18], the authors
proposed a variable neighborhood search (VNS) to solve the DBAP. The objective of this research was
to find the solution with minimum cost that includes sub-costs of waiting, handling and earliness or
tardiness of completion. Golias et al. [19] treated the discrete and dynamic berth allocation problem as
a multi-objective combinatorial optimization problem in which vessel service is differentiated based
on priority agreements. Then, a GA-based heuristic was developed to solve the problem. The results
showed that the heuristic had the capability to solve large and real-life instances. Saharidis et al. [20]
proposed a hierarchical optimization framework to deal with the discrete and dynamic BAP in a
container teminal. A two-level hierarchy was employed. It differentiates between two conflicting
objectives that terminal operators face when assigning ships to berths. Based on the k-th best algorithm,
an interactive algorithm was developed for the case where multi-objective functions were considered
in the upper level. Computational examples in that study showed that the proposed algorithm was
capable of finding the optimal/near optimal solution. Xu et al. [21] proposed a heuristic to solve
the DBAP, taking factors such as water depth and tidal effects into consideration. They found that
a better decision can be achieved if these factors have been taken into account. Lalla-Ruiz et al. [22]
proposed a set-partitioning-based model for BAP under time-dependent limitations. Ursavas et al. [23]
proposed optimal policies for the BAP under a stochastic nature. Dulebenets [24] used a novel memetic
algorithm with a deterministic parameter control for efficient berth scheduling at marine container
terminals. Umang et al. [25] proposed real-time management of berth allocation with stochastic arrival
and handling times. Zhen et al. [26] examined daily berth planning in a tidal port with channel
flow control. Dulebenets [27] applied evolutionary computation for berth scheduling at marine
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container terminals. Dulebenets et al. [28] proposed a self-adaptive evolutionary algorithm for the
berth scheduling problem.

2.2. Simultaneous BAP and Quay Crane Assignment Problem (QCAP) Studies

The DBAP and QCAP have been increasingly solved at the same time. In [9] the authors first
formulated the DBAP and the QCAP as an integer programming model (IPM). The objective was
to minimize total service time. Then, the two problems were solved by using a GA-based heuristic.
A crane transfer scheduling algorithm, based on the maximum flow problem, was used to find the
QCAP solution. The GA-based heuristic was found to be capable of finding an approximate solution
for the two problems. However, the QCAP solution is time-invariant. Zhou et al. [10] also employed
a GA approach to cope with the DBAP and QCAP simultaneously. They also formulated the two
problems as a 0–1 non-linear programming model. In that study, the arrival times and handling
times of calling ships were treated as stochastic variables. However, that GA approach can only yield
time-invariant QC assignment. Liang et al. [5] proposed a HGA to cope with the DBAP and QCAP at
the same time. An IPM was formulated in that study with the aim to find the minimized cost solution
that considers sub-costs of waiting, handling and delay. That HGA was able to find an approximate
solution for both problems. However, the QCAP solution is still a time-invariant one. In addition,
it did not consider the costs of QC setups and movements. In [13] the authors further improved the
HGA by considering the factors including QC movements and ship priority. However, that HGA still
can only perform time-invariant QC assignment. Han et al. [12] also employed a GA to cope with the
DBAP and QCAP simultaneously. Similar to Zhou et al. [10], the authors treated the arrival times and
handling times of calling ships as stochastic variables and solve the two problems by using the GA
approach. The objective of the GA was aimed to find the solution minimizing the expected value plus
standard deviation of total service time and weighted tardiness time for all calling ships. The solutions
obtained were further evaluated by the simulation approach. Giallombardo et al. [29] dealt with the
BAP (TBAP) and QCAP at the tactical level. A two-level approach was employed. At the upper level,
a Tabu search method was used to allocate berths; at the lower level, mathematical programming was
used to update QCs profile. The two-level approach was able to support variable QC assignment.
However, it did not use GA. Li et al. [30] solved the berth and quay crane coordinated scheduling
using a multi-objective chaos cloud particle swarm optimization algorithm. Xiang et al. [31] used a
reactive strategy for discrete berth allocation and quay crane assignment problems under uncertainty.

The above literature showed that the simultaneous DBAP and DQCAP have been mostly
solved by GA approaches. However, these GA-based approaches can only support time-invariant
QC assignment.

3. The Definition and Formulation of the Simultaneous Dynamic and Discrete BAP (DDBAP) and
Dynamic QCAP (DQCAP)

3.1. Berth Plans with Different QC Assignment

A berth plan has been usually used to represent a solution to the simultaneous DDBAP and
DQCAP. Figure 1a illustrates a berth plan with time-invariant QC assignment in which each rectangle
represents a ship. For example, the rectangle with the denotation “1(3)” indicates that ship 1 is
assigned with 3 QCs. With the time-invariant QC assignment, each ship has one time of QC setups
and movements for assigned QCs with these QCs not to be further changed during the whole service.

Figure 1b shows a berth plan with variable QC assignment, in which a ship has more than one
times of QC setups and movements due to QC reassignments. For instance, ship 2 has two times of
QC setups and movements, one at t(2) and another at t(3). Obviously, the variable QC assignment is
more flexible at the costs of more QC setups and movements. But the gain and cost should be justified.
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variable QC assignment.

3.2. The Cost Factors to be Considered in an Objective Function

An objective function can be used to evaluate a berth plan and the objective function can include
multiple costs. In this research, the costs of waiting, delay and handling times are considered in the
objective function. These costs correspond to the service quality and operational efficiency. Specifically,
the waiting and delay costs indicate the service quality while the handling cost indicates the operational
efficiency [32]. In addition, to justify the gain and the cost when using the variable QC assignment,
the cost of QC setups and movements has to be taken into account in the objective function.
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3.3. The Estimation of Handling Time for a Ship

To estimate the handling time for a ship, Equation (1) is proposed in [29]:

dmin
j =

[(
1 + β·∆bj

)
·mj

(rmax)α

]
(1)

where

α: the interference exponent of QCs. (0 ≤ α < 1)
β: the berth deviation factor, which indicates the QC capacity additionally required per one berth
deviation. (β ≥ 0).
mj: the demand of crane capacity for ship j in the unit of QC-hours.

∆bj: a location deviation from the desired berth of ship j.
rmin: the minimum number of QCs assignable to a ship.
rmax: the maximum number of QCs assignable to a ship.

This equation, however, does not take the times of QC setups and movements into account, thus
we expand that equation as Equation (2) to estimate the actual operational time for a ship j at a time
period t (denoted as OTtj). In addition, it is assumed that QCs can be sequentially repositioned by a
pushing-in and pulling-out procedure to another berth, but cannot cross over each other.

OTtj = QCs setup and movement time + working time = T j
sm(t) +

[(
1 + β·∆bj

)
·θtj(

rtj
)α

ρ

]
(2)

The T j
sm (t) is the total time required for QC setup and movement for the ship j at the time period

t and is further defined in Equation (3).

T j
sm(t) =

[(
rtj − r(t−1)j

)
·(ts + tm∆dtj

)
] (3)

where,

• ts: the fixed time requires for setting up a QC.
• tm: the average time required for moving a QC to the next berth.
• ∆dtj: the total moving distance (in units of berths) for additional QCs assigned to ship j at time

period t.
• θtj: the total number of containers to be processed for the ship j at the time period t.
• ρ: QC working rate (containers/hour).
• rtj: the number of QCs assigned to the ship j at the time period t.
• r(t−1)j: the number of QCs assigned to the ship j at the time period t− 1.

Given the BTj as the beginning berthing time of ship j then the expected completion time of the
ship j (ECTj) can be determined by Equation (4).

ECTj = BTj + TOTj, ∀ j ∈ J (4)

3.4. The Definition of the DDBAP and DQCAP

Definition 1. The problem P of the simultaneous DDBAP and DQCAP is defined as 7-tupple.

P =
{

I, J, Q, C, f ,
{

Xijt
}

,
{

Yiqt
}}
∀ i ∈ S, j ∈ B, q ∈ Q, t ∈ T

where
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J: a set of ships; J = {1, . . . , n}; n the total number of ships
I: a set of berths; I = {1, . . . , m}; m is the total number of berths
Q: a set of quay crane; Q = {1, . . . , TQ}; TQ is the total number of QCs
T: the planning horizon T = {1, . . . , H} in unit of hours; H is the total number of time periods within
the planning horizon
i: a berth number (i ∈ I)
j: a ship number (j ∈ J)
q: a quay crane number (q ∈ Q)

t: a time interval (t ∈ T)
C: a set of constraints
ϑ: a collection of sets of assignments of ship-to-berth (variable Xt

ij) and QC-to-ship (variable Yt
jq) at

each time interval t.
f : an objective function that maps ϑg or ϑ∗, ∀ ϑg, ϑ∗ ∈ ϑ to a time/cost value

The objective of P is to find a ϑg or ϑ∗ (ϑg, ϑ∗ ∈ ρ), where ϑg. is a feasible solution and ϑ∗ is
the optimal solution. Both ϑg and ϑ∗ subject to C. In ϑg and ϑ∗ a ship j is assigned to berth i and a
QC q is assigned to the ship j at time t. The set C includes constraints for the simultaneous DDBAP
and DQCAP.

3.5. The Mathematical Formulation of the DDBAP and DQCAP

Before formulating the simultaneous DDBAP and DQCAP, we first define some notion used.
Notion

aj the estimated time of arrival (ETA) of ship j
dj. the actual departure time of ship j
bj the desired berth number for ship j (bj ∈ I)
rmin the minimum number of QCs assignable to a ship
rmax the maximum number of QCs assignable to a ship
c1 the cost rate of waiting time
c2 the cost rate of delay time
c3 the cost rate of handling time (including times of QC setups and movements)

Decision variables

Xijt=

{
1, if the ship j is assigned to the berth i at time period t

0, otherwise

Yjqt =

{
1, if QC q is assigned to ship j at the time period t

0, otherwise

BTj: The berthing time of the ship j (j ∈ J).
Now, the mathematical model for the simultaneous DDBAP and DQCAP is formulated as follows:

Z = ∑
j∈J

∑
i∈I

∑
t∈T

c1
(

BTj − aj
)
Xijt + ∑

j∈J
∑
i∈I

∑
t∈T

c2
(
ECTj − dj

)
Xijt + ∑

j∈J
∑
i∈I

∑
t∈T

c3
(
TOTj

)
Xijt (5)

s.t.

∑
i∈I

∑
t∈T

Xijt = 1 ∀ j ∈ J (6)

∑
j∈I

∑
t∈T

Xijt = 1 ∀ i ∈ J (7)

∑
j∈J

Yjqt ≤ 1 ∀ q ∈ Q ∀ t ∈ T (8)
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rmin ≤ ∑
q∈Q

Yjqt ≤ rmax ∀ t ∈ T, ∀ j ∈ J (9)

∑
q∈Q

∑
j∈J

Yjqt ≤ TQ ∀ t ∈ T (10)

BTj ≥ 0 ∀ j ∈ J (11)

Xijt, Yjqt ∈ {0, 1} ∀ i ∈ I, j ∈ T, q ∈ Q, t ∈ T (12)

Equation (5) is the objective function that aims to minimize the summation of total cost that
includes three terms. The first term is waiting cost; the second term is departure delay cost; the third
term is handling cost that also includes QC setups and movements. Equation (6) stipulates that one
ship can only occupy one berth at one time period and this also indicates that one ship is continuously
processed until completed. Constraint (7) stipulates that a berth can only be occupied by one ship for
one period. Constraint (8) stipulates that a QC can only be assigned to one time period for one ship.
Constraint (9) limits the range the total number of QCs that can be assigned to a ship. Constraint (10)
stipulates that the total number of QCs assigned to ships at a given time period t cannot exceed the
total number of QCs available (TQ). Constraints (9) and (10) ensure that the assigned number of QCs
to a ship is feasible. Constraint (11) is a requirement for the decision variable BTj. Constraint (12) is a
binary value requirement for the decision variables Xijt and Yjqt. Due to NP-complete, we proposed
HGAs in Section 4 to deal with the two problems simultaneously.

4. The Hybrid Genetic Algorithm (HGA) Approach

To solve the simultaneous DDBAP and DQCAP, three HGAs are developed in this section. Figure 2
illustrates the solution process of a HGA that hybridizes a GA with an event-based heuristic. First,
a HGA employs a GA used to generate a BAP solution and a time-invariant QCAP solution. Secondly,
it transforms the time-invariant QCAP solution into a variable one using the event-based heuristic.
The GA model and the event-based heuristic are detailed in Sections 4.1 and 4.2, respectively.
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4.1. The Genetic Algorithm (GA) Model

4.1.1. Chromosome Representation

Figure 3 illustrates the chromosome for a GA approach. The chromosome includes two segments,
each containing n genes, where n is the total number of ships to call within the planning horizon. In the
left segment, the jth gene is an integer indicating the berth number assigned to the ship j; in the right
segment the jth is an integer representing the number of QCs assigned to the ship j. The two segments
together indicate a total solution to the simultaneous DDBAP and DQCAP.
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4.1.2. Population Initialization

Given a total number of chromosomes, the GA generates integers within [1,m] for the left
segment as well as integers within [rmin, rmax] for the right segment of a chromosome iteratively
in these chromosomes.

4.1.3. Population Reproduction

The proposed GA employs roulette wheel selection (RWS) for population reproduction.
Equation (13) is the formula used to calculate the selection probability for each chromosome, in which
FVi indicates the fitness value of the chromosome i. In addition, Equation (14) shows the calculation of
cumulative probability for each chromosome. The RWS sampling allows the best chromosomes with a
higher opportunity to be selected as parents for generating offspring.

pi =
FVi

∑n
i=1 FVi

(13)

Cpn =
n

∑
i=1

pi, n = 1, . . . , P (14)

4.1.4. Crossover Operation

The crossover operator is used to generate offspring chromosomes. It works as follows. As shown
in Figure 4a, it selects two points (p1 and p2) as a matching section from two parent chromosomes
(A and B). Then, it switches all the elements in the matching section between the two parent
chromosomes. After crossover operation, it results in two offspring chromosomes (A1 and B1) as
shown in Figure 4b.
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4.1.5. Mutation Operation

Mutation operation can be used to diversify a population to prevent a solution from being trapped
in local optima. A mutation is bound by a specified mutation rate (Rm); if a selected random number
from the range [0,1] is equal or smaller than the Rm then the mutation triggers. In this research, three
kinds of mutation operators are focused and they are detailed below.

(1) Swap mutation (SWM): as shown in Figure 5a, two genes located at the positions p1 and p2 of
a same segment are select and swapped. Thus, the chromosome A mutates to A2 as shown in
Figure 5b.

(2) Thoros mutation: as shown in Figure 6a, three gene positions p1 < p2 < p3 are chosen randomly,
which shall take the different positions not necessarily successively. Then, the gene value of
position p1 becomes the gene value of position p2, the original gene value of p2 becomes the
gene value of p3, and finally the original gene value of p3 becomes the gene value of p1. After
mutation, Figure 6a becomes Figure 6b.

(3) Thoras mutation: as shown in Figure 7a, the process of Thoras mutation is similar that of Thoros
mutation. But the Thoras selects three consecutive genes. After randomly selecting the first
gene position (p1), the two other successive genes are then determined. As a result, the last
becomes the first of the sequence, the second becomes last and the first becomes the second in
the sequence. After mutation, the Figure 7a becomes Figure 7b. Each mutation is subject to
constraints, Equations (10) and (11). For an infeasible solution, it is discarded and regenerated.
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4.1.6. Termination

A termination condition is used to stop running a GA within an acceptable computational time.
In this research, a number of total generations determined by a preliminary test of convergence is used
as a terminate condition.

4.1.7. Fitness Value Function

To evaluate the derived solutions, Equation (15) is defined as the fitness value (FV) function.
The higher the FV, the better the solution is. Multiplication of 1000 is used to shift a decimal point for
better presentation in a table, and this will not alter the comparative results of different approaches:

FV = (1/Z)× 1000 (15)

4.1.8. The Whole Process Flow of the HGA Approaches

The main process flow of the HGAs is outlined as follows.

(1) Set the population size (P) crossover rate (Rm), mutation rate (Rc), the maximum number of
generation gm, and set the current generation i to 1 (I = 1).

(2) Initiate a population of chromosomes.
(3) Determine the service priority for each ship.
(4) If i = 1 then go to Step (6); otherwise, go to Step (5).
(5) Population reproduction.
(6) Crossover operation.
(7) Mutation operation using SWM/THOROS/THORAS.
(8) Transform each chromosome in the population into a berth plan.

(8.1) Sort the estimated times of arrival (ETAs) of those ships assigned to a same berth. Break a
tie by ship priority.

(8.2) Determine the BTj of each ship.

(8.3) Determine the ECTj of each ship using Equation (5).

(9) Calculate the FV of the current solution and compare it to the best solution; if better then update
the best solution.

(10) Check if the termination condition (i > gm) is met. If “yes” then output the best solution;
otherwise, i = i + 1 and go to step (4).
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4.2. A Heuristic-Based Event

4.2.1. States and Events

In this research, a “state” is defined as a status of a ship and an “event” is defined as thing happens
at a specific point of time and this event can change the state of a ship. In this research, we define
“to berth,” “berthed,” and “left” as three states of ships and “berth” and “leave” as two events. Figure 8
illustrates a state transition diagram. First, a ship is with the “to berth” state. Then, the “to berth” state
can be changed to the “berthed” state triggered by a “berth” event. Finally, the “berthed” state can be
changed to “left” state triggered by a “leave” event. The current states of all calling ships can represent
a “system” state that can be used to control the running of the event-based heuristic. If all calling ships
are with the “left” state, this indicates that all calling ships have been completed so that the event-based
heuristic should stop running. The events are also used to trigger QC assignments or reassignments in
our approach.
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4.2.2. Event-Triggered QC Assignment/Reassignment

Figure 9 illustrates berthing plan that includes variable QC assignment, in which each time
interval is termed a “stage” formed by a pair of “berth” and “leave” events. For n ships to call, there
will be 2n − 1 stages. Each stage is a time period denoted as [t(ε), t(ε + 1)], where t(ε) and t(ε + 1)
correspond to event times of E(ε) and E(ε + 1), respectively. QCs are assigned to each stage to work for
ships. Also, note that in this berth plan one employs “leave” events to trigger QC reassignments when
QCs are released from finished ships. For example, the “leave” event E(4) of ship 1 reassigns 1 QC
(released by ship 1) to ships 2 and 3, respectively. This reassignment should be subject to constraints
including Equations (9) and (10). Due to the immediate reuse of released QCs, a higher QC utilization
is expected but at the cost of more QC setups and movements. The gains and costs should be justified
by in the objective function. In this research, only the “leave” events of ships are used to trigger
QC reassignments.

4.2.3. Finding the Next Event

To generate a berth plan based on events, it is necessary to identify time, type and owner of
the next event one by one. For this purpose, Equation (14) is used to find the next event time at
the stage ε, denoted as t(ε). The t(ε) is the minimum value of the two data sets, i.e.,

{
aj
∣∣j ∈ A

}
and

{ ECTj(ε− 1)
∣∣ j ∈ B

}
. The aj is the ETA of a ship j if j ∈ A, werhe A is the set of ships to berth; the

ECTj(ε− 1) is the expected completion time of a berthed ship j if j ∈ B, where B is a set of berthed
ships. Also note that the ECTj(ε− 1) is estimated at the stage ε− 1. Break a tie by ship priority. Having
found the t(ε), then the type and owner of the next event can be determined accordingly. If the owner
is (ship j) ∈ A, then the next event is a “to berth” event; otherwise, a “leave” type due to j ∈ B.

t(ε) =


Min

{
Min
j∈A
{aj}

}
, ε = 1

Min
{

Min
j∈A
{aj}, Min

j∈B
{ECTj(ε− 1)}

}
, ε > 1

(16)
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Also, Equation (16) is subject to the following constraints in Equation (17):

1 < ε ≤ 2n− 1; 1 ≤ j ≤ n; A ∪ B ∪ F = {1, . . . , n} (17)

where

n: the total number of ships.
A: a set of ships at “to berth” state.
B: a set of ships at “berthed” state.
F: a set of ships at “left” state.
ε: the current stage number.
ECTj(ε− 1): the expected completion time (ECT) of ship j (j ∈ B) estimated at the previous stage ε− 1.

aj: the ETA of ship j (j ∈ A).

For a berthed ship j, we can estimate its ECTj using Equation (4). However, this needs to update
the ECTj for a ship j if the number of QCs assigned to it has been further changed. Equation (18) is the
equation for updating the ETCj(ε) at the time point ε:

ETCj(ε) = t(ε) + (T j
sm(ε) +

[
(1+β·∆bj)·θεj

(rεj)
α

ρ

]
)

= t(ε) + (T j
sm(ε) +

[
(1+β·∆bj)
(rεj)

α
ρ
·
(

ETCj(ε−1)−t(ε)−T j
sm(ε−1 )

)
(r(ε−1)j)

α
ρ

(1+β·∆bj)

]
)

= t(ε) + (T j
sm(ε) +

[ (
ETCj(ε−1)−t(ε)−T j

sm(ε−1 )
)
(r(ε−1)j)

α

(rεj)
α

]
)

(18)

where:

r(ε−1)j: the amount of QCs assigned to the ship j at the previous stage ε− 1

rεj: the amount of QCs assigned to the ship j at the current stage ε
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4.2.4. The Event-Based Heuristic for Variable QC Assignment

Equation (19) is proposed to assign/reassign released QCs from a leaving ship to berthed ship(s).

rεj =

 Max
{

rmin, qj + QUO
(

θεj
∑j∈B θεj

∗ qj′
)}

, if qj + QUO
(

θεj
∑j∈B θεj

∗ qj′
)
≤ rmax

rmax, if qj + QUO
(

θεj(ε)

∑j∈B θεj
∗ qj′

)
> rmax

(19)

where

θεj: is the remaining workload (the total number of containers) of berthed ship j estimated at the stage
ε.
qj: is the number of QCs assigned to the berthed ship j.
qj′ : is the number of QCs released by leaving ship j′.

4.2.5. The Main Process Flow of the Event-Based Heuristic

The main process flow of the event-based heuristic for generating a series of stage solutions to the
DQCAP is outlined in Table 1. Initially, all calling ships (j = 1, . . . , n) are staying in set A and they will
be finally moved to the set F, then this algorithm stops running.

Table 1. The main flow of the event-based heuristic.

1 Set ε = 1, B = ∅, F = ∅, A = {1, . . . , n}
2 While (F 6= {1, . . . , n}) then
3 do{

4 determine the next event time t(ε) using Equation (16) and identify the owner (ship j) of the
next event

5
6 if (ship j ∈ A) then
7 trigger the “berth” event
8 move the ship j from set A to set

9 assign the number of QCs to the ship j (j ∈ B) according to the jth gene value (derived from
GA1) in the right segment of the chromosome.

10
11 else if (ship j ∈ B) then
12 trigger the “leave” event
13 move the ship j from set B to set F
14 reassign released QCs from ship j to remaining berthed ships j, (j, ∈ B) using Equation (19)
15
16 update ECTj, (ε) for berthed ships j, (j, ∈ B) using Equation (18)
17 End if
18 ε = ε + 1
19 }

4.3. The Main Process Flow of HGAs

The main process flow of HGAs is outlined as follows.

(1) Set the population size (P) crossover rate (Rm), mutation rate (Rc), the maximum number of
generations gm, and set the current generation i to 1 (i = 1).

(2) Initiate a population of chromosomes.
(3) Determine the service priority for each ship.
(4) If i = 1 then go to Step (6); otherwise, go to Step (5).
(5) Population reproduction.
(6) Crossover operation (TPX).
(7) Mutation operation (Swap/Thoras/Thoros).
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(8) Transform each chromosome in the population into a berth plan.
(9) Calculate the FV of the current solution and compare it to the best solution; if better then update

the best solution.
(10) Check if the termination condition (i > gm) is met. If “yes” then output the best solution;

otherwise, i = i + 1 and go to step (4).

5. Numerical Example

Java 2 is used as the programming language and experiments are conducted on a PC equipped
with an Intel Pentium 2.4 GHz CPU as well as 4G DRAM.

5.1. Parameter Setting and Ship Data Generation for the Example

In our experiments, the parameter settings, m = 3, n = 20, q = 8, α = 0.8, β = 0.3, ρ = 25
(containers/hour), ts = 0.15 (hour), tm = 0.25 (hour), Rc = 0.4, Rm = 0.5, P = 20 and gm = 500 and
[rmin, rmax] = [1,3] are used. The cost rates of c1, c2 and c3 are set to 1000 USD/hour, same to those
used in [29]. The ETA (aj) and total number of containers to be handled for a ship j (θj) are randomly
values taken from the ranges [0, 168] (hours) and [1, 700] (Twenty-foot Equivalent Units; TEUs),
respectively. After this, the program continues to generate ship priority (pj), desired berth location (bj)
and expected time of departure (ETDj) that is defined in Equation (11). The values of bj (j = 1, . . . , n)
are randomly selected from the set of berths [1,m]. The ETDj (j = 1, . . . , n) is an optimistic departure
time due to the use of rmax in Equation (20).

ETDj = aj +

[(
1 + β·∆bj

)
·θj

(rmax)αρ

]
(20)

5.2. Comparison of Various GAs and HGAs

This section compares results obtained from HGA1, HGA2 and HGA3. Each HGA differs from
each other by using a specific mutation operation, i.e., HGA1 uses Swap mutation, HGA2 uses Thoros
mutation and HGA3 uses Thoras mutation.

Table 2 Illustrates the FVs and average FVs obtained from various GAs and HGAs at different
problem sizes. The higher the FV the better the goodness of an approach.

Figure 10 depicts average FVs obtained from the three GAs with time-invariant QC assignment
at differ problem sizes of n × 3 (with n = 20, 40, 60, 80 and 100). The average FV shows a downward
trend when more ships are calling at the port. It is found that GA1 has the worst average FV; GA2 has
the second best average FV; the GA3 has the best average FV.
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Table 2. The experimental results obtained from the GAs and HGAs.

(1) GA1 FV (2) GA1 Time (3) HGA1 FV (4) HGA1 Time (5) GA2 FV (6) GA2 Time (7) HGA2 FV (8) HGA2 Time (9) GA3 FV (10) GA3 Time (11) HGA3 FV (12) HGA3 Time

20 × 3 1.939 120.0 2.341 8.4 2.057 111.0 2.257 8.4 1.954 108.0 2.195 9.0
1.789 111.0 2.187 8.1 2.261 108.0 2.553 9.0 1.987 108.0 2.255 8.1
1.729 111.0 2.044 8.4 2.257 111.0 2.461 8.1 2.048 111.0 2.321 8.4
2.473 120.0 2.503 8.4 2.152 111.0 2.525 8.1 2.314 111.0 2.809 9.0
2.134 111.0 2.457 8.7 2.112 108.0 2.623 8.4 1.815 111.0 2.618 8.4
1.656 111.0 2.035 8.1 2.098 111.0 2.294 8.4 1.702 120.0 2.317 9.6
1.964 111.0 2.461 8.1 1.902 111.0 2.407 8.4 2.512 108.0 2.602 8.4
2.126 108.0 2.390 8.1 1.974 111.0 2.458 8.4 1.901 111.0 2.092 8.4
2.572 111.0 2.781 8.4 1.917 111.0 2.379 8.3 2.361 108.0 2.607 8.4
1.541 111.0 2.136 8.4 1.912 111.0 2.483 8.1 2.253 111.0 2.484 8.4

Average 1.992 112.5 2.334 8.3 2.064 110.4 2.444 8.4 2.085 110.7 2.430 8.6

40 × 3 0.950 210.0 1.394 22.5 0.946 231.0 1.127 22.8 0.759 217.5 1.169 21.0
0.703 216.0 1.024 21.0 0.455 216.0 0.877 21.9 0.861 216.6 1.283 21.0
0.484 216.0 0.747 21.9 0.750 201.9 1.134 21.6 0.819 216.9 1.316 21.0
0.675 222.0 1.135 21.6 0.584 216.9 1.231 21.6 0.814 219.6 2.227 21.0
0.751 216.0 1.212 21.6 0.691 215.4 1.095 20.7 0.790 216.0 1.069 21.0
0.775 216.0 1.335 21.3 0.602 219.3 0.907 22.2 0.751 216.9 0.933 21.0
0.395 219.0 0.779 22.2 0.657 222.3 0.862 21.9 0.716 218.1 1.112 24.0
0.807 216.0 1.327 21.0 0.722 219.0 1.027 22.8 0.605 219.0 1.091 21.0
0.763 225.0 1.006 21.9 1.075 228.0 1.506 24.0 0.550 225.0 0.770 24.0
0.691 222.0 1.308 23.4 0.685 231.0 1.708 21.0 0.677 222.0 1.381 24.0

Average 0.699 217.8 1.127 21.8 0.717 220.1 1.147 22.1 0.734 218.8 1.235 21.9

60 × 3 0.124 315.0 0.253 39.0 0.137 303.0 0.322 126.0 0.143 303.0 0.390 39.0
0.136 306.0 0.418 42.0 0.156 306.0 0.340 42.0 0.209 501.0 0.399 42.0
0.164 339.0 0.316 39.0 0.227 318.0 0.482 45.0 0.217 381.0 0.523 42.0
0.125 348.0 0.242 42.0 0.298 321.0 0.545 39.0 0.382 315.0 0.662 36.0
0.135 315.0 0.267 51.0 0.222 303.0 0.424 39.0 0.222 303.0 0.374 39.0
0.201 300.0 0.475 39.0 0.217 300.0 0.444 39.0 0.156 303.0 0.449 39.0
0.201 300.0 0.259 39.0 0.138 300.0 0.277 39.0 0.202 303.0 0.457 42.0
0.182 333.0 0.397 39.0 0.141 303.0 0.317 39.0 0.197 282.0 0.399 42.0
0.109 303.0 0.275 45.0 0.158 303.0 0.402 39.0 0.183 303.0 0.461 42.0
0.133 354.0 0.365 48.0 0.178 306.0 0.400 39.0 0.169 288.0 0.523 51.0

Average 0.151 321.3 0.327 42.3 0.187 306.3 0.395 48.6 0.208 328.2 0.464 41.4

80 × 3 0.101 417.0 0.247 66.0 0.071 411.0 0.213 66.0 0.071 417.0 0.166 66.0
0.069 414.0 0.136 66.0 0.084 405.0 0.166 66.0 0.069 420.0 0.137 66.0
0.062 417.0 0.115 66.0 0.078 414.0 0.198 66.0 0.065 384.0 0.118 66.0
0.090 390.0 0.222 66.0 0.079 420.0 0.168 66.0 0.083 414.0 0.170 66.0
0.069 411.0 0.121 66.0 0.082 414.0 0.169 66.0 0.088 390.0 0.145 66.0
0.082 414.0 0.122 66.0 0.076 402.0 0.161 66.0 0.085 402.0 0.250 66.0
0.054 417.0 0.158 66.0 0.064 417.0 0.151 66.0 0.073 414.0 0.169 66.0
0.078 408.0 0.137 66.0 0.073 414.0 0.177 66.0 0.077 423.0 0.182 66.0
0.080 411.0 0.156 69.0 0.057 414.0 0.119 66.0 0.064 411.0 0.146 69.0
0.086 414.0 0.137 69.0 0.079 366.0 0.110 57.0 0.077 555.0 0.192 63.0

Average 0.077 411.3 0.155 66.6 0.074 407.7 0.163 65.1 0.075 423.0 0.168 66.0

100 × 3 0.039 453.0 0.077 87.0 0.041 453.0 0.090 87.0 0.048 459.0 0.131 87.0
0.036 453.0 0.060 87.0 0.036 444.0 0.070 93.0 0.041 462.0 0.097 87.0
0.040 462.0 0.091 87.0 0.039 462.0 0.093 87.0 0.040 462.0 0.081 90.0
0.043 462.0 0.093 87.0 0.046 459.0 0.095 87.0 0.037 450.0 0.091 90.0
0.032 447.0 0.072 87.0 0.046 450.0 0.113 87.0 0.034 471.0 0.069 90.0
0.035 444.0 0.075 93.0 0.030 456.0 0.058 87.0 0.037 459.0 0.080 96.0
0.036 456.0 0.098 90.0 0.042 486.0 0.086 90.0 0.035 552.0 0.065 99.0
0.043 471.0 0.094 90.0 0.041 447.0 0.079 102.0 0.058 486.0 0.112 87.0
0.036 462.0 0.070 87.0 0.043 456.0 0.109 87.0 0.039 453.0 0.085 87.0
0.035 462.0 0.076 93.0 0.036 453.0 0.072 84.0 0.039 441.0 0.100 96.0

Average 0.038 457.2 0.081 88.8 0.040 456.6 0.086 89.1 0.041 469.5 0.091 90.9
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Figure 10. The average FVs obtained from GAs with time-invariant QC assignment at different problem
sizes n × 3 (with n = 20, 40 to 100).

Figure 11 depicts the graph of average FVs obtained from the three HGAs with variable QC
assignment at different problem sizes of n × 3 (with n = 20, 40, 60, 80 and 100). The average FV shows
a downward trend when more ships are calling at the port. Also, among the three HGAs, it is found
that HGA1 has the worst average FVs; HGA2 has the second best average FV; and HGA3 has the best
average FV.
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Figure 11. The average FVs obtained from HGAs with variable QC assignment at different problem
sizes n × 3 (with n = 20, 40 to 100).
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Figure 12 shows the improvements of average FVs obtained from different HGAs with different
mutation operations at different problem sizes if n × 3 (n = 20, 40, 60, 80 and 100), compared to
traditional GAs used for time-invariant QC assignments. We analyze this figure in the next section.
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5.3. Findings and Discussion

The findings and discussion are as follows:

(1) Our experimental results showed that the three HGAs can generate variable QC assignments and
the derived results are better than those obtained from a GA with time-invariant QC assignment.

(2) Figure 12 shows the average advantages percentage obtained from the three HGAs compared
with GAs under different problem sizes. Generally speaking, the larger the problem size, the
greater the advantage. Compared with GA3, HGA3 has the best advantage (123.3%) at the
problem size 100 × 3.

(3) Different mutation operations employed by a GA or HGA can lead to different planning results.
In terms of average FV, our experiments showed that the GA3 with Thoros mutation had the best
performance; the GA2 with Thoras is the second best; the GA1 with Swap mutation is the worst.
Compared with the two-point mutation operation Swap, the three-point mutation operations
including Thoras and Thoros appear to be more capable of exploring a solution space.

(4) The variable QC assignment can lead to advantages for these HGAs. This kind of QC assignment
can reassign released QCs immediately to other ships, which can reduce the handling time for
ships due to increased QC capability. Furthermore, the reduced handling times of ships can lead
to an earlier release of berth and thus waiting times and then delay times of ships. This initiates a
positive chain effect.

(5) In this research the gain from the variable QC assignment has been justified against the cost of
more QC setups and movements.

(6) Among the three proposed HGAs, our experiments showed that the HGA3 had the best
performance in terms of average FV.

(7) The average computational times required for HGAs to complete experimental runs at different
problem sizes n × 3 (with n = 20, 40, 60, 80 to 100) are acceptable. For example, at the problem
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size 100 × 3 an average of 469.5 + 90.9 s (or about 9 min) are required for HGA3 to complete one
experiment when setting n = 100 and iteration runs = 500.

6. Conclusions

DDBAP and DQCAP are two daily seaside operational problems faced by container teminal
planners. To better utilize berths and QCs, a better way to cope with the two problems simultaneously
is necessary.

Although GAs have been widely used to cope with the DDBAP and DQCAP, however, almost all
of them have been used to perform time-invariant QC assignment. Due to the lack of flexibility, this
cannot best utilize available QCs. In addition, in past study, fixed-time interval planning framework
has been widely used. This kind of framework has the disadvantage of underutilizing available QC
capability. To address this issue, in this research the variable-time interval planning framework has
been proposed for HGAs. Each of the three HGA combines GA with an event-based heuristic to
solve the DDBAP and DQCAP simultaneously. The experiments gave a good result. We highlight the
contributions of this research as follows.

(1) Three novel HGAs have been proposed to cope with the DDBAP and DQCAP simultaneously.
Each of the three HGAs combines a GA with an event-based heuristic. The dynamic framework
embedded in these HGAs enables variable QC assignment that can better utilize available QCs.

(2) Our experiment results showed that the HGAs with variable QC assignments can outperform
those GAs with time-invariant QC assignment. Also, it is found that the HGA3 had the best
performance among the three HGAs.

(3) In this research we have proposed Equation (1) to estimate the handling time for ships, with the
handling time also include required times for QC setup and movements. In addition, in the
objective function the costs of QC setup and movement have been included, which helps to justify
the gains from the flexibility of QC reassignments.

(4) The HGAs appear to be applicable for berth allocation and QC assignment for calling ships due
to acceptable computational time.

(5) The research compares time-invariant QC assignment with variable QC assignment. These kinds
of studies have been rarely undertaken in the past.

In this research, the HGAs only employ “leave” events to trigger QC assignment/reassignment.
The use of “berth” event only or both “leave” and “berth” events and the investigation of their effects
can be conducted in future research. In addition, the effects of using different crossover operations for
the HGAs can be investigated. Moreover, hybrid approaches combining other meta-heuristics such
as artificial bee colony (ABC) and shuffle frog-leaping algorithm (SFLA) can be developed in future
research. Extending the HGAs proposed in the research to deal with continuous BAP can be another
focus in future research.
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