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Abstract: With the growth of dockless bike-sharing (DLBS) systems, the first-and-last mile connection
to public transport, such as metro and light railway stations, could be improved. DLBS systems
complete the trip chain by connecting metro stations with points of interest and enhance the
sustainability of urban transportation. Therefore, it is necessary to understand the trans-shipment
characteristics of DLBS systems for metro stations. In this study, we collected data from the Mobike
DLBS system in Nanjing City, China and applied K-means clustering to analyse the activity patterns
of DLBS systems near local metro stations. Metro stations were categorised into five types on
workdays and three types on weekends. An analysis of the relationships between activity patterns
and spatial distribution characteristics demonstrated that the distribution of clusters possesses a
strong connection with the surrounding environment. Low land development rates and a sparse
distribution of metro stations cause a large range of influences. This research has direct implications
for understanding the operating state of DLBS systems near metro stations and promoting the proper
management of DLBS systems.

Keywords: dockless bike-sharing system; metro station; activity pattern; cluster analysis; range of
influences; data mining

1. Introduction

With rapid economic development and high-level urbanisation, large-scale cities in China
experience traffic congestion [1,2]. Twenty-six percent of China’s urban commuting peaks were in
a state of congestion in 2017 [3]. Transit-oriented development (TOD) is a method for ensuring the
sustainability of transportation and urbanisation. As a rapid, efficient and large-capacity method
of transportation, the metro system is a priority in TOD strategies [4]. However, the availability of
metro stations in high-traffic areas is often deficient because the infrastructure in these areas does not
allow for the construction of metro stations. Patrons of the metro system usually access the stations by
other modes, such as walking, cycling and taking the bus [5]; this transit process is described as the
first-and-last mile problem [6]. Improvements in accessibility and the enhanced integration of other
feeding modes and metro stations would definitely boost the ridership of metro systems [7].

Dockless bike-sharing (DLBS) systems have been developed rapidly all over the world within
the last few years. These systems offer an environmentally-friendly and sustainable solution to the
first-and-last mile connection, which completes the trip chain for existing public transportation modes,
such as metros and bus systems [8]. DLBS systems have replaced traditional bike sharing systems
to a large extent in most metropolitan areas in China owing to their flexibility and convenience.
With traditional bike-sharing systems, commuters rent bikes from their closest station and return
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them to a station near their destination [9]. It is likely that traditional bike-sharing stations are not
located near commuters’ origins and destinations. Therefore, the traditional bike-sharing systems do
not significantly improve the first-and-last mile problem owing to the system’s structure. Conversely,
commuters can theoretically rent and return bikes anywhere in DLBS systems. Despite the popularity
of DLBS systems in metropolitan areas in China, there is still little research on their operating
characteristics. Therefore, for city managers, there is a lack of theoretical guidance for the operation
and management of DLBS systems, especially when using DLBS systems as a transfer mode to metro
stations. This study sought to analyse the operating characteristics of DLBS systems around metro
stations and their influence ranges to provide theoretical guidance for the operation and management
of DLBS systems near metro stations.

The remainder of this paper is organised as follows. Section 2 contains a literature review. Section 3
describes the data collection and pre-processing approaches employed. Section 4 details the feature
extraction from the initial data, the application of K-means clustering to analyse activity patterns and
the examination of the range of influence of DLBS systems for clusters of metro stations. Conclusions
are presented in Section 5.

2. Literature Review

There is abundant research about the traditional bike-sharing system since it arose in the late
1990s. For bike-sharing systems in different cities, Pfrommer et al. [10] determined that weekday usage
peaks from 7 am to 9 am and from 4 pm to 6 pm, while weekend usage is highest in the middle of
the day. Ahmed et al. [11] determined that bike-sharing systems are busier during warmer months,
which generally confirms the relationship between weather and the propensity for private bike riding.
A study on the duration of bike-sharing trips based on data from Melbourne, Brisbane, Washington
D.C., Minnesota and London determined that durations are within a tight band between 16 and
22 min [12]. Another study determined that casual users of a specific bike-sharing service typically
take longer trips than annual members [13]. Tao et al. [14] analysed the global and spatio-temporal
operating patterns of the traditional Public Bicycle Sharing system in Nanning City, China and studied
the impact of urban morphology on these patterns. Froehlich et al. [15] provided a spatio-temporal
analysis of thirteen weeks of bicycle station usage from Barcelona’s shared bicycling system, applying
clustering techniques to identify shared behaviour across stations and comparing experimental results
from four predictive models of nearby station usage. Some researches focused on the sustainability of
bike-sharing systems.

In terms of user preferences, multiple studies concluded that convenience is the major perceived
benefit identified by bike-sharing users [16]; other investigations have demonstrated the importance
of proximity of docking stations to users’ homes [17]. These results point to the advantage of DLBS
systems over traditional bike-sharing systems. Moreover, some studies determined that a significant
proportion of users do not use bike-sharing systems frequently [13,18]. For trip purposes, some research
demonstrated that the primary usage for long-term members was work-related, while the primary
purpose for short-term members was leisure or sightseeing [13]. Bike-sharing systems are perceived
as completing public transit. Some studies demonstrate that the majority of traditional bike-sharing
trips are replacing trips formerly accomplished by public transport and walking [18,19]. Shaheen et al.
found that bike-sharing competes with public transport in areas with more robust or congested transit
networks. However, in areas with smaller public transit systems, bike-sharing serves a greater role
as a first-and-last mile connector [20]. Fishman et al. [21] calculated bike-sharing’s overall impact on
kilometres travelled by vehicles and concluded bike-sharing reduces car use.

Owing to the tidal operating characteristics of bike-sharing systems, the number of vehicles in
some bike-sharing stations does not match the demand during morning and evening peak hours.
In such cases, vehicle rebalancing is required. Faghih-Imani et al. [22] have examined the factors
associated with higher and lower levels of docking station activity and determined that weather and
the presence of restaurants have a predictable impact. Parkes et al. [23] suggested that altering the
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price to achieve rebalancing objectives could be employed as an option to resolve fleet distribution
issues. Pfrommer et al. [10] used historical data of a bike-sharing system in London to model both the
effectiveness of using lorries for rebalancing and the impact of introducing price incentives to mitigate
fleet imbalance.

There are few studies on DLBS systems. Bao et al. [24] proposed a data-driven approach to
develop bike lane plans. Dakshak Keerthi Chandra et al. [9] proposed a multidimensional tensor
model to address the mismatching problem for supply and demand of DLBS systems. Wu et al. [25]
discussed investigating the roles of this new bike-sharing system in urban mobility in China, especially
in Shanghai, along with its influences in the society. Du et al. established a multinomial logit model to
explore the influential factors associated with three patterns, Origin to Destination Pattern, Travel Cycle
Pattern and Transfer Pattern, based on a survey of 4939 valid questionnaires in Nanjing, China [26].
Shi et al. employed the social network analysis method to recognise the critical factors and links in
DBSPs’(dockless bike-sharing programs) sustainability [27].

While studies regarding the use of DLBS near metro stations are imperative, studies exploring the
use of bicycles as a transfer mode to metro station areas in cities remain to be enriched. Karel Martens
discussed the use of bike-and-ride in three countries, the Netherlands, Germany and the UK [28].
The research concluded that the majority of bike-and-ride users travel between 2 and 5 km to a
public transport stop, with longer access distances reported for faster modes of public transport.
Moreover, work and education are the primary travel motives, while car availability is not a strong
influential factor. Zhao et al. determined that travel distance is the most important influence
on rates of cycling for transfer trips between metro stations and home or the workplace [29].
Additionally, the presence of bicycle-sharing programs, mixed land use and green parks in metro station
areas were associated with greater rates of cycling transfer. Lin et al. analysed the mode choices of
passengers for connecting travels between trip origins/destinations and metro stations, and determined
that collecting local empirical knowledge on travel behaviour is critical for developing bike-friendly
environments for a city [30]. Ma et al. analysed the general characteristics of metro-bike-sharing
transfer trips based on smart card data [31]. Cheng et al. conducted a cost–benefit analysis of public
bicycle sharing system incorporation into the metro system to determine its cost-effectiveness [32].
Zhang et al. mapped the bicycle traffic on an equal population cartogram of Shanghai to distinguish
overall patterns within the centre of Shanghai and determined that the usage frequency of bike-sharing
systems from metro stations to outlying areas is gradually declining [33].

Generally, most existing researches on bike-sharing systems focused on the traditional models,
which are restrained by the locations of dock station. However, the operating characteristics and
management of DLBS systems are significantly different. Understanding the characteristics of DLBS
systems is critical to optimizing their operation and management, so as to allocate corresponding
parking facilities and vehicle rebalancing. Regarding the use of bicycles as a transfer mode to metro
stations, existing literature [28–33] primarily focused on the influential factors of bicycles as a transfer
mode to metro stations, such as travel distances, travel motivations and car availability. These studies
provide great insight into the promotion of the use of bicycles as a transfer mode. However, there are
still some research gaps on theoretical exploration for the daily operation and management of DLBS
systems. There remains a necessity to understand the operating characteristics of DLBS systems near
metro stations, which could provide guidance for their operation and management.

To fill in these knowledge gaps, this study was aimed at analysing the operating characteristics of a
DLBS system near metro stations using data from Mobike based on the example of Nanjing, which is the
capital of Jiangsu province. ‘Operating characteristics’ refers to the temporal usage of bikes near metro
stations and their relationship with points of interest (POI). We use metro stations and POI as anchor
points to collect the real-time Mobike data through its open mobile application-programming interface
(API). Moreover, K-means clustering and spatio-temporal analysis was carried out to cluster the activity
patterns and determine the range of influence of DLBS systems near metro stations. We consider
that this study will contribute to the understanding of the operating characteristics of DLBS systems
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and their effect on first-and-last mile connections for metro stations and promote the operation and
management of DLBS systems in similar cities.

3. Data Collection and Pre-Processing

3.1. Data Collection

For this study, Mobike location data, metro stations data and Nanjing POI data were analysed.

3.1.1. Metro Stations and POI Data

The Nanjing metro system was established in 2005 and has developed 10 metro lines and
174 stations. Metro station data were obtained through a web API of Amap, which is a major electronic
mapping service provider in China. The method to obtain data consists in sending a data request
to Amap’s server using the specified form of URL (Uniform Resource Locator), to which the server
returns the corresponding data. The data contain information including name, ID, address, latitude and
longitude, as shown in Table 1.

Table 1. Structure of metro data.

Field Content

name Xin Jie Kou
ID BV10057753

address Line 1; Line 2
latitude 32.041806

longitude 118.784136

The POI is a specific point location that someone could find useful or interesting, such as a residence,
fuel station, public service point, etc. These points are usually considered origin or destination locations
for trips in cities. These data were also obtained from Amap through its web API. The data include
information including name, type, address, latitude and longitude, as shown in Table 2. A total of
225,555 POI data items across Nanjing City were collected. Considering there is a coverage for Mobike
data collected later from every available point, this study selected the POI which are not in the same
coverage. A total of 21,621 POI remained.

Table 2. Structure of points of interest (POI) data.

Field Content

name Fang Ting Pan Yuan
types residence

address No.1 Fang Ting road
latitude 32.219022

longitude 118.728905

3.1.2. Mobike Location Data

Mobike location data comprised the dataset used to analyse the activity patterns and range
of influence. There is an open mobile API for Mobike called by a WeChat applet, which requires
latitude and longitude parameters, and returns a dataset of nearby Mobike locations in JavaScript
Object Notation (JSON) format. The method to obtain data consists in posting a data request to
Mobike’s server using the specified form of data set, to which the server returns the corresponding
data. A script written with Python 3.6 was used to collect Mobike location data near metro stations
and POI. Considering that the DLBS system around the metro stations is used relatively frequently
during the morning and evening commuting peaks, the number of bikes near stations also changes
relatively rapidly. Therefore, in order to obtain more details and to better understand the operating
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characteristics of DLBS systems during the morning and evening peak hours, we adopted different
collection time intervals. The collection time interval was 10 min during the timeframes of 6–9 am and
5–10 pm; it was 30 min otherwise. The collection time interval for POI locations was 30 minutes at
all times.

The data included collection time, acquired latitude, acquired longitude, bike ID, bike latitude,
bike longitude and the distance between the acquired location and bike (in metres). An example of this
data is shown in Table 3. Real-time data were collected from 12 June 2018 to 26 June 2018. A total of
12,640,899 observations were collected. The size of the total original data exceeded 3 GB.

Table 3. Structure of Mobike data.

Time Acquired
Latitude

Acquired
Longitude

ID of
Bike

Latitude of
Bike

Longitude
of Bike

Distance between
Acquired Location

and Bike

2018-06-12
00:00:00

32.049556 118.894656
8640215020 32.04994343 118.8948145 45
0256507954 32.04988437 118.8949574 46
0256539136 32.0494920 118.893895 72

3.2. Data Cleansing

It was necessary to cleanse the data because some of the data collected through the API was
invalid or incomplete. This was due to multiple factors, such as Mobikes being prohibited in some
metro stations, lack of Mobike availability in some remote stations, system failure, bad weather and
other unexpected problems. There was a final total of 8,532,827 observations from 146 metro stations,
and 17,365 POI remained for further analysis. The spatial distribution of the remaining metro stations
is shown in Figure 1.
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3.3. Data Pre-Processing

As mentioned earlier, Mobike data were collected by time interval and saved as CSV files.
Before analysing the data, they were integrated and reformatted with a short script with the NumPy
and pandas packages for Python 3.6. Two types of data were integrated and reformatted: metro
stations and POI locations. The structure of these data is shown in Table 4.

Table 4. Structure of integrated data collected in metro stations and POI.

Time
ID of
Metro

Station/POI

Latitude
of Metro

Station/POI

Longitude
of Metro

Station/POI
ID of Bike Latitude

of Bike
Longitude

of Bike

Distance between
Metro Station/POI

and Bike

2018-06-12
00:00:00 1 32.049556 118.894656 256547535 32.04966271 118.89438071 28

4. Data Analysis

This study analysed the spatial and temporal distribution of Mobike locations near metro stations
and POI. K-means clustering was applied to categorise all metro stations according to the temporal and
spatial variation of the number of Mobikes nearby in order to illustrate the activity patterns of DLBS
systems near metro stations in terms of workday and weekend data. In the last portion, this study
searched Mobike data at every POI for any bike that appeared near any metro station within an hour
to illustrate the coverage of DLBS systems for every type of metro station.

4.1. Feature Extraction

After data pre-processing, an initial data format for feature extraction was developed. The data
extracted were from Mobikes whose user destination or origin was a metro station. Owing to the
flexibility of DLBS systems, people usually return bikes near metro stations when they use a metro
system; we tested distance ranges for these scenarios. A threshold of 100 metres was set such that
any bike located within this distance of a metro station was considered to be related to that station.
The number of related Mobikes was counted for every metro station for every time period along with
the average value for both workday and weekend. The feature extracted data structure is shown in
Table 5. For example, the value “1.428571429” in the cell with ID of Metro Station = 1 means that,
during the data collection period, there was an average of 1.428571429 bikes within 100 meters of the
metro station No. 1 at 00:00 on workdays/weekends.

Table 5. Structure of feature extracted data.

ID of Metro Station 00:00 00:30 . . . 23:00 23:30

1 1.428571429 1.142857143 . . . 2.000000000 1.857142857
2 10.57142857 9.000000000 . . . 11.28571429 9.714285714
. . . . . . . . . . . . . . . . . .
145 10.71428571 12.00000000 . . . 9.714285714 9.428571429
146 3.285714286 3.285714286 . . . 5.714285714 4.857142857

4.2. Cluster Analysis

After the feature extraction was developed, the K-means clustering was applied to analyse the
specific activity patterns of the DLBS systems using the sklearn package for Python 3.6.

K-means clustering is a method of vector quantisation which is popular for cluster analysis in
data mining. It aims to partition n observations into k clusters, represented by their centres or means.
The centre of each cluster is calculated as the mean of all the instances belonging to that cluster [34].
The K-means clustering algorithm is extremely efficient and concise for the classification of equivalent
multidimensional data, which is consistent with our data type.
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The algorithm begins with an initial set of cluster centres, chosen at random. The number of
cluster centres is defined by k, which is provided in advance. In each iteration, each instance is assigned
to its nearest cluster centre according to the Euclidean distance between the two. Then the cluster
centres are re-calculated to reduce the partitioning error (defined by Equation (1)). The iteration would
terminate when the partitioning error is no longer reduced by the relocation of the centres.

Ep =
k∑

i=1

∑
p∈Ci

∣∣∣p−mi
∣∣∣2 (1)

where Ep is the partitioning error, k is the number of clusters, p is the instance, Ci is the number i
clusters and mi is the cluster centre of number i clusters.

The determination of the k value is critical to the classification effect when using k-means
clustering. Generally, the lower the partitioning error, the better the classification performance is.
However, the partitioning error monotonically decreases as k increases. When the k value is extremely
large, the classification becomes meaningless. We used the Elbow Method to define the k value to
ensure that the value of k is balanced in both the classification performance and meaning. As the k
value continues to increase, the improvement in the partitioning error continues to decrease. There is
a relatively clear demarcation point. When the k value exceeds this point, the improvement in the
partitioning error sharply decreases. Five is the inflection point for data of workdays and three is that
of weekends, as shown in Figure 2. Therefore, we define k as five for workdays and three for weekends.

Five types of metro stations were clustered for workdays and three for weekends as shown in
Figure 3.
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The activity patterns of DLBS near metro stations could be indicated from the variation trend
of the average number of Mobike. As shown in Figure 3a, the variation trend on workdays can be
categorised into five types based on the shapes of the curves.

Cluster 1 reflects an inactive activity pattern. The Mobike count near those metro stations was
stable, between 0 and 2, which indicates that the visitor flow rate of those systems is relatively low;
moreover, the time-variant characteristic was not significant.

Cluster 2 represents a tidal characteristic activity pattern. The number of Mobikes near stations
rapidly increases between 6 am and 8 am, slowly decreases between 8 am and 9 am, slowly increases
until 6 pm and decreases significantly between 6 pm and midnight.

Cluster 3 possesses a more distinctive characteristic than the others. The number of Mobikes near
stations is relatively stable between midnight and 7:30 am, rapidly decreases between 7:30 am and 9
am, remains relatively low from 9 am to 4 pm, rapidly increases between 4 pm and 6 pm and then
stays relatively stable.

Cluster 4 displays an opposite characteristic to Cluster 3. The number of Mobikes near stations
increases rapidly from 6 am to 8 am, remains stable between 8 am and 6 pm and significantly declines
from 6 pm to midnight. Moreover, its integral level is above Cluster 2.

Ostensibly, Cluster 5 possesses a similar time-variant characteristic to Cluster 1.
However, the integral level of the number of Mobikes near stations is significantly higher than
Cluster 1, remaining stable at between 12 and 14.

The variation trend on weekends can be categorised into three types based on the shapes of the
curves as seen in Figure 3b.

Cluster 1 reflects an inactive activity pattern similar to Cluster 1 on workdays.
Cluster 2 significantly increases between 6 am and 8 am, remains relatively stable until 4 pm and

then decreases slowly until midnight.
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Cluster 3 has a similar time-variant characteristic to Cluster 5 on workdays, and its integral level
is stable at between 12 and 14.
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each cluster for metro stations on weekends.

Figure 4a displays all types of metro stations on workdays, reflecting the relationship between
spatial distribution and type of activity pattern. It can be observed that Cluster 1 stations commonly
distribute around peripheral zones of the city where the land is undeveloped and economic activity
is low. These conditions can reasonably explain the inactivity pattern. Cluster 2 distributes in new
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development districts and suburban areas that usually contain both residential and business areas.
Based on the curve of Cluster 2, it can be inferred that there is a certain percentage of residents that live
in these areas but work in other districts. Residents who work in other districts are required to go to
work using the metro in the early morning, which causes the increase in the number of Mobikes near
metro stations between 6 am and 8 am. Workers residing in other areas arrive at the metro stations and
ride Mobikes to work, which accounts for the decrease in Mobikes near the stations between 8 am and 9
am. A slow increase is due to workers who live in other areas who leave work at different times between
4 pm and 6 pm. Finally, a significant decrease occurs due to residents of these areas arriving home
between 6 pm and midnight. Cluster 3 usually distributes in high-tech areas and industrial parks where
jobs are concentrated. This explains the rapid decrease from 7:30 am to 9 am and the rapid increase
from 4 pm to 6 pm. Cluster 4 commonly distributes in residential areas of the city, which explains the
rapid increase between 6 am and 8 am due to residents going to work and the significant decrease from
6 pm to midnight due to residents arriving home after work. Cluster 5 commonly distributes in the
downtown area and near tourist attractions. While the curve of Cluster 5 is flat, the integral level of the
number of Mobikes is significantly higher than any other cluster, which indicates the activity pattern is
not tidal, and the system maintains a high turnover rate at all times.

The types of metro stations used on weekends are shown in Figure 4b. Cluster 1 exhibits a similar
characteristic with Cluster 1 on workdays. The stations distribute primarily in peripheral zones of the
city. Cluster 2 distributes primarily in residential areas. It can be inferred that activities of residents on
weekends causes the significant increase from 6 am to 8 am and slow decrease from 4 pm to midnight.
Cluster 3 distributes primarily in the downtown area, near tourist attractions and the areas where
metro lines intersect. It can be inferred that a high frequency passenger flow contributes to the high
turnover rate of Mobikes and the large number of Mobikes near stations.
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The relationship between clusters on workdays and weekends is shown in Figure 5. It indicates
that eighty-three percent of the metro stations in Cluster 1 on weekends are also in Cluster 1 on
workdays, and seventeen percent are in Cluster 2 on workdays. It can be inferred that residents live
around the stations of Cluster 2 for workdays in relatively remote areas that have less travel activities
on weekends. Combined with Figure 4a,b, Figure 5b shows the percentage of weekend Cluster 2
stations that are also in a particular workday cluster. Specifically, fifty-four percent are in workday
Cluster 2, twenty-two percent are in workday Cluster 3 and twenty-four percent are in workday Cluster
4. It can be inferred that residents who live around the stations in Clusters 2, 3 and 4 disperse into new
development districts and suburban areas that are at a moderate distance from downtown; additionally,
these residents have a tidal travel activity pattern on weekends. Combined with Figure 4a,b, Figure 5c
shows that seventy percent of the metro stations in Cluster 3 on weekends are in Cluster 5 on workdays,
fourteen percent are in Cluster 3 on workdays and sixteen percent of stations are in Cluster 4 on
workdays. It can be inferred that some stations distribute in tourist attraction areas and recreational
areas that have a higher visitor flow rate and turnover rate on weekends than workdays.
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4.3. Analysis of Range of Influence of DLBS Systems Near Metro Stations

In the previous analysis, metro stations were classified into five clusters on workdays and three
clusters on weekends. It was determined that different stations possess different activity patterns for
nearby DLBS systems. Moreover, the relationship between the cluster types on workdays and on
weekends was examined. The relationships between POI and metro stations of different clusters have
significant differences, which has a direct impact on the range of vehicle rebalancing and the scale of
parking facilities for operation and management of DLBS systems. The ranges of influence of DLBS
systems in different clusters reflect the differences. This section will focus on the analysis of range of
influences of DLBS systems near metro stations in terms of their cluster types.
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We examined every POI and nearby Mobike for every metro station in every time point to filter
the POI which contain the same Mobike that appeared in a nearby station within the previous or
subsequent hour. The filter rules are listed as follows:

1. The Mobike whose distance is within 100 metres of a metro station is considered related to
the station.

2. At every time point, the ID of every related Mobike is stored for every station.
3. Examine every POI within the previous and subsequent hours for every time point for every station

to select those POI which contain a related Mobike and store in the initial list of influenced POI.
4. Any POI that appears at least three times in the initial list of influenced POI for every station is

considered to be in the range of influence of DLBS systems near the station.

After filtering the data, distances between the influenced POI and corresponding metro stations
were acquired using the web API for Amap. The average range of influence of DLBS systems near
every metro station was calculated using Equation (2).

R f =
d1 + d2 + d3 + · · ·+ dn − dmax − dmin

n− 2
(2)

where R f is the average range of influence, di is the distance between number i of POI in the range of
influence and the station, dmax is the maximum among di, dmin is the minimum among di and n is the
sum of the POI that are in the range of influence.

Here is an example for calculating the average range of influence using Equation (2). Station A was
determined to have 5 POI in its range of influence after being filtered by the rules above. The distances
between those POI and station A are listed as follows: 1000 metres, 1100 metres, 1200 metres, 1300 metres
and 1400 metres. R f is calculated using Equation (2):

R f =
1000 + 1100 + 1200 + 1300 + 1400− 1400− 1000

5− 2
= 1200. (3)

In Figure 6, the average range of influence of DLBS systems near every metro station is displayed
relatively by the size of icons and coloured based on the type of cluster (there were some stations
filtered out due to incomplete data). The specific average range of influence for clusters on workdays
and weekends is shown in Figure 7.

Figure 6 shows a general tendency that the closer the metro station is to the city centre, the smaller
the range of influence is for stations in the same cluster. For metro stations distributed in remote areas,
the ranges of influence on weekends are commonly larger than those on workdays. Conversely, for
stations distributed around downtown, the ranges of influence on weekends are smaller than those
on workdays.

Figure 7a shows that metro stations in Clusters 1 and 2 have the largest average range of influence
on workdays, followed by Clusters 4, 3 and 5, in that order. Thus, the low land development rate and
sparse distribution of metro stations causes a large average range of influence and vice versa combined
with the analysis. Figure 7b shows that the average ranges of influence in Clusters 1, 2 and 3 decrease
in that order on weekends for the same reason.
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5. Conclusions

The work presented in this paper focused on DLBS systems near metro stations in the city of
Nanjing. This study included workday and weekend data and focused on analysing activity patterns
of DLBS systems, examining the relationship between spatial distribution and activity patterns and the
determination of the range of influence for nearby stations. The primary conclusions are as follows:

First, the metro stations of Nanjing can be clustered into five types on workdays and three types
on weekends based on activity patterns of the DLBS system nearby. For workdays, Cluster 1 reflects
an inactivity pattern and commonly distributes around peripheral zones of the city where the land is
undeveloped and economic activity is low. Cluster 2 displays a tidal characteristic activity pattern
that has two distinct peaks, and commonly distributes in new development districts and suburban
areas containing both residential and business areas. Cluster 3 exhibits a concave characteristic activity
pattern and usually distributes in high-tech and industrial parks where jobs are concentrated. Cluster 4
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displays a convex characteristic activity pattern and commonly distributes in residential areas. Cluster 5
exhibits a flat but high turnover activity pattern and commonly distributes in the downtown area and
near tourist attractions.

Second, for weekends: Cluster 1 exhibits an inactivity pattern and distributes primarily in
peripheral zones of the city. Cluster 2 displays a convex characteristic activity pattern and distributes
primarily in residential areas. Cluster 3 reflects a flat but high turnover activity pattern and distributes
primarily in the downtown area, near tourist attractions and the area where metro lines connect.

Third, the majority of metro stations share similar activity patterns both on workdays and
weekends. However, the stations distributed in areas where jobs are concentrated display clear
differences in activity patterns between workdays and weekends.

Fourth, there is a general tendency that the closer the metro station is to the city centre, the smaller
the range of influence of nearby DLBS systems in the same cluster is. The ranges of influence on
weekends are usually larger than those on workdays for metro stations distributed in remote areas.
The opposite is true for stations distributed around downtown.

Fifth, low land development rate and sparse distribution of metro stations cause large average
ranges of influence.

Based on the conclusions above, some suggestions about operating DLBS systems to address the
first-and-last mile connections for metro stations are proposed as follows:

For the stations in Cluster 1 on workdays and weekends, passengers usually travel a longer
distance to metro stations when using the DLBS system. The demand for passengers to use the DLBS
system to connect to metro stations is not strong. Therefore, the operator of DLBS systems should
focus on the vehicle maintenance.

For the stations in Clusters 2, 3 and 4 on workdays and Cluster 2 on weekends, the demand for
passengers using the DLBS system to connect to metro stations possesses a tidal characteristic. It is
possible that an imbalance between demand and vehicle configuration occurs during the peak period.
In addition, these stations generally distribute in residence areas and business districts. The operator
of the DLBS should focus on the rebalancing of vehicle distribution. For stations in residential areas,
the vehicles tend to gather around stations and are required to be moved back to surrounding areas
between 6 am and 8 am; additionally, it is necessary to transport the vehicles to stations after 6 pm.
For stations distributed in business districts, the rebalancing operation should be carried out in reverse.
The stations in Cluster 3 on workdays are distinct in that the rebalancing operation is unnecessary,
because the passengers themselves would do the rebalancing.

For the stations in Cluster 5 on workdays and Cluster 3 on weekends, the distance for which
passengers use the DLBS system to connect to metro stations is the shortest. Additionally, the demand
is constantly high. Moreover, these stations generally distribute in downtown areas and near tourist
attractions. The operator of the DLBS should focus on providing enough parking spaces and services
for the DLBS system and passengers near metro stations.

This study analyses the activity characteristics of DLBS systems near metro stations in Nanjing
City, examining their temporal and spatial distribution features and their range of influence. This study
contributes to the literature on the operation and management of DLBS systems in China and has
implications for understanding the operating state of DLBS systems near metro stations, understanding
the DLBS systems’ effect on improving the first-and-last mile connection for metro stations and
promoting the proper management of DLBS systems in similar cities. Owing to the limitations of time
and space, this paper mainly focuses on the operating characteristics of DLBS systems in Nanjing City,
but lacks the analysis of the relationship between DLBS systems and passenger flow characteristics of
metro stations. The operating characteristics of DLBS systems in other types of cities still need to be
studied. Further research should concentrate on the operating characteristics of the DLBS system in
other types of cities and the relationship between DLBS bike use and metro use.
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