A New Approach for Multifunctional Zoning of Territorial Space: The Panxi Area of the Upper Yangtze River in China Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Theory and Methodology
2.3.1. Territorial Functional Niche
2.3.2. Identifying the Multifunctional Components in Panxi
2.3.3. Constructing the Functional Significance Evaluation System
2.3.4. Calculating the Functional Significance of Territorial Spaces (FSoTS) based on Two Niche Breadth Models
2.3.5. K-means Clustering Method
2.3.6. Assessing the Comprehensive Evaluation Value (CEV) of FSoTS and the Approach for IMFZS
3. Results
3.1. The Multifunctional Significance Features and Their Spatial Distribution
3.2. The Clustering of the Territorial Space Functions Based on County (District) Level
3.3. The Integrated Multifunctional Zoning Scheme (IMFZS) of Territorial Space in the Panxi Area
4. Discussion
4.1. The Comparison between the Integrated Multifunctional Zoning Scheme (IMFZS) and Major Spatial Planning Systems in the Panxi Area
4.2. The Innovation Entailed by the Proposed Methodology
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- State Council of the People’s Republic of China. The National Main Function Division-Constructing an Efficient, Coordinated and Sustainable Land and Space Development Pattern [EB/OL]. 8 June 2011/28 April 2014. Available online: http://www.gov.cn (accessed on 11 December 2018).
- Bobylev, N. Mainstreaming sustainable development into a city’s Master plan: A case of urban underground space use. Land Use Policy 2009, 26, 1128–1137. [Google Scholar] [CrossRef]
- Campbell, S. Green cities, growing cities, just cities?: Urban planning and the contradictions of sustainable development. J. Am. Plan. Assoc. 1996, 62, 296–312. [Google Scholar] [CrossRef]
- Godschalk, D.R. Land use planning challenges: Coping with conflicts in visions of sustainable development and livable communities. J. Am. Plan. Assoc. 2004, 70, 5–13. [Google Scholar] [CrossRef]
- Persson, C. Deliberation or doctrine? Land use and spatial planning for sustainable development in Sweden. Land Use Policy 2013, 34, 301–313. [Google Scholar] [CrossRef]
- Jane Silberstein, M.A.; Maser, C. Land-Use Planning for Sustainable Development; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Albrechts, L. Strategic (spatial) planning reexamined. Environ. Plan. B 2016, 31, 743–758. [Google Scholar] [CrossRef]
- Moilanen, A.; Arponen, A. Administrative regions in conservation: Balancing local priorities with regional to global preferences in spatial planning. Biol. Conserv. 2011, 144, 1719–1725. [Google Scholar] [CrossRef]
- Brown, G.; Glanz, H. Identifying potential NIMBY and YIMBY effects in general land use planning and zoning. Appl. Geogr. 2018, 99, 1–11. [Google Scholar] [CrossRef]
- Gong, J.; Jiang, C.; Chen, W.; Chen, X.; Liu, Y. Spatiotemporal dynamics in the cultivated and built-up land of Guangzhou: Insights from zoning. Habitat Int. 2018, 82, 104–112. [Google Scholar] [CrossRef]
- Shertzer, A.; Twinam, T.; Walsh, R.P. Zoning and the economic geography of cities. J. Urban Econ. 2018, 105, 20–39. [Google Scholar] [CrossRef]
- Hales, R. Land use development planning and the notion of sustainable development: Exploring constraint and facilitation within the English planning system. J. Environ. Plan. Manag. 2000, 43, 99–121. [Google Scholar] [CrossRef]
- Rossi-Hansberg, E. Optimal urban land use and zoning. Rev. Econ. Dyn. 2004, 7, 69–106. [Google Scholar] [CrossRef]
- Talen, E.; Anselin, L.; Lee, S.; Koschinsky, J. Looking for logic: The zoning—Land use mismatch. Landsc. Urban Plan. 2016, 152, 27–38. [Google Scholar] [CrossRef]
- Lu, W.; Liu, J.; Xiang, X.; Song, W.; McIlgorm, A. A comparison of marine spatial planning approaches in China: Marine functional zoning and the marine ecological red line. Mar. Policy 2015, 62, 94–101. [Google Scholar] [CrossRef]
- Gallent, N.; Kim, K.S. Land zoning and local discretion in the Korean planning system. Land Use Policy 2001, 18, 233–243. [Google Scholar] [CrossRef]
- Fan, J.; Li, P. The scientific foundation of Major Function Oriented Zoning in China. J. Geogr. Sci. 2009, 19, 515–531. [Google Scholar] [CrossRef]
- Nel, V. A better zoning system for South Africa? Land Use Policy 2016, 55, 257–264. [Google Scholar] [CrossRef]
- Wiggering, H.; Dalchow, C.; Glemnitz, M.; Helming, K.; Müller, K.; Schultz, A.; Stachow, U.; Zander, P. Indicators for multifunctional land use—Linking socio-economic requirements with landscape potentials. Ecol. Indic. 2006, 6, 238–249. [Google Scholar] [CrossRef]
- Zheng, D.; Ge, Q.; Zhang, X.; He, F.; Wu, S. Regionalization in China: Retrospect and prospect. Geogr. Res. 2005, 24, 330–344. (In Chinese) [Google Scholar]
- Helming, K.; Wiggering, H. Sustainable Development of Multifucntional Landscapes; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Malek, Ž.; Verburg, P.H.; Geijzendorffer, I.R.; Bondeau, A.; Cramer, W. Global change effects on land management in the Mediterranean region. Glob. Environ. Chang. 2018, 50, 238–254. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Langhamer, D.; Dalang, T. Inventorying human-made objects: A step towards better understanding land use for multifunctional planning in a periurban Swiss landscape. Landsc. Urban Plan. 2012, 105, 307–314. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, G.; Li, W.; Zhou, T.; Zhang, R. Multifunctionality assessment of the land use system in rural residential areas: Confronting land use supply with rural sustainability demand. J. Environ. Manag. 2019, 231, 73–85. [Google Scholar] [CrossRef]
- Johansen, P.H.; Ejrnæs, R.; Kronvang, B.; Olsen, J.V.; Præstholm, S.; Schou, J.S. Pursuing collective impact: A novel indicator-based approach to assessment of shared measurements when planning for multifunctional land consolidation. Land Use Policy 2018, 73, 102–114. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Crossman, N.D.; Bryan, B.A. Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality. Ecol. Econ. 2009, 68, 654–668. [Google Scholar] [CrossRef]
- Dewi, S.; van Noordwijk, M.; Ekadinata, A.; Pfund, J.-L. Protected areas within multifunctional landscapes: Squeezing out intermediate land use intensities in the tropics? Land Use Policy 2013, 30, 38–56. [Google Scholar] [CrossRef]
- O’Farrell, P.J.; Anderson, P.M.L. Sustainable multifunctional landscapes: A review to implementation. Curr. Opin. Environ. Sustain. 2010, 2, 59–65. [Google Scholar] [CrossRef]
- Marzban, S.; Allahyari, M.S.; Damalas, C.A. Exploring farmers’ orientation towards multifunctional agriculture: Insights from northern Iran. Land Use Policy 2016, 59, 121–129. [Google Scholar] [CrossRef]
- Rossing, W.A.H.; Zander, P.; Josien, E.; Groot, J.C.J.; Meyer, B.C.; Knierim, A. Integrative modelling approaches for analysis of impact of multifunctional agriculture: A review for France, Germany and the Netherlands. Agric. Ecosyst. Environ. 2007, 120, 41–57. [Google Scholar] [CrossRef]
- Groot, J.C.; Rossing, W.A.; Tichit, M.; Turpin, N.; Jellema, A.; Baudry, J.; Verburg, P.H.; Doyen, L.; van de Ven, G.W. On the contribution of modelling to multifunctional agriculture: Learning from comparisons. J. Environ. Manag. 2009, 90 (Suppl. 2), S147–S160. [Google Scholar] [CrossRef] [Green Version]
- Pinto-Correia, T.; Guiomar, N.; Guerra, C.A.; Carvalho-Ribeiro, S. Assessing the ability of rural areas to fulfil multiple societal demands. Land Use Policy 2016, 53, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Holmes, J. Impulses towards a multifunctional transition in rural Australia: Gaps in the research agenda. J. Rural Stud. 2006, 22, 142–160. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Paracchini, M.L.; Schulp, C.J.E.; Stürck, J.; Verkerk, P.J.; Verburg, P.H.; Lavorel, S. Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecol. Indic. 2017, 73, 23–28. [Google Scholar] [CrossRef]
- Bomans, K.; Steenberghen, T.; Dewaelheyns, V.; Leinfelder, H.; Gulinck, H. Underrated transformations in the open space—The case of an urbanized and multifunctional area. Landsc. Urban Plan. 2010, 94, 196–205. [Google Scholar] [CrossRef]
- Godoy, O.; Bartomeus, I.; Rohr, R.P.; Saavedra, S. Towards the Integration of Niche and Network Theories. Trends Ecol. Evol. 2018, 33, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Vandermeer, J.H. Niche theory. Annu. Rev. Ecol. Syst. 1972, 3, 107–132. [Google Scholar] [CrossRef]
- Thakur, M.P.; Wright, A.J. Environmental filtering, niche construction, and trait variability: The missing discussion. Trends Ecol. Evol. 2017, 32, 884–886. [Google Scholar] [CrossRef]
- Han, B.; Wang, R.; Tao, Y.; Gao, H. Urban population agglomeration in view of complex ecological niche: A case study on Chinese prefecture cities. Ecol. Indic. 2014, 47, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Susur, E.; Hidalgo, A.; Chiaroni, D. The emergence of regional industrial ecosystem niches: A conceptual framework and a case study. J. Clean. Prod. 2019, 208, 1642–1657. [Google Scholar] [CrossRef]
- Ruggiero, S.; Martiskainen, M.; Onkila, T. Understanding the scaling-up of community energy niches through strategic niche management theory: Insights from Finland. J. Clean. Prod. 2018, 170, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L. The ‘niche’ city: A multifactor spatial approach to identify local-scale dimensions of urban complexity. Ecol. Indic. 2018, 94, 62–73. [Google Scholar] [CrossRef]
- Yu, Z.; Xiao, L.; Chen, X.; He, Z.; Guo, Q.; Vejre, H. Spatial restructuring and land consolidation of urban-rural settlement in mountainous areas based on ecological niche perspective. J. Geogr. Sci. 2018, 28, 131–151. [Google Scholar] [CrossRef]
- Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Indic. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Alahuhta, J.; Virtala, A.; Hjort, J.; Ecke, F.; Johnson, L.B.; Sass, L.; Heino, J. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents. Oecologia 2017, 184, 219–235. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, F.; Jiang, G.; Guang, X.; Guo, L. Suitability evaluation and subarea control and regulation of rural residential land based on niche. Trans. Chin. Soc. Agric. Eng. 2010, 26, 290–296. (In Chinese) [Google Scholar]
- Peng, Y.; Yan, L. Competition relationship among tourist cities in Zhejiang province based on the niche theories. Acta Ecol. Sin. 2015, 35, 2195–2205. (In Chinese) [Google Scholar]
- Meng, L.; Zheng, X.; Zhao, L.; Deng, J. Land-use functional regionalization based on niche-fitness model. Trans. Chin. Soc. Agric. Eng. 2011, 27, 282–287. (In Chinese) [Google Scholar]
- Wang, W.; Nian, P.; Zhu, D.; Zhang, W. Analysis of regional multifunction evaluation and evolution based on niche breadth model: Taking Beijing as an example. World Reg. Stud. 2016, 25, 66–77. (In Chinese) [Google Scholar]
- Nian, P.; Cai, Y.; Xie, X.; Zhang, W.; Ma, S. Geographical space comprehensive function zoning in Hunan Province based on niche theory. Resour. Sci. 2014, 36, 1958–1968. (In Chinese) [Google Scholar]
- Zhang, B.; Mo, S.; Tan, Y.; Xiao, F.; Wu, H. Urbanization and de–urbanization in mountain regions of China. Mt. Res. Dev. 2004, 24, 206–209. [Google Scholar]
- Liu, H.; Zhou, Z.; Tao, H.; Yu, D. Comprehensive evaluation of mineral resource exploration of Panxi Area based on FAHP. Sci. Technol. Man. Land Resour. 2014, 31, 34–40. (In Chinese) [Google Scholar]
- Wang, J.; Guo, K.; Liu, H.; An, J. Advantages and disadvantages of mineral resources and the level of protection in Panxi region. Geol. Sci. Technol. Inform. 2014, 33, 143–148. (In Chinese) [Google Scholar]
- Râmniceanu, I.; Ackrill, R. EU rural development policy in the new member states: Promoting multifunctionality? J. Rural. Stud. 2007, 23, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Leibold, M.A. The niche concept revisited: Mechanistic models and community context. Ecology 1995, 76, 1371–1382. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; de Jong, M.; Cheng, B. Getting depleted resource-based cities back on their feet again—The example of Yichun in China. J. Clean. Prod. 2016, 134, 42–50. [Google Scholar] [CrossRef]
- Li, Z.; Marinova, D.; Guo, X.; Gao, Y. Evaluating pillar industry’s transformation capability: A case study of two Chinese steel-based cities. PLoS ONE 2015, 10, e0139576. [Google Scholar] [CrossRef]
- Shao, H.; Liu, M.; Shao, Q.; Sun, X.; Wu, J.; Xiang, Z.; Yang, W. Research on eco-environmental vulnerability evaluation of the Anning River Basin in the upper reaches of the Yangtze River. Environ. Earth Sci. 2014, 72, 1555–1568. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 8. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. (In Chinese) [Google Scholar]
- Liu, C.; Zhang, J.; Zhao, Y.; Zhu, C. Significance evaluation for territorial functions based on niche theory: A case study on Panxi Area. City Plan. Rev. 2018, 42, 84–93. (In Chinese) [Google Scholar]
- Pérez-Soba, M.; Petit, S.; Jones, L.; Bertrand, N.; Briquel, V.; Omodei-Zorini, L.; Contini, C.; Helming, K.; Farrington, J.; Tinacci Mossello, M.; et al. Land use functions—A multifunctionality approach to assess the impact of land use change on land use sustainability. In Sustainability Impact Assessment of Land Use Changes; Helming, K., Tabbush, P., Pérez–Soba, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 375–404. [Google Scholar]
- Hein, L.; Koppen, K.V.; DE-Groot, R.S.; Van-Ierland, E.C. Spatial scales, stakeholders and the valuation of ecosystem services. Ecol. Econ. 2006, 57, 209–228. [Google Scholar] [CrossRef]
- Smith, E.P. Niche breadth, resource availability, and inference. Ecology 1982, 63, 1675–1681. [Google Scholar] [CrossRef]
- Yu, S. Multivariate measure of niche breadth. Acta Ecol. Sin. 1991, 14, 32–39. (In Chinese) [Google Scholar]
- Luo, X.; Zeng, F. A preliminary research on the use of the ecostate-ecorole theory in the study of urban–rural ecotone: A Case Study of Nanjing. Econ. Geogr. 2000, 20, 55–58. (In Chinese) [Google Scholar]
- Wang, R.; Zhao, G.; Yu, Z.; Zhang, Y.; Zhang, H. Assessmen of land use effects on environmental vulnerability by ecological niche suitability model. T. Chin. Soc. Agric. Eng. 2012, 28, 218–224. (In Chinese) [Google Scholar]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A. An efficient k-means clustering algorithm: Analysis and implementation. IEEE. Trans. Pattern Anal. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, B.; Song, C.; He, X. Soil erosion estimation in Liangshan mountain areas of Sichuan Province based on USLE model. Bull. Soil Water Conserv. 2016, 36, 232–236. (In Chinese) [Google Scholar]
- Peng, G.; Cao, Y.; Ruan, J. Adaptability regionalization of spring buckwheat based on weights similarity to climatic factor in Liangshan Prefecture. J. Southwest Univ. 2016, 38, 1–8. (In Chinese) [Google Scholar]
- Giménez-Bastida, J.A.; Zieliński, H. Buckwheat as a functional food and its effects on health. J. Agric. Food Chem. 2015, 63, 7896–7913. [Google Scholar] [CrossRef] [PubMed]
Function | Code | Indicator (unit) | Weight | Function | Code | Indicator (unit) | Weight |
---|---|---|---|---|---|---|---|
Agricultural production | A1 | Cultivated land area (hm2) | 0.1522 | Habitat service | H1 | Per capita savings of urban residents (CNY) | 0.1364 |
A2 | Food production (t) | 0.0870 | H2 | Public finance expenditure (CNY) | 0.1592 | ||
A3 | Cash crop production (t) | 0.1087 | H3 | Number of teachers per 1000 residents (person) | 0.1136 | ||
A4 | Per capita grain production (kg) | 0.1522 | H4 | Number of hospital beds per 1000 residents (PCS) | 0.0909 | ||
A5 | Grain yield per unit area (t/hm2) | 0.1739 | H5 | Urbanization rate (%) | 0.2045 | ||
A6 | Agricultural output value (CNY) | 0.1956 | H6 | Road network density (Dimensionless) | 0.1136 | ||
A7 | Total power of agricultural machinery (KW) | 0.1304 | H7 | Forest coverage (%) | 0.1818 | ||
Industrial development | I1 | Secondary and tertiary industrial output value (CNY) | 0.1800 | Tourism & leisure | T1 | Total tourism revenue (CNY) | 0.3138 |
I2 | GDP proportion of secondary and tertiary industrial output value (%) | 0.1600 | T2 | Number of tourist (PCS) | 0.3464 | ||
I3 | Number of industrial enterprises (PCS) | 0.1200 | T3 | Number of scenic spots above grade 3A (PCS) | 0.3398 | ||
I4 | Total investment in fixed assets (CNY) | 0.1000 | Mineral resources supply | M1 | Accounting for distribution area of major mineral resources (%) | 0.4578 | |
I5 | Industrial output value above the scale (CNY) | 0.1200 | M2 | Major mineral dominance (Dimensionless) | 0.5422 | ||
I6 | Actual use of foreign capital (dollar) | 0.0800 | Ecosystem services | E1 | Hydrological regulation (Dimensionless) | 0.2500 | |
I7 | Grade and scale of industrial park (Dimensionless) | 0.1000 | E2 | Soil conservation (Dimensionless) | 0.2500 | ||
I8 | Secondary and tertiary industries output value per hectare construction land (CNY/hm2) | 0.1400 | E3 | Aesthetic value (Dimensionless) | 0.2500 | ||
E4 | Biodiversity (Dimensionless) | 0.2500 |
Evaluation unit | Agricultural Production | Industrial Development | Habitat Service | Tourism & Leisure | Mineral Resources Supply | Ecosystem Services | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CEV | Grades | CEV | Grades | CEV | Grades | CEV | Grades | CEV | Grades | CEV | Grades | |
Dongqu | 0.0000 | 4 | 1.0000 | 1 | 1.0000 | 1 | 0.1848 | 3 | 0.3435 | 3 | 0.0000 | 4 |
Xiqu | 0.1270 | 3 | 0.4523 | 2 | 0.7449 | 1 | 0.2363 | 3 | 0.4435 | 3 | 0.0002 | 4 |
Jinyang | 0.1813 | 3 | 0.0893 | 4 | 0.2123 | 3 | 0.0094 | 4 | 0.6195 | 2 | 0.0644 | 4 |
Ningnan | 0.3152 | 2 | 0.2010 | 3 | 0.3721 | 2 | 0.0105 | 4 | 0.4493 | 3 | 0.0810 | 4 |
Butuo | 0.1883 | 3 | 0.0435 | 4 | 0.0000 | 4 | 0.0001 | 4 | 0.3802 | 3 | 0.0709 | 4 |
Puge | 0.2411 | 3 | 0.0520 | 4 | 0.1108 | 4 | 0.1716 | 3 | 0.1164 | 4 | 0.0832 | 4 |
Miyi | 0.3347 | 2 | 0.3851 | 2 | 0.5502 | 1 | 0.2401 | 3 | 0.8034 | 1 | 0.1292 | 3 |
Ganluo | 0.2212 | 3 | 0.0715 | 4 | 0.2544 | 3 | 0.0043 | 4 | 0.7302 | 2 | 0.1102 | 3 |
Xide | 0.2313 | 3 | 0.0408 | 4 | 0.2019 | 3 | 0.0104 | 4 | 0.3350 | 3 | 0.0904 | 4 |
Renhe | 0.3159 | 2 | 0.7434 | 2 | 0.3136 | 3 | 0.0874 | 4 | 0.8458 | 1 | 0.1182 | 3 |
Dechang | 0.3735 | 2 | 0.2004 | 3 | 0.2934 | 3 | 0.0106 | 4 | 0.5861 | 2 | 0.1284 | 3 |
Yuexi | 0.3333 | 2 | 0.0564 | 4 | 0.1548 | 4 | 0.0112 | 4 | 0.1989 | 4 | 0.0946 | 4 |
Meigu | 0.1865 | 3 | 0.0712 | 4 | 0.1482 | 4 | 0.0069 | 4 | 0.0000 | 4 | 0.1077 | 3 |
Xichang | 0.9801 | 1 | 0.9884 | 2 | 0.8428 | 1 | 1.0000 | 1 | 0.7333 | 2 | 0.1505 | 3 |
Zhaojue | 0.2631 | 3 | 0.0000 | 4 | 0.0162 | 4 | 0.0127 | 4 | 0.0026 | 4 | 0.1058 | 3 |
Yanbian | 0.2556 | 3 | 0.5486 | 2 | 0.4071 | 2 | 0.3756 | 2 | 0.8162 | 1 | 0.1713 | 2 |
Leibo | 0.2710 | 3 | 0.1697 | 3 | 0.4248 | 2 | 0.0072 | 4 | 0.4125 | 3 | 0.1496 | 3 |
Huidong | 0.8174 | 1 | 0.1749 | 3 | 0.2792 | 3 | 0.0000 | 4 | 0.9121 | 1 | 0.1642 | 2 |
Mianning | 0.4700 | 2 | 0.2510 | 3 | 0.2337 | 3 | 0.3453 | 2 | 0.6501 | 2 | 0.2554 | 2 |
Huili | 1.0000 | 1 | 0.4641 | 2 | 0.3193 | 2 | 0.0240 | 4 | 1.0000 | 1 | 0.2515 | 2 |
Yanyuan | 0.5746 | 2 | 0.2100 | 3 | 0.1321 | 4 | 0.1599 | 3 | 0.5612 | 2 | 0.5184 | 1 |
Muli | 0.1738 | 3 | 0.1379 | 3 | 0.2502 | 3 | 0.0011 | 4 | 0.5698 | 2 | 1.0000 | 1 |
District | Code | Multifunction | District | Code | Multifunction |
---|---|---|---|---|---|
Dongqu | I1H1 | Industrial development, Habitat service | Yuexi | A2 | Agricultural production |
Xiqu | I2H1 | Industrial development, Habitat service | Meigu | N-S | Non-dominant (Agricultural production, Ecosystem services) |
Jinyang | M2 | Mineral resources supply | Xichang | A1I2H1T1M2 | Agricultural production, Industrial development, Habitat service, Tourism & leisure, Mineral resources supply |
Ningnan | A2H2 | Agricultural production, Habitat service | Zhaojue | N-S | Non-dominant (Agricultural production, Ecosystem services) |
Butuo | N-S | Non-dominant (Agricultural production, Mineral resources supply) | Yanbian | I2H2T2M1E2 | Industrial development, Habitat service, Tourism & leisure, Mineral resources supply, Ecosystem services |
Puge | N-S | Non-dominant (Agricultural production, Tourism & leisure) | Leibo | H2 | Habitat service |
Miyi | A2I2H1M1 | Agricultural production, Industrial development, Habitat service, Mineral resources supply | Huidong | A1M1E2 | Agricultural production, Mineral resources supply, Ecosystem services |
Ganluo | M2 | Mineral resources supply | Mian-ning | A2T2M2E2 | Agricultural production, Tourism & leisure, Mineral resources supply, Ecosystem services |
Xide | N-S | Non-dominant (Agricultural production, Tourism & leisure) | Huili | A1I2H2M1E2 | Agricultural production, Industrial development, Habitat service, Mineral resources supply, Ecosystem services |
Renhe | A2I2M1 | Agricultural production, Industrial development, Mineral resources supply, | Yanyuan | A2M2E1 | Agricultural production, Mineral resources supply, Ecosystem services |
De-chang | A2M2 | Agricultural production, Mineral resource supply | Muli | M2E1 | Mineral resources supply, Ecosystem services |
Function | 4 Categories | 5 Categories | 6 Categories | 7 Categories | 8 Categories | 9 Categories | 10 Categories | 11 Categories |
---|---|---|---|---|---|---|---|---|
F Test | F Test | F Test | F Test | F Test | F Test | F Test | F Test | |
Agricultural production | 0.008 | 0.010 | 0.017 | 0.004 | 0.005 | 0.009 | 0.001 | 0.001 |
Industrial development | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
Habitat service | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Tourism & leisure | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Mineral resources supply | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Ecosystem services | 0.000 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.002 |
Multifunctional Zone | Evaluation Unit |
---|---|
Industrial development-Habitat service | Dongqu, Xiqu, Leibo |
Agricultural production-Industrial development-Habitat service-Mineral resources supply | Miyi, Renhe, Huili, Yuexi, Ningnan |
Agricultural production-Mineral resources supply-Ecosystem services | Mianning, Huidong, Dechang |
Non-dominant (Agricultural Producing) | Butuo, Puge, Xide, Meigu, Zhaojue |
Mineral resources supply-Ecosystem services | Yanyuan, Muli, Jinyang, Ganluo |
Agricultural production-Industrial development-Habitat service-Tourism & leisure -Mineral resources supply | Xichang |
Industrial development-Habitat service-Tourism & leisure-Mineral resources supply-Ecosystem services | Yanbian |
Zonation of the DPEZ | Number of Evaluation Units | Corresponding Functions in the IMFZS | Number of Consistent Evaluation Units |
---|---|---|---|
National Strategic Resources Innovation Pilot | 11 | Mineral resources supply or Industrial development | 11 |
National Ecological Function Zone of Chuan-Dian Forest & Biodiversity | 2 | Ecosystem services | 2 |
Ecological Function Zone for Soil & Water Conservation and Biodiversity of Daxiao Liangshan | 10 | Ecosystem services | 10 |
Major Planting Base | 11 | Agricultural production | 8 |
Health & Wellness Industry of Sunshine | 10 | Habitat or Tourism & leisure | 8 |
Zonation of the MFOZ | Corresponding Functions in the IMFZS | No. of Consistent Evaluation Units | ||
---|---|---|---|---|
Name | Level | No. of Evaluation Units | ||
Development-prioritized | Provincial | 7 | Habitat service, or Industrial development, or Mineral resource supply | 7 |
Major Grain Producing | National | 3 | Agricultural production | 2 |
Key Ecological Function | Provincial | 10 | Ecosystem services | 10 |
National | 2 | Ecosystem services | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, C.; Chang, F. A New Approach for Multifunctional Zoning of Territorial Space: The Panxi Area of the Upper Yangtze River in China Case Study. Sustainability 2019, 11, 2325. https://doi.org/10.3390/su11082325
Zhang J, Liu C, Chang F. A New Approach for Multifunctional Zoning of Territorial Space: The Panxi Area of the Upper Yangtze River in China Case Study. Sustainability. 2019; 11(8):2325. https://doi.org/10.3390/su11082325
Chicago/Turabian StyleZhang, Jifei, Chunyan Liu, and Fei Chang. 2019. "A New Approach for Multifunctional Zoning of Territorial Space: The Panxi Area of the Upper Yangtze River in China Case Study" Sustainability 11, no. 8: 2325. https://doi.org/10.3390/su11082325
APA StyleZhang, J., Liu, C., & Chang, F. (2019). A New Approach for Multifunctional Zoning of Territorial Space: The Panxi Area of the Upper Yangtze River in China Case Study. Sustainability, 11(8), 2325. https://doi.org/10.3390/su11082325