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Abstract: Integrated land use and transportation models are helpful when policy, planning, or
environment impacts are being evaluated, but the strengths and limitations in these models must be
optimized. To optimize the ITLUP (Integrated Transportation and Land-Use Planning) model and
apply it in small- and medium-sized cities in China, this study considered the constraints of land use
intensity and introduced two critical indicators (the maximum number of households and maximum
employment) to characterize the land capacity and improve the practicality of the model. Then,
Monte Carlo simulation analysis was used to analyze the uncertainty factors using the coefficient of
variation (C.V) and standardized regression coefficient (SRC). The results suggest that the maximum
future employment and households may exceed the land limit and must be adjusted to a new zone,
and the model operation simulation was closer to the actual situation of small- and medium-sized
cities. The C.V value of the model output showed the increasing trend of the uncertainty of the
model output variable over time, especially affected by DRAM model parameters, traffic demand
forecasting model parameters and the peak hourly flow ratio. Such findings are meaningful for
policymakers, planners, and others when the ITLUP model is used to anticipate the zonal employment
and household allocation and to further explore the interaction between land use and transportation.

Keywords: small- and medium-sized cities; integrated land use and transport; ITLUP model;
optimization; maximum number of households; maximum employment

1. Introduction

China is now in a rapid development period of motorization and urbanization, and green, smart,
safe and sustainable urban development is an inevitable trend. Land is the carrier of all human
production and life; its structure, mode and dynamic changes affect the operation of the entire city.
Land carrying capacity, land use intensification, and land structure complexity are all issues that
need to be considered in city planning around land usage. Transportation is the skeleton of urban
operation and also profoundly affects the cities’ sustainable development. The integration of land use
and transportation development is the focus of urban planners.

The interaction between land use patterns and travel behaviors has been recognized for decades
in the literature [1]. The general relationship between transportation and land-use may be defined in
terms of three primary components: economic activity (i.e., employment), demographic activity and
transportation facilities [2]. Understanding the interactions and mechanisms is of great significance
to build well-organized urban space organizations and alleviate urban transport problems. ITLUMs
(Integrated Transport-Land Use Models) enable analysts to anticipate the system response to new
policies, preference functions, economic conditions and other scenarios.
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Several ITLUMs have been applied to date and are publicly available in practice [3–12]. Lowry’s
Model of Metropolis is the first attempt to implement an urban land use traffic feedback cycle in
the operating model, which is the basis for most subsequent research and has stimulated many
increasingly complex modeling methods [3]. Putman found that nonlinear mathematical programming
formulations of a combined model of the location, trip-making, and trip assignment can effectively
avoid model convergence problem [13,14]. The MEPLAN framework was most applicable in situations
where consistent land use and transport predictions and evaluations are required due to its various
strengths, especially where there are relatively few observed data points [15]. Kockelman et al.
explored a random-utility-based multiregional IO (RUBMRIO) model based on spatial IO theories
and applied it in Texas, which provides a valuable set of relationships and can be used to predict the
trade flows, location choices/production levels, and relative market prices [16]. SLEUTH (Slope, Land
Use, Excluded, Urban, Transportation and Hillshade model) is a computational simulation model
that uses adaptive cellular automata to simulate the way cities grow and change their surrounding
land uses, while the analysis process usually lack combination with the local city development
characteristics [10,17,18]. However, based on the demographic, policy, economic and market changes,
the strengths and limitations of these models are present in the context of data requirements, model
calibration, result presentation, etc. [19–23]. In addition, the spatial resolution of present models is still
too coarse to model neighborhood scale policies and effects [24].

ITLUP (Integrated Transportation and Land-Use Planning) and UrbanSIM (Urban Simulation
Model) are two typical procedures to explore the relationship between transportation and land
use [25,26] and have been widely used in practice [27]. These two land use models were compared
based on data requirements, calibration, and result presentation [1]. The results show that the highly
aggregate data required for ITLUP (which seeks to simulate the development of individual parcels
and the decisions of individual households and firms [9]) are relatively easy to gather, whereas the
disaggregate data required for UrbanSim may take months or even a few years to refine to an acceptable
level of reliability [1,24] and are more extensive [28]. The Bayesian Melding calibration method under
development by the UrbanSim team provides great convenience to users, who otherwise must rely on
statistical software and have expert knowledge of the estimation process. However, it requires two or
more years of data, which implies that full calibration may not be possible. The data required for the
ITLUP model calibration are more readily available. There are numerous options to present the results
for UrbanSim, whereas the ITLUP model is very limited in its presentation capabilities. In general,
ITLUP is a simple model with less flexibility, and UrbanSim is a complex model with more flexibility.
The data required for ITLUP are easier and less expensive to gather than that for UrbanSim.

There are great differences in the status quo of land use and transportation development in
China’s big as well as small- and medium-sized cities. At the same time, there are many restrictions
on the development of small- and medium-sized cities (here, this usually refers to counties, which
are the third part of the administrative division of China; there are 2876 counties in China in 2018) in
China. In view of the limitations (fewer available statistical data) of small- and medium-sized cities
in China that may exist in the rapid urbanization process and Duthie’s comparison results of ITLUP
and UrbanSim in data requirements and model calibration, this study selected the ITLUP model to
analyze the relationship between land use and transportation systems. Moreover, from the perspective
of functional positioning and sustainable development of small- and medium-sized cities in China, it
is not necessary to carry out high-intensity urban land development. Therefore, this study regarded
environmental capacity as an important factor in the planning of land use in small- and medium-sized
cities and introduced two indicators (maximum number of households and maximum employment) to
improve the practicality. In addition, considering the dynamics and complexity of urban planning
and traffic planning, policy may have changes over time, which in turn affects the input variables and
has an uncertain effect on the output of the model. Thus, this study explored the uncertainty of input
variables and parameters. The above forms the main component of Section 2, which is followed by a
description of the results, a discussion, and the conclusion.
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2. Methods and Data

Compared with big cities, the level of land intensification in small- and medium-sized cities in
China is generally low. Furthermore, the transportation system in small- and medium-sized cities in
China has several main characteristics: usually lower per capita road area (not always); insufficient
public transportation system in route scale, density and operating kilometers; lack of consistency
between urban land use and transportation systems; and disjointed or semi-detached land use planning
and traffic planning [27].

Considering the traffic development situation and the difficulty in obtaining enough data in
small- and medium-sized cities in China, and comprehensive consideration of model data, calibration
methods and prediction results, we chose the ITLUP model for research. The ITLUP model mainly
includes a land use model and a traffic demand forecast model. The land use model consists of EMPAL
(Employment Allocation Model) and DRAM (Disaggregate Residential Allocation Model) [29]. The
ITLUP model provides an interactive feedback mechanism for EMPAL, DRAM and traffic demand
forecast model.

2.1. Components of the ITLUP Model

2.1.1. Land Use Model and Its Application

(1) EMPAL
EMPAL (Employment Allocation Model) is applied to predict the future zonal distribution of

employment. Its formulation includes two parts: the zonal employment growth of a specific zone and
the employment attracted from other zones. The formulation is shown in Equation (1):

E j,t = (
eδ

1 + eδ
)rh

t

∑
i

Hi,t−1

 W j,t−1eβpcp
ji,t+βopcop

ji,t∑
k

Wk,t−1eβpcki,t+βopcki,t

+
( 1

1 + eδ

)
re

tE j,t−1 (1)

where the term on the left side of the plus sign denotes the employment attracted to zone j in time
period t; the term on the right side of the plus sign refers to the employment growth of zone j in time
period t; E j,t is the future distribution of employment in zone j in time period t; Hi,t−1 is the zonal
households of all types in zone i in the previous time period t − 1; W j,t−1 is the zonal employment
attraction function in the previous time period t − 1; cp

ji,t is the peak travel time from zone j to zone i in

time period t; cop
ji,t is the off-peak travel time from zone j to zone i in time period t − 1; rh

t is the ratio of
total employment in time period t to total number of households in previous time period t − 1 of the
entire area; re

t is the ratio of total employment in time period t to total employment in previous time
period t − 1 of the entire area; and δ, βp, and βop are empirical parameters.

The zonal employment attraction function W j,t−1 is expressed as Equation (2):

W j,t−1 =
(
E j,t−1

)δ1
×

(
L j

)δ2 (2)

where is area of zone L j; and δ1 and δ2 are empirical parameters.
Due to the characteristics (e.g., mainly labor-intensive urban industry and relatively low proportion

of the service industry and its land use) of the small- and medium-sized cities in China, this study
divided jobs into three types: basic, commercial and service employment.

(2) DRAM
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DRAM (Disaggregate Residential Allocation Model) is applied to predict the future zonal
distribution of households and formulated as shown in Equation (3):

N̂i,t =
∑

j

E j,trt


Wi,te

βpcp
ij,t+βopcop

i j,t∑
k

Wk,te
βpcp

kj,t+βopcop
kj,t

 (3)

where the part in the bracket denotes the zonal household attraction; N̂i,t is the household forecast of
zone i in time period t; Wi,t is the zonal household attraction function in time period t; and rt is the
ratio of total household to total employment in time period t of the entire area.

The zonal household attraction function Wi,t is expressed in Equation (4):

Wi,t = (Li,t)

θ
n∏

k=1
(1+

Nk
i,t

n∑
k=1

Nk
i,t

)

γk

(4)

where Li,t is the area of zone i in time period t; and θ and γk are empirical parameters.
This study divided the households into three types according to their annual income: low, medium

and high income.

2.1.2. Travel Demand Model and Its Application

Travel demand forecasting in the ITLUP model is based on the traditional four-step model:

(1) Trip generation analysis: Estimate the number of trips that a person or vehicle makes in a
particular location (usually a zone). It is assumed that the trip production is a linear function of
the number of households, and the trip attraction is linear with employments.

(2) Double-constraint gravity model: Predict trip distribution [29].
(3) Multinomial Logit Model: Predict the sharing rate of different traffic modes. Then, the trip

distribution is multiplied with the sharing rate to obtain the trip distribution of different
traffic modes. The distribution of peak/off-peak travel hours is calculated according to the trip
distribution rates of peak/off-peak travel hours.

(4) SUE (Stochastic User-Optimized Equilibrium) in TransCAD: Assign the trips of peak travel hours
and off-peak hours in the road network [29]. The travel time estimation is based on the BPR
function, and the road network is mainly divided into three types.

2.2. Optimization Method of the ITLUP Model

Through careful analysis and research on the ITLUP model, it can be found that the model
has certain limitations: (1) the model does not consider land use intensity constraints, it allocates
employment and families to the area even if they do not have enough capacity; (2) the EMPAL
and DRAM models are applied sequentially, ignoring the interaction between employment and
household; and (3) the ITLUP model does not consider the impact of land prices and commodity
trade on employment and household distribution. This limitation will have a greater impact on the
application of the model in large cities, while the impact is small in small- and medium-sized cities in
China [22]. Therefore, for small- and medium-sized cities, the limitations are mainly reflected in the
lack of consideration of urban land capacity. Thus, this study introduced two indicators to illustrate
the environmental capacity: maximum number of households and maximum employment.

(1) Maximum number of households
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The maximum number of households is the number of households (assume average three persons
per household) in a residential area when the residential land per capita reaches the minimum
acceptable range. It is formulated as Equation (5):

Hmax
i =

1
3
×

Ri

Rmin
aver

(5)

where Hmax
i is the maximum number of households that zone i can accommodate; Ri is the total area of

zonal residential land; and Rmin
aver is the minimum acceptable residential land per capita.

(2) Maximum employment
Employment can be divided into basic, commercial and service employment. We analyzed the

maximum employment quantity.
The zonal maximum employment on industrial land is the number of employees when the per

capita land area reaches the minimum value. It is expressed as Equation (6):

Bmax
i =

Ii

Imin
aver

(6)

where Bmax
i is the zonal maximum basic employment; Ii is the total industrial land area in zone i; and

Imin
aver is the minimum industrial land per capita.

The population of different public facilities consists of two parts: employment and customers.
Thus, the zonal maximum employment is equal to the population (when the per capita land area is
minimal) multiplied by the ratio of employment to trip attraction. The maximum commercial and
service employment are expressed as Equations (7) and (8), respectively:

Cmax
i =

Ci

Cmin
aver

rc
i (7)

where Cmax
i is the zonal maximum commercial employment; Ci is the total commercial land area in

zone i; Cmin
aver is the minimum commercial land per capita (it can be defined by Urban public facilities

planning norms GB50442-2008); and rc
i is the ratio of the commercial employment to trip attraction of

each zone.

Smax
i =

3∑
z=1

Oiz × riz

Oz min
aver

(8)

where Smax
i is the zonal maximum of other service employment; Oiz is the total land area of type z

in zone i (z = 1, 2, 3, where 1 indicates administrative land, 2 indicates medical land, and 3 indicates
education land); OZmin

aver is the minimum land area per capita of type z; and riz is the ratio of type-z
employment to trip attraction in zone i.

By studying the application and optimization methods of the ITLUP model, the basic frame of the
improved ITLUP model is shown in Figure 1.
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2.3. Uncertainty Analysis of the ITLUP Model

2.3.1. Quantitative Method of Uncertainty Factors of the ITLUP Model

(1) Determining the probability distribution of the input variables and parameters
According to the empirical and historical data and considering the input variables and parameter

characteristics of the ITLUP model, we selected the suitable probability distribution for the input
variables and parameters. In each part of the prediction model, many variables can only change in the
nonnegative range. To avoid the negative number in the process of generating random numbers, we
used the lognormal distributions to represent the input variables and parameters [30]. We chose the
multivariate log-normal distribution to represent the probability distribution of the input variables
and parameters of the ITLUP model.

The log-normal distribution probability density function is shown with location parameter µInt

and shape parameter σInt as follows:

f (t) =
1

√
2πσInt

exp

−1
2

(
Int− µInt

σInt

)2 (9)

whereµInt is the mean value of the location parameter after the logarithm, which is called the logarithmic
mean; and σInt is the shape after the logarithm of the probability density curve, which is called the
logarithmic standard deviation.

The coefficient of variation (C.V) is formulated as Equation (10):

C.V =

√
D((t)
E(t)

=

√(
eσ

2
Int − 1

)
exp

(
2µInt + σ2

Int

)
exp

(
µInt +

1
2σ

2
Int

) =

√
eσ

2
Int − 1 (10)

(2) Determining the C.V of the input variables and parameters
The C.V was chosen as the expression variable for the uncertainty of the input variables and

parameters. In general, the C.V of some input variables cannot be directly determined. According to
the study of Kockelman and related scholars [31], the C.V of an input value is assumed to be 0.3. Thus,
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we could calculate their standard deviation by multiplying the mean model inputs by the coefficient
of variation.

(3) Simulation analysis
The simulation analysis was conducted by @Risk (Monte Carlo simulation software). Monte Carlo

simulation software can directly generate random samples according to the probability distribution
of input variables and the parameters. It can also calculate the output value and distribution of the
model in the random samples.

2.3.2. Uncertainty Analysis Method of the ITLUP Model

The multivariate sensitivity analysis method was used to analyze the uncertainty of the ITLUP
model. Based on the linear regression of the input and output, the effect of the model input variables
and parameters on the uncertainty of the output variables was analyzed.

(1) Multiple linear regression analysis
Multiple linear regression analysis is a statistical analysis that studies the interrelationship between

a dependent variable and multiple independent variables. It assumes that there are P independent
variables (X1, X2, . . . , XP,) and one dependent variable Y. The linear regression function of these
variables is shown as Equation (11):

Y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε (11)

where β0, β1, . . . , βp are regression coefficients; and ε is the error term of the mormal distribution N
(0, σ2).

In the uncertainty analysis of the model, a specific output variable can be set as a dependent
variable, and the input variables and parameters can be set as independent variables. Then, it combines
with Monte Carlo method to calculate the distribution results. The estimated value of the regression
coefficients (β0, β1, . . . , βp) can be obtained using the SPSS software.

(2) Regression coefficient significance test
Using the SPSS software to test the significance of the regression coefficient, the T value and

corresponding P value of β j can be obtained. If P is less than the significant level α (generally 0.05), it
implies that β j is not equal to zero. In other words, the corresponding variable x j significantly affects
the model output variables. If P is greater than 0.05, the corresponding variable x j will not affect the
model output.

(3) Sensitivity analysis
After performing the linear regression analysis and significance test on the input variables for the

output variables, we calculated the standardized regression coefficients (SRCi) using Equation (12):

SRCi =
βi × σi

σy
(12)

where SRCi is the standardized regression coefficient; βi is a regression coefficient; σi is the standard
deviation of the independent variable; and σy is the standard deviation of the dependent variable.

2.4. Data Acquisition

This study considered the main urban area of Huangling County (in Shaanxi province, China)
as an example to run the whole optimization method. Referring to the document of “Huangling
County Urban Comprehensive Traffic Planning 2014–2030”, the main urban area was divided into
nine traffic zones, where Zones 1–7 are the inner zones, and Zones 8 and 9 are the external zones. The
population of the main urban area is 35,892. Current zonal land use data, zonal number of household
and employment, households type due to household income, employment type, peak and off-peak
travel time between zones, travel time and travel expenses of various modes of transportation, annual
average growth rate of employment and population were needed to operate this model.



Sustainability 2019, 11, 2555 8 of 14

The current zonal land use data of each internal traffic zone are shown in Table 1. The current
employment and household distribution are shown in Table 2.

Table 1. Current status of the classified land area of each zone (10,000 m2).

Zone Residential
Land

Commercial
Land

Administrative
Land

Medical &
Health Land

Education
Land

1 6.11 0.75 0 0 0
2 4.25 1.30 0 0 0
3 8.62 3.11 0 0 0
4 17.19 0 0 0 0
5 8.71 2.48 0 0 0.92
6 8.07 4.66 1.91 1.31 1.25
7 7.51 0 0 0 0

Table 2. Current status of the classified households and employment in the zone.

Zone Commercial
Employment

Other Service
Employment

Low-Income
Family

Medium-Income
Family

High-Income
Family

1 307 0 151 333 121
2 553 0 105 231 84
3 1439 0 213 469 171
4 0 0 425 935 340
5 1149 234 215 474 172
6 2073 5242 200 439 160
7 0 0 186 409 149

Note: According to the household income, the households were divided into three types: low income (annual
income less than ¥30,000), medium income (annual income ¥30,000–70,000) and high income (annual income above
¥70,000).

3. Results and Discussion

3.1. Prediction Results of the Model

Based on the survey data and Equations (5)–(8), the maximum allowable number of households
and employment in each zone were calculated, and the results are shown in Tables A1 and A2
(see Appendix A).

The model parameters were calibrated by the data from 2012 and 2014. Assuming that the input
C.V was 0.3, the predicted results of all types of employment were obtained. The results are shown in
Appendix A.

The prediction results show that, under the effect of the model input and parameter uncertainty,
the maximum employment and households in the main urban areas of Huangling County will exceed
the land capacity limit index by 2030. The main results are as follows: (1) The whole maximum
employment of the largest commercial employment and other services in the main urban areas exceed
the land bearing limit (17,980 = 9026 + 8954), which is expected to reach 2967 (1489 + 1478).; (2) The
maximum employment of other services exceeds the land bearing limit (8954), which is expected to
reach 1478 (see Table A1 in Appendix A). (3) The maximum number of households exceeds the land
limit (9782), which is expected to reach 1873 (see Table A2 in Appendix A). (4) The C.V value of the
commercial and other service employment (excluding the other service employment in Zone 6) and the
number of households in each zone increase compared with the input coefficient variation coefficient
(0.3). Therefore, according to the established optimization model, Huangling County must build a new
Zone 10 to satisfy the demand growth of the city in terms of population and employment.

As shown in Table A3 in Appendix A, the maximum traffic volume on all roads during peak
hours reaches 90% of capacity. In addition, the V/C ratio during peak travel time is 0.9–1.0. Thus, the
LOS of the road is E, indicating that the traffic flow is in an unstable state and will result in significant
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time delays. Therefore, in the follow-up urban planning work, a series of adjustments to the urban
space layout and road traffic conditions is necessary. For instance, from the perspective of green
transportation and sustainable development, planners can consider optimizing land use mix, urban
residential space design, and traffic structure to improve accessibility and reduce carbon emissions.

3.2. Prediction Results of Uncertainty Analysis

The multivariate sensitivity analysis was used to analyze the effect of the input changes on the
uncertainty of the output, and the standardized regression coefficients were calculated. The statistical
distribution of the optimized employment and household after Monte Carlo simulation is shown in
Figure 2. The results of the sensitivity analysis are shown in Tables A4 and A5 in Appendix B.

Sustainability 2019, 11, x FOR PEER REVIEW 9 of 14 

and the number of households in each zone increase compared with the input coefficient variation 
coefficient (0.3). Therefore, according to the established optimization model, Huangling County must 
build a new Zone 10 to satisfy the demand growth of the city in terms of population and employment. 

As shown in Table A3 in Appendix A, the maximum traffic volume on all roads during peak 
hours reaches 90% of capacity. In addition, the V/C ratio during peak travel time is 0.9–1.0. Thus, the 
LOS of the road is E, indicating that the traffic flow is in an unstable state and will result in significant 
time delays. Therefore, in the follow-up urban planning work, a series of adjustments to the urban 
space layout and road traffic conditions is necessary. For instance, from the perspective of green 
transportation and sustainable development, planners can consider optimizing land use mix, urban 
residential space design, and traffic structure to improve accessibility and reduce carbon emissions. 

3.2. Prediction Results of Uncertainty Analysis 

The multivariate sensitivity analysis was used to analyze the effect of the input changes on the 
uncertainty of the output, and the standardized regression coefficients were calculated. The statistical 
distribution of the optimized employment and household after Monte Carlo simulation is shown in 
Figure 2. The results of the sensitivity analysis are shown in Tables A4 and A5 in Appendix B 

 
Figure 2. Optimized statistical distribution of employment and household. 

The sensitivity analysis results show three points. (1) The input with a large impact on the 
uncertainty of urban employment included the DRAM model parameters. The most influential 
factors were 𝛾ଷெ (SRC = 3.112), 𝛾ଶு (SRC = 0.753), and 𝛽ு (SRC = 0.387). In other words, when the 
level of uncertainty in the input parameters of the DRAM model decreased, the level of uncertainty 
in the forecast of urban employment also decreased. (2) The input with a large impact on the 
uncertainty of the household volume included the traffic demand forecasting model parameters, 
where the most influential factors were 𝑏ଶெ  (SRC = 0.159) and 𝛽ଵ (SRC = 0.191). In other words, 
when the level of uncertainty in the parameters of the traffic demand forecasting model decreased, 
the uncertainty of the model prediction of the household volume also decreased. (3) The uncertainty 
of the peak hour flow of various roads was mainly affected by the peak hourly flow ratio μ. The SRC 
(0.211) of arterial road μ was the largest, which indicated that it greatly affected the uncertainty of 
the arterial road flow. The off-peak hour flows were mainly affected by 𝑟 (SRC = 0.231/0.221/0.227), 𝑐ଵ and traffic demand parameters 𝑐ଵ (SRC = 0.179/0.172/0.177) and 𝛽  (K = 1/2/3, corresponding 
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The sensitivity analysis results show three points. (1) The input with a large impact on the
uncertainty of urban employment included the DRAM model parameters. The most influential factors
were γM

3 (SRC = 3.112), γH
2 (SRC = 0.753), and βH

P (SRC = 0.387). In other words, when the level of
uncertainty in the input parameters of the DRAM model decreased, the level of uncertainty in the
forecast of urban employment also decreased. (2) The input with a large impact on the uncertainty of
the household volume included the traffic demand forecasting model parameters, where the most
influential factors were bM

2 (SRC = 0.159) and β1 (SRC = 0.191). In other words, when the level of
uncertainty in the parameters of the traffic demand forecasting model decreased, the uncertainty of
the model prediction of the household volume also decreased. (3) The uncertainty of the peak hour
flow of various roads was mainly affected by the peak hourly flow ratio µ. The SRC (0.211) of arterial
road µ was the largest, which indicated that it greatly affected the uncertainty of the arterial road flow.
The off-peak hour flows were mainly affected by rp (SRC = 0.231/0.221/0.227), cc

1 and traffic demand
parameters cc

1 (SRC = 0.179/0.172/0.177) and βk
link (K = 1/2/3, corresponding SRC1 = 0.199, SRC2 = 0.190,

SRC3 = 0.196). In other words, the uncertainty of the predicted value of the peak hourly flow of each
type of road decreased with the decrease in uncertainty of the peak hour flow rate. The uncertainty
of the forecast of the off-peak hour flow decreased when the uncertainties of the average population
growth rate (rp) and traffic demand parameters decreased (cc

1 and βk
link).
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3.3. Analysis of the Uncertainty Propagation Over Time

The C.V of the output was used to study the evolution of the model uncertainty with time. The
variation trend of C.V over time is shown in Figure 3.
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The C.V of the output variables of the model gradually increased with time. For 2030, the
uncertainty levels of employment and households were 35% and 44.5%, respectively. In the future
planning process, urban planners should pay more attention to the layout structure of residential areas
and pay attention to the flexibility of medium and long-term residential design. The uncertainty levels
of the traffic V/C ratios at various road peak times were: arterial road was 29.4%, secondary trunk road
was 27.7%, and branch road was 26.9%. Thus, decision makers should pay attention to the balance of
different grades of road layout when planning traffic.

4. Conclusions

Based on the characteristics of land use and transportation systems in small- and medium-sized
cities, this study selected the ITLUP model as the method and studied its application. By analyzing
the limitations of the ITLUP model in application and the development characteristics of small- and
medium-sized cities, we introduced two indicators: maximum number of households and maximum
employment, to optimize the ITLUP model. Then, by analyzing the sources of uncertainty, the
meanings of the model input variables and parameter uncertainties and their effect on the model were
expounded. The analysis method of uncertainty of the ITLUP model was established. The effects of
the model input variables and parameter changes on the uncertainty of output and evolution of the
uncertainty of model predictions over time were studied. The results show that:
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(1) Through the introduction of two characteristic indicators, the traditional ITLUP model was
optimized for employment and family allocation, and the model operation simulation was closer
to the actual situation of small- and medium-sized cities. The prediction results show that the
county needs to build a new zone to satisfy the demand growth of the city when zonal land capacity
is considered. Thus, it is important to coordinate the relationship between urban development
and resource and environment carrying capacity. Planners may analyze the future urban land use
development based on the forecast results, and carry out effective resource allocation to provide
reference for land structure optimization, green traffic and environmental protection.

(2) The uncertainty of the model output variable gradually increased with time (The C.V value of the
model output shows the increasing trend over time). Therefore, when using this model to predict
the development of small- and medium-sized cities, it is necessary to ensure the accuracy of these
variables, which are DRAM model parameters, traffic demand forecasting model parameters and
the peak hourly flow ratio (see Section 3.2). At the same time, the model had great uncertainty for
long-term planning, and the prediction for short- and medium-term was more accurate.

The findings of this study emphasize the importance of ITLUMs in the study of integration
development of Land use and transportation [12,32,33]. In general, by considering land use restrictions,
the introduction of maximum number of households and maximum employment can effectively
alleviate the inconsistency between the construction of transportation systems and the pace of urban
economic development in the urban development process. Using the optimized model, urban planners
can leave a buffer for the short- and medium-term urban construction by measuring the maximum
land use restrictions, which can effectively avoid the traffic congestion caused by land tension in future
urban developments. This study enriches the practical application in small- and medium-sized cities
in China and illustrates the applicability of the ITLUP model, which takes land carrying capacity into
account in small- and medium-sized cities. It can also be a reference for future development.

However, the limitations in this study should be recognized. First, the example in the study did not
consider the mode of public transportation. The ITLUP model should be applied to the development
forecast of other small- and medium-sized cities, and the effect of public transportation development
trend and model uncertainty on it should be applied to make the application of the model more
extensive. Second, the two characteristic indicators for model optimization were mainly calculated
based on the corresponding specifications, but different cities have different land use situations, and
their values may vary. Therefore, it is necessary to further analyze and research in conjunction with
the actual situation of specific cities to determine the value of the characteristic indicators. Third, in
the uncertainty analysis of the model, to reflect the model input variables and parameter changes,
their coefficient of variation was set. However, this is relatively simplistic, and might not be accurate.
Therefore, it is necessary to further study the value of the coefficient of variation to more accurately
represent the uncertainty of the model input.
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Appendix A Prediction Results of the Optimized ITLUP Model

Table A1. Zonal distribution of employment in 2030.

Zone Type Min Mean
Value Max Standard

Deviation
5% Quantile

Value
95% Quantile

Value C.V

1 C 344 426 502 167 361 480 0.393
2 C 618 764 904 242 648 862 0.316
3 C 1611 1994 2353 810 1692 2250 0.406

5
C 1286 1591 1878 667 1350 1795 0.419
S 263 325 383 123 276 367 0.379

6
C 2316 2866 3389 943 2432 3233 0.329
S 5858 7249 8571 2157 6151 8178 0.298

Total 12,289 15,207 17,980 5323 12,903 17,156 0.350

10
C 1014 1254 1489 468 1064 1415 0.373
S 1006 1245 1478 422 1056 1404 0.339

NOTE: C, Commercial; S, Service. Total (17,980) = Total C (9026) + Total S (8954). The bold values, the maximum
allowable number of employment in each zone.

Table A2. Zonal distribution of households in 2030.

Zone Minimum
Value

Mean
Value

Maximal
Value

Standard
Deviation

5% Quantile
Value

95% Quantile
Value C.V

1 692 857 989 408 727 967 0.476
2 480 594 687 227 504 670 0.383
3 976 1207 1395 594 1024 1362 0.492
4 1942 2403 2781 994 2039 2711 0.414
5 986 1220 1409 619 1035 1376 0.507
6 912 1128 1306 449 957 1273 0.398
7 850 1052 1215 485 893 1187 0.461

Total 6830 8452 9782 3761 7171 9534 0.445
10 1275 1578 1873 705 1339 1780 0.447

NOTE: The bold values, the maximum allowable number of households in each zone.

Table A3. Distribution of the road V/C ratio in the main urban area in 2030.

Time Type Min Mean Max Standard
Deviation

5% Quantile
Value

95% Quantile
Value C.V

Peak
travel
time

1 0.68 0.84 1.00 0.24 0.71 0.95 0.289
2 0.64 0.79 0.94 0.22 0.67 0.89 0.272
3 0.62 0.77 0.91 0.20 0.65 0.87 0.264

Off-peak
travel
time

1 0.37 0.46 0.55 0.14 0.39 0.52 0.294
2 0.35 0.44 0.52 0.12 0.37 0.49 0.277
3 0.34 0.42 0.50 0.11 0.36 0.48 0.269

NOTE: 1, Arterial road; 2, Secondary trunk road; 3, Branch road.
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Appendix B Prediction Results of Uncertainty Analysis

Table A4. Results of the sensitivity analysis of employment and household.

Input
Variable

Total Employment Total Family Input
Variable

Total Employment Total Family

SRC p SRC p SRC p SRC p

βp
C −0.285 0.001 - - γ3

H −0.766 0.001 - -
δ1

C 0.224 0.013 - - βp
H 0.387 0.038 - -

βop
S - - −0.167 0.046 b2

M - - 0.159 0.028
γ1

M −3.326 0.000 - - c1
C 0.212 0.001 - -

γ2
M 0.212 0.026 - - α1 - - −0.221 0.025

γ3
M 3.112 0.000 - - β1 - - 0.191 0.045

θH 0.242 0.025 - - α2 - - −0.249 0.012
γ2

H 0.753 0.001 - - α2 0.158 0.021 - -

NOTE: C, Commercial; S, Service; M, Medium; H, High; c1
C, α1, β1, α2 and α2 are the traffic demand

forecasting parameters.

Table A5. Results of the sensitivity analysis of all types of road V/C ratio.

Input
Variable

Type of Road

Arterial Road Secondary Trunk Road Branch Road

Peak Travel
Time

Off-Peak
Travel Time

Peak Travel
Time

Off-Peak
Travel Time

Peak Travel
Time

Off-Peak
Travel Time

SRC p SRC p SRC p SRC p SRC p SRC p

rE - - 0.138 0.049 - - 0.132 0.050 - - 0.136 0.048
rP - - 0.231 0.001 - - 0.221 0.001 - - 0.227 0.001

c1
C - - 0.179 0.013 - - 0.172 0.012 - - 0.177 0.014
µ 0.211 0.000 - - 0.202 0.000 - - 0.208 0.000 - -
β1

link - - 0.199 0.006 - - - - - - - -
β2

link - - - - - - 0.190 0.008 - - - -
β3

link - - - - - - - - - - 0.196 0.009

NOTE: C, Commercial; rE is the average employment growth rate; rP is the average population growth rate; µ is the
peak hourly flow ratio; β1

link, β2
link and β3

link are the traffic demand forecasting parameters.
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