Mathematical Competence Scale (MCS) for Primary School: The Psychometric Properties and the Validation of an Instrument to Enhance the Sustainability of Talents Development through the Numeracy Skills Assessment
Abstract
:1. Introduction
1.1. Mathematical Competence and Talents Sustainability Development
1.2. Assessing Mathematical Competence: The Use of Standardised Test
1.3. The MCS Theoretical Framework
1.4. Objectives
2. Materials and Methods
2.1. Context of the Study
2.2. Scale Development
2.3. Participants
2.4. Data Analysis: Item Response Theory
2.5. Procedure
3. Results
Gender Effect and Correlation with Students Performance
4. Discussion
4.1. Developing Quality Education with the Mathematical Competence Scale
4.2. Strengths, Limitations and Future Trends
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Research Council. Mathematics in Early Childhood: Learning Paths toward Excellence and Equity; National Academy Press: Washington, DC, USA, 2009. [Google Scholar]
- Di Fabio, A. The psychology of sustainability and sustainable development for well-being in organizations. Front. Psychol. 2017, 8, 1534. [Google Scholar] [CrossRef] [PubMed]
- Di Fabio, A. Positive Healthy Organizations: Promoting well-being, meaningfulness, and sustainability in organizations. Front. Psychol. 2017, 8, 1938. [Google Scholar] [CrossRef] [PubMed]
- Di Fabio, A.; Rosen, M.A. Opening the Black Box of Psychological Processes in the Science of Sustainable Development: A New Frontier. Eur. J. Sustain. Dev. Res. 2018, 2, 47. [Google Scholar] [CrossRef]
- Di Fabio, A.; Kenny, M.E. Connectedness to nature, personality traits and empathy from a sustainability perspective. Curr. Psychol. 2018, 1–12. [Google Scholar] [CrossRef]
- Jappelli, T.; Padula, M. Investment in financial literacy and saving decisions. J. Bank. Financ. 2013, 37, 2779–2792. [Google Scholar] [CrossRef]
- Kennedy, T.J.; Odell, M.R.L. Engaging Students in STEM Education. Sci. Educ. Int. 2014, 25, 246–258. [Google Scholar]
- OECD. PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Nguyen, T.; Watts, T.W.; Duncan, G.J.; Clements, D.H.; Sarama, J.S.; Wolfe, C.; Spitler, M.E. Which preschool mathematics competencies are most predictive of fifth grade achievement? Early Child. Res. Q. 2016, 36, 550–560. [Google Scholar] [CrossRef]
- Salekhova, L.L.; Tuktamyshov, N.K.; Zaripova, R.R.; Salakhov, R.F. Definition of Development Level of Communicative Features of Mathematical Speech of Bilingual Students. Life Sci. J. 2014, 11, 524–526. [Google Scholar]
- Alpyssov, A.; Mukanova, Z.; Kireyeva, A.; Sakenov, J.; Kervenev, K. Development of Intellectual Activity in Solving Exponential Inequalities. Int. J. Environ. Sci. Educ. 2016, 11, 6671–6686. [Google Scholar]
- Liu, X.; Gao, X.; Ping, S. Post-1990s College Students Academic Sustainability: The Role of Negative Emotions, Achievement Goals, and Self-efficacy on Academic Performance. Sustainability 2019, 11, 775. [Google Scholar] [CrossRef]
- Kriegbaum, K.; Jansen, M.; Spinath, B. Motivation: A predictor of PISA’s mathematical competence beyond intelligence and prior test achievement. Learn. Individ. Differ. 2015, 43, 140–148. [Google Scholar] [CrossRef]
- Moore, A.M.; Ashcraft, M.H. Children’s mathematical performance: Five cognitive tasks across five grades. J. Exp. Child Psychol. 2015, 135, 1–24. [Google Scholar] [CrossRef]
- Maree, J.; Di Fabio, A. Integrating Personal and Career Counseling to Promote Sustainable Development and Change. Sustainability 2018, 10, 4176. [Google Scholar] [CrossRef]
- Bascopé, M.; Perasso, P.; Reiss, K. Systematic Review of Education for Sustainable Development at an Early Stage: Cornerstones and Pedagogical Approaches for Teacher Professional Development. Sustainability 2019, 11, 719. [Google Scholar] [CrossRef]
- Joutsenlahti, J.; Perkkilä, P. Sustainability Development in Mathematics Education—A Case Study of What Kind of Meanings Do Prospective Class Teachers Find for the Mathematical Symbol “2/3”? Sustainability 2019, 11, 457. [Google Scholar] [CrossRef]
- Ambrose, D.; Sternberg, R.J. Giftedness and talent in the 21st century. Adapting to the turbulence of globalization. Australas. J. Gift. Educ. 2016, 25, 70–73. [Google Scholar]
- European Parliament. Recommendation of the European Parliament and of the Council of 18 December 2006 on Key Competences for Lifelong Learning; Official Journal of the European Union L394: 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006H0962&from=EN (accessed on 18 February 2019).
- Perso, T. Assessing Numeracy and NAPLAN. Aust. Math. Teach. 2011, 67, 32–35. [Google Scholar]
- Clements, D.H.; Sarama, J. Early childhood mathematics learning. In Second Handbook on Mathematics Teaching and Learning; Lester, F.K., Jr., Ed.; Information Age: Charlotte, NC, USA, 2007; pp. 461–555. [Google Scholar]
- Adelson, J.L.; Dickinson, E.R.; Cunningham, B.C. Differences in the reading–mathematics relationship: A multi-grade, multi-year statewide examination. Learn. Individ. Differ. 2015, 43, 118–123. [Google Scholar] [CrossRef]
- Schoenfeld, A. Reflections on problem solving theory and practice. Math. Enthus. 2013, 10, 9–34. [Google Scholar]
- Geary, D.C.; Nicholas, A.; Li, Y.; Sun, J. Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. J. Educ. Psychol. 2017, 109, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Baltaci, S.; Yildiz, A.; Ozeakir, B. The Relationship between Metacognitive Awareness Levels, Learning Styles, Genders and Mathematics Grades of Fifth Graders. J. Educ. Learn. 2016, 5, 78–89. [Google Scholar] [CrossRef]
- Curzon, L.B. Teaching in Further Education: An Outline of Principles and Practice, 5th ed.; Cassell: London, UK, 1997. [Google Scholar]
- Ebel, R.L. Essentials of Educational Measurement, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1972. [Google Scholar]
- Boaler, J. When learning no longer matters: Standardized testing and the creation of inequality. Phi Delta Kappan 2003, 84, 502–506. [Google Scholar] [CrossRef]
- Buck, S.; Ritter, G.W.; Jensen, N.C.; Rose, C.P. Teachers say the most interesting things—An alternative view of testing. Phi Delta Kappan 2010, 91, 50–54. [Google Scholar] [CrossRef]
- Barrier-Ferreira, J. Producing commodities or educating children? Nurturing the personal growth of students in the face of standardized testing. Clear. House 2008, 81, 138–140. [Google Scholar] [CrossRef]
- Woolfolk, A. Educational Psychology, 10th ed.; Pearson Education Inc.: Boston, MA, USA, 2007. [Google Scholar]
- Boncori, L. Teoria e Tecniche dei Test; Bollati Boringhieri: Torino, Italy, 1993. [Google Scholar]
- EACEA. National Testing of Pupils in Europe: Objectives, Organisation and Use of Results; Education, Audiovisual and Culture Executive Agency: Brussels, Belgium, 2009. [Google Scholar] [CrossRef]
- Popham, W.J. Classroom Assessment: What Teachers Need to Know, 6th ed.; Pearson Education, Inc.: Boston, MA, USA, 2011. [Google Scholar]
- Lord, F.M. Applications of Item Response Theory to Practical Testing Problems; Erlbaum: Hillside, NJ, USA, 1980. [Google Scholar]
- Embretson, S.E.; Reise, S. Item Response Theory for Psychologists; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2000. [Google Scholar]
- Liu, Y.; Maydeu-Olivares, A. Local dependence diagnostics in IRT modeling of binary data. Educ. Psychol. Meas. 2013, 73, 254–274. [Google Scholar] [CrossRef]
- OECD. Assessing Scientific, Reading and Mathematical Literacy. A Framework for PISA 2006; OECD Publishing: Paris, France, 2006; Available online: https://www.oecd-ilibrary.org/docserver/9789264026407-en.pdf (accessed on 18 February 2019).
- OECD. PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy; OECD Publishing: Paris, France, 2013. [Google Scholar] [CrossRef]
- OECD. The PISA 2003 Assessment Framework: Mathematics, Reading, Science and Problem Solving Knowledge and Skills, OECD Publishing: Paris, France, 2004. [CrossRef]
- Blum, W. On the role of “Grundvorstellunge” for reality-related proofs—Examples and reflections. In Mathematical Modeling—Teaching and Assessment in a Technology-Rich World; Galbraith, P., Blum, W., Booker, G., Huntley, I., Eds.; Harwood Publishing: Chichester, UK, 1998; pp. 63–74. [Google Scholar]
- Vom Hofe, R.; vom Kleine, M.; Blum, W.; Pekrun, R. On the role of “Grundvorstellungen” for the development of mathematical literacy first results of the longitudinal study PALMA. Mediterr. J. Res. Math. Educ. 2005, 4, 67–84. [Google Scholar]
- OECD. The PISA 2009 Technical Report; OECD Publishing: Paris, France, 2004; Available online: https://www.oecd.org/pisa/pisaproducts/50036771.pdf (accessed on 18 February 2019).
- Benz, C. Attitudes of kindergarten educators about math. J. Für Math. Didakt. 2012, 33, 203–232. [Google Scholar] [CrossRef]
- CDPE—Conferenza Svizzera dei Direttori Cantonali Della Pubblica Educazione. HarmoS Concordat Accordo Intercantonale del 14 Giugno 2007 Sull’armonizzazione Della Scuola Obbligatoria (Concordato HarmoS). Commento. Istoriato e Prospettive. Strumenti, CDPE: Berna, Switzerland, 2011. Available online: https://edudoc.ch/record/100376/files/Harmos-konkordat_i.pdf(accessed on 18 February 2019).
- Sbaragli, S.; Franchini, E. Valutazione Didattica Delle Prove Standardizzate di Matematica di Quarta Elementare; Dipartimento Formazione e Apprendimento: Locarno, Switzerland, 2014; Available online: http://repository.supsi.ch/8159/1/quaderno_di_ricerca_matedida.pdf (accessed on 18 February 2019).
- Lord, F.; Novick, M. Statistical Theories of Mental Tests; Addison-Wesley: Reading, MA, USA, 1968. [Google Scholar]
- Hofe, R.; vom Pekrun, R.; Kleine, M.; Goetz, T. Projekt zur Analyse der Leistungsentwicklung in Mathematik (PALMA): Konstruktion des Regensburger Mathematikleistungstests flir 5–10. Klassen. Z. Für Pädagogik 2002, 45, 83–100. [Google Scholar]
- Hofe, R.; vom Kleine, M.; Pekrun, R.; Blum, W. Zur Entwicklung mathematischer Grundbildung in der Sekundarstufe r theoretische, empirische und diagnostische Aspekte. In Jahrbuch for Piidagogisch Psychologische Diagnostik. Tests und Trends; Hasselhorn, M., Ed.; Hogrefe: Goettingen, Germany, 2005; pp. 263–292. [Google Scholar]
- Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; Danish Institute for Educational Research: Copenhagen, Denmark, 1960. [Google Scholar]
- De Battisti, F.; Salini, S.; Crescentini, A. Statistical calibration of psychometric tests. Stat. E Appl. 2006, 2, 1–25. [Google Scholar]
- Crescentini, A.; Zanolla, G. The Evaluation of Mathematical Competency: Elaboration of a Standardized Test in Ticino (Southern Switzerland). Procedia Soc. Behav. Sci. 2014, 112, 180–189. [Google Scholar] [CrossRef]
- Baker, F.; Kim, S. Item Response Theory. Parameter Estimation Techniques, 2nd ed.; Dekker: New York, NY, USA, 2004. [Google Scholar]
- Wu, M.L.; Adams, R.J.; Wilson, M.R. ACER Conquest Version 3: Generalised Item Response Modelling Software [Computer Program]; Australian Council for Educational Research: Camberwell, Australia, 2012. [Google Scholar]
- Lord, F. A theory of test scores. Psychom. Monogr. 1952, 7, 1–84. [Google Scholar]
- Bond, T.G.; Fox, C.M. Applying the Rasch Model: Fundamental Measurement in the Human Sciences; Lawrence Erlbaum: Mahwah, NJ, USA, 2001. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Wu, M.; Adams, R. Applying the Rasch Model to Psycho-Social Measurement: A Practical Approach; Educational Measurement Solutions: Melbourne, Australia, 2007. [Google Scholar]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 7, 1–9. [Google Scholar]
- Leder, G.C.; Forgasz, H.J. I Liked It till Pythagoras: The Public’s Views of Mathematics. Mathematics Education Research Group of Australasia. In Shaping the Future of Mathematics Education: Proceedings of the 33rd Annual Conference of the Mathematics Education Research Group of Australasia; Sparrow, L., Kissane, B., Hurst, C., Eds.; Merga: Fremantle, Australia, 2010; pp. 328–335. [Google Scholar]
- Schoenfeld, A. Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In Handbook of Research on Mathematics Teaching and Learning; Grouws, D.A., Ed.; MacMillan: New York, NY, USA, 1992; pp. 165–197. [Google Scholar]
- Newman, M.A. An analysis of sixth-grade pupils’ errors on written mathematical tasks. Vic. Inst. Educ. Res. Bull. 1977, 39, 31–43. [Google Scholar]
- McDonald, C.V. STEM Education: A review of the contribution of the disciplines of science, technology, engineering and mathematics. Sci. Educ. Int. 2016, 27, 530–569. [Google Scholar]
- Wahono, B.; Chang, C.-Y. Assessing Teacher’s Attitude, Knowledge, and Application (AKA) on STEM: An Effort to Foster the Sustainable Development of STEM Education. Sustainability 2019, 11, 950. [Google Scholar] [CrossRef]
Competence | Dimensions | Activities | Description |
---|---|---|---|
AR_SDR | Data Analysis and Relationships | Knowing, recognising, describing | Display and analyse data; use various measures associated with data to draw conclusions, identify trends and describe relationships. |
GEO_SRD | Geometry | Knowing, recognising and describing | Identify, compare, sort, and classify two dimensional shapes |
GEO_EA | Geometry | Performing and applying | Understand concepts of two-dimensions and applying this technique to solve real world problems. |
GM_EA | Dimensions and measurements | Performing and applying | Compare and transform unit of measurement (money, lengths, widths, mass, time, capacity) Calculate |
NC_AG | Numbers and calculations | Arguing and justifying | Motivate statements concerning mathematical rules |
NC_EA | Numbers and calculations | Performing and applying | Perform with mental and written calculation techniques the 4 operations with numbers up to 5 digits and decimals up to hudredths. Apply the properties of operations to simplify the calculation. Compare two calculations and decide equivalence. |
Competences | AR_SRD | GEO_EA | GEO_SRD | GM_EA | NC_AG | NC_EA |
---|---|---|---|---|---|---|
GEO_EA | 0.76 | 1.00 | - | - | - | - |
GEO_SRD | 0.69 | 0.84 | 1.00 | - | - | |
GM_EA | 0.78 | 0.84 | 0.77 | 1.00 | - | - |
NC_AG | 0.72 | 0.80 | 0.78 | 0.83 | 1.00 | - |
NC_EA | 0.67 | 0.68 | 0.74 | 0.79 | 0.81 | 1.00 |
Gender | n | Mean | SD | F-Value | α |
---|---|---|---|---|---|
M | 1517 | 51.378 | 106.61 | 700.179 * | 0.91 |
F | 1418 | 49.732 | 103.54 | 697.260 * | 0.90 |
Dimensions | Mean | SD | K | S |
---|---|---|---|---|
Data analysis and relationships—to know, to recognise and describing | 67.24 | 22.5084217 | −0.427 | −0.588 |
Numbers and calculations—to perform and applying | 50.25 | 21.5575608 | −0.618 | 0.268 |
Geometry—to know, to recognise and describing | 51.39 | 19.4771146 | −0.558 | 0.197 |
Geometry—to perform and applying | 48.57 | 21.0432216 | −0.616 | 0.305 |
Dimensions and measurements—to perform and applying | 44.62 | 22.9892453 | −0.695 | 0.405 |
Numbers and calculations—to argue and justifying | 41.16 | 19.6416040 | −0.166 | 0.543 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellini, D.; Crescentini, A.; Zanolla, G.; Cubico, S.; Favretto, G.; Faccincani, L.; Ardolino, P.; Gianesini, G. Mathematical Competence Scale (MCS) for Primary School: The Psychometric Properties and the Validation of an Instrument to Enhance the Sustainability of Talents Development through the Numeracy Skills Assessment. Sustainability 2019, 11, 2569. https://doi.org/10.3390/su11092569
Bellini D, Crescentini A, Zanolla G, Cubico S, Favretto G, Faccincani L, Ardolino P, Gianesini G. Mathematical Competence Scale (MCS) for Primary School: The Psychometric Properties and the Validation of an Instrument to Enhance the Sustainability of Talents Development through the Numeracy Skills Assessment. Sustainability. 2019; 11(9):2569. https://doi.org/10.3390/su11092569
Chicago/Turabian StyleBellini, Diego, Alberto Crescentini, Giovanna Zanolla, Serena Cubico, Giuseppe Favretto, Lorenzo Faccincani, Piermatteo Ardolino, and Giovanna Gianesini. 2019. "Mathematical Competence Scale (MCS) for Primary School: The Psychometric Properties and the Validation of an Instrument to Enhance the Sustainability of Talents Development through the Numeracy Skills Assessment" Sustainability 11, no. 9: 2569. https://doi.org/10.3390/su11092569
APA StyleBellini, D., Crescentini, A., Zanolla, G., Cubico, S., Favretto, G., Faccincani, L., Ardolino, P., & Gianesini, G. (2019). Mathematical Competence Scale (MCS) for Primary School: The Psychometric Properties and the Validation of an Instrument to Enhance the Sustainability of Talents Development through the Numeracy Skills Assessment. Sustainability, 11(9), 2569. https://doi.org/10.3390/su11092569