Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. AR-IoT Concept
3.2. Things and Communication
IoT Based Multi-Camera
3.3. Offline Preparation Stage
3.4. Online Measuring Stage
3.5. Graphic Processing Stage
3.6. Display and Interaction
3.7. Extension to Multi-Cameras
3.8. User Study
4. Results
4.1. Completion Time
4.2. Accuracy
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Popović, T.; Latinović, N.; Pešić, A.; Zečević, Ž.; Krstajić, B.; Djukanović, S. Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Comput. Electron. Agric. 2017, 140, 255–265. [Google Scholar] [CrossRef]
- Huang, J.M.; Ong, S.K.; Nee, A.Y.C. Real-time finite element structural analysis in augmented reality. Advances in Engineering Software. Adv. Eng. Softw. 2015, 87, 43–56. [Google Scholar] [CrossRef]
- Daponte, P.; Vito, L.D.; Picariello, F.; Riccio, M. State of the art and future developments of the Augmented Reality for measurement applications. Measurement 2014, 57, 53–70. [Google Scholar] [CrossRef]
- Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput. Netw. 2018, 144, 17–39. [Google Scholar] [CrossRef]
- Chuang, C.L.; Yang, E.C.; Tseng, C.L.; Chen, C.P.; Lien, G.S.; Jiang, J.A. Toward anticipating pest responses to fruit farms: Revealing factors influencing the population dynamics of the Oriental Fruit Fly via automatic field monitoring. Comput. Electron. Agric. 2014, 109, 148–161. [Google Scholar] [CrossRef]
- Yang, F.; Wang, K.; Han, Y.; Qiao, Z. A Cloud-Based Digital Farm Management System for Vegetable Production Process Management and Quality Traceability. Sustainability 2018, 10, 4007. [Google Scholar] [CrossRef]
- Kamilaris, A.; Gao, F.; Prenafeta-Boldu, F.X.; Ali, M.I. Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. In Proceedings of the IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016. [Google Scholar]
- Liao, M.S.; Chen, S.F.; Chou, C.Y.; Chen, H.Y.; Yeh, S.H.; Chang, Y.C.; Jiang, J.A. On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Comput. Electron. Agric. 2017, 136, 125–139. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef]
- Murphy, F.E.; Magno, M.; O’Leary, L.; Troy, K.; Whelan, P.; Popovici, E.M. Big Brother for Bees (3B)—Energy Neutral Platform for Remote Monitoring of Beehive Imagery and Sound. In Proceedings of the 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015. [Google Scholar]
- Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [Google Scholar] [CrossRef]
- Tatić, D.; Tešić, B. The application of augmented reality technologies for the improvement of occupational safety in an industrial environment. Comput. Ind. 2017, 85, 1–10. [Google Scholar] [CrossRef]
- Velázquez, F.; Morales Méndez, G. Augmented Reality and Mobile Devices: A Binominal Methodological Resource for Inclusive Education (SDG 4). An Example in Secondary Education. Sustainability 2018, 10, 3446. [Google Scholar] [CrossRef]
- ElSayed, N.A.M.; Thomas, B.H.; Marriott, K.; Piantadosi, J.; Smith, R.T. Situated Analytics: Demonstrating immersive analytical tools with Augmented Reality. J. Vis. Lang. Comput. 2016, 36, 13–23. [Google Scholar] [CrossRef]
- Rashid, Z.; Melià-Seguí, J.; Pous, R.; Peig, E. Using Augmented Reality and Internet of Things to improve accessibility of people with motor disabilities in the context of Smart Cities. Future Gener. Comput. Syst. 2017, 76, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.F.; Katsikas, S.; Beltramello, O.; Hadjiefthymiades, S. Augmented and virtual reality based monitoring and safety system: A prototype IoT platform. J. Netw. Comput. Appl. 2017, 89, 109–119. [Google Scholar] [CrossRef]
- Gomes, P.; Olaverri-Monreal, C.; Ferreira, M. Making Vehicles Transparent Through V2V Video Streaming. IEEE Trans. Intell. Transp. Syst. 2012, 13, 930–938. [Google Scholar] [CrossRef]
- Gushima, K.; Nakajima, T. A Design Space for Virtuality-Introduced Internet of Things. Future Internet 2017, 9, 60. [Google Scholar] [CrossRef]
- Jeone, B.; Yoon, J. Competitive Intelligence Analysis of Augmented Reality Technology Using Patent Information. Sustainability 2017, 9, 497. [Google Scholar] [CrossRef]
- Hamuda, E.; Ginley, B.M.; Glavin, M.; Jones, E. Improved image processing-based crop detection using Kalman filtering and the Hungarian algorithm. Comput. Electron. Agric. 2018, 148, 37–44. [Google Scholar] [CrossRef]
- Phupattanasilp, P.; Tong, S.R. Application of multiple view geometry for object positioning and inquiry in agricultural augmented reality. In Proceedings of the 2nd International Conference on Agricultural and Biological Sciences, Shanghai, China, 23–26 July 2016. [Google Scholar]
- Hamuda, E.; Ginley, B.M.; Glavin, M.; Jones, E. Automatic crop detection under field conditions using the HSV colour space and space and morphological operations. Comput. Electron. Agric. 2017, 133, 97–107. [Google Scholar] [CrossRef]
- Lima, J.P.; Roberto, R.; Simões, F.; Almeida, M.; Figueiredo, L.; Teixeira, J.M.; Teichrieb, V. Markerless tracking system for augmented reality in the automotive industry. Expert Syst. Appl. 2017, 82, 100–114. [Google Scholar] [CrossRef]
- Bauer, A.; Neog, D.R.; Dicko, A.H.; Pai, D.K.; Faure, F.; Palombi, O.; Troccaz, J. Anatomical augmented reality with 3D commodity tracking and image-space alignment. Comput. Graph. 2017, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Hirschmüller, H. Improvements in Real-Time Correlation-Based Stereo Vision. In Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision, Kauai, HI, USA, 9–10 December 2001. [Google Scholar]
- Hirschmüller, H.; Innocent, P.R.; Garibaldi, J. Real-Time Correlation-Based Stereo Vision with Reduced Border Errors. Int. J. Comput. Vis. 2002, 47, 229–246. [Google Scholar] [CrossRef]
- Ku, K.; Chia, K.W.; Cheok, A.D. Real-time camera tracking for marker-less and unprepared augmented reality environments. Image Vis. Comput. 2008, 26, 673–689. [Google Scholar]
- MATLAB. Available online: https://www.matlab.com (accessed on 6 June 2017).
- Heikkilä, J.; Silvén, O. A four-step camera calibration procedure with implicit image correction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, UT, USA, 17–19 June 1997. [Google Scholar]
- Lin, N.; Shi, W. The research on Internet of Things application architecture based on web. In Proceedings of the IEEE Workshop on Advanced Research and Technology in Industry Applications, Ottawa, ON, Canada, 29–30 September 2014. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; pp. 262–278. [Google Scholar]
Day | Planting Processes |
---|---|
1 | Sowing the seeds |
1–45 | Daily watering |
7 | Transplanting seedlings into the greenhouse and applying organic fertilizer |
10, 13, 16, 19, 22 | Spraying organic hormones |
25 | Applying chicken manure |
45 | Harvesting |
Approach | n | Mean | S.D. | t | p |
---|---|---|---|---|---|
Manual | 10 | 2.4900 | 0.26854 | ||
AR-IoT | 10 | 0.3470 | 0.04270 | ||
Manual-AR-IoT | 10 | 2.14300 | 0.24450 | 27.717 * | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phupattanasilp, P.; Tong, S.-R. Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming. Sustainability 2019, 11, 2658. https://doi.org/10.3390/su11092658
Phupattanasilp P, Tong S-R. Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming. Sustainability. 2019; 11(9):2658. https://doi.org/10.3390/su11092658
Chicago/Turabian StylePhupattanasilp, Pilaiwan, and Sheau-Ru Tong. 2019. "Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming" Sustainability 11, no. 9: 2658. https://doi.org/10.3390/su11092658
APA StylePhupattanasilp, P., & Tong, S. -R. (2019). Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming. Sustainability, 11(9), 2658. https://doi.org/10.3390/su11092658