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Abstract: Operation of environmentally responsive building components requires rapid prediction
of the optimal adaptation of geometric shapes and positions, and such responsive configuration
needs to be identified during the design process as early as possible. However, building simulation
practices to characterize optimized shapes of various geometric design candidates are limited by
complex simulation procedures, slow optimization, and lack of site information. This study suggests a
practical approach to the design of responsive building façades by integrating on-site sensors, building
performance simulation (BPS), machine-learning, and 3D geometry modeling on a unified design
interface. To this end, a novel and efficient hybrid optimization algorithm, tabu-based adaptive pattern
search simulated annealing (T-APSSA), was developed and integrated with wireless sensor data
communication (using nRF24L01 and ESP8266 WiFi modules) on a parametric visual programming
language (VPL) interface Rhino Grasshopper (0.9.0076, McNeel, Seattle, USA). The effectiveness of
T-APSSA for early-stage BPS and optimal design is compared with other metaheuristic algorithms,
and the proposed framework is validated by experimental optimal envelope (window shading)
designs for single (daylight) and multiple (daylight and energy) objectives. Test results demonstrate
the improved efficiency of T-APSSA in calculations (two to four times faster than other algorithms).
This T-APSSA-integrated sensor-enabled design optimization practice supports rapid BPS and digital
prototyping of responsive building façade design.

Keywords: design optimization; optimization algorithm; adaptive building façade; building
performance simulation

1. Introduction

Many in the discipline of architecture have long envisioned buildings that, against their inherent
immobility, interactively respond to ambient contexts [1–3]. On the strength of a host of emerging
technologies, such as smart materials, 3D printing, artificial intelligence, and the internet-of-things (IoT),
making buildings physically interactive is no longer an act of the imagination; responsive or kinetic
buildings have already been realized in the Al-Bahar Towers and Korean Pavilion EXPO 2012 [4,5].
As newer computational media and biotechnologies transform building design and construction,
a number of experimental studies are exhibiting innovative, interdisciplinary methods for design
and fabrication [6–9].

Heightened interests in movable types of buildings closely pertain to a growing need for an
architectural responsibility for environmental sustainability. Active engagements with buildings,
through dynamic settings and bioclimatic adaptations of geometrical shapes in natural and human
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environments, are valued for improving indoor thermal comfort and operational efficiency by
mitigating energy consumption and carbon emissions, without an additional use of fuel or the
installation of equipment [10,11].

To make responsive buildings more environmentally effective, a prudent understanding of the
dynamics of building performance is necessary from the opening stage of a project; both the design
of morphological variation and control strategies of motional parts need to be carefully tested and
predicted while exploring design candidates. Well-planned building kinematics will be concerned not
only with a formal aesthetic quality, but also the capability of making instant and precise environmental
interventions between interiors and exteriors in rapidly changing building contexts.

However, practice for the simultaneous identification of design quality and the environmental
effectiveness of moving parts is still nascent and the best method has yet to be known especially in the
schematic stages of building projects. Existing design tools and building performance simulation (BPS)
are insufficient to support dynamic design and the simulation of responsive mechanism. Despite many
studies on the simulation-deployed design process using building information modeling (BIM) [12],
BIM and BPS tools carry limited capacity to interface the environmental analysis of responsive building
form with the architectural design process. BPS engines are primarily targeted at building engineers
less concerned with building geometry than mechanical systems, and simulation algorithms set a
limit on associating energetic feedback from dynamic formal change with design outcomes. Moreover,
lack of actual information on building contexts in BIM and BPS, specifically in the early phases of
environmental building design, quite often result in incomplete performance validation, leaving design
decisions with a lot of uncertainty [13]. Also, there is a dearth of research on how to test the optimal
controllability and performance of responsive operation during the design process. Optimization
methodologies for building design and software add-ons to support geometry optimization (e.g.,
Goat or Galapagos for Rhino) focus on finding deterministic solutions of rigidly finalized forms,
and occasionally sluggish convergence of genetic algorithm (GA) and simulated annealing (SA) in
design search may significantly delay the process of obtaining design outcomes [14,15].

This study aims to fill these knowledge gaps in early-stage optimal responsive design, addressing
a practical (designer-oriented) approach built on the integration of BPS, optimization algorithms,
and electronic sensors with parametric building modeling (Figure 1). A visual programming language
(VPL) using Python (IPython)in Rhino Grasshopper (GH) is used to implement software procedure,
as well as hardware-sourced data, through a unified graphical design interface (GDI). For the
sensor-triggered optimization of responsively operational patterns of façade form, metaheuristic
algorithms are hybridized to quicken the iterative solution search. A hybrid direct search algorithm
incorporating the advantages of existing metaheuristic is proposed for this study and referred to as
tabu-based adaptive pattern search SA (T-APSSA). The objective of this research is to demonstrate the
efficiency of T-APSSA for rapid and dynamic design decision-making, and it is tested on a GDI for
schematic façade design.

Sustainability 2019, 11, x FOR PEER REVIEW 2 of 28 

 

mitigating energy consumption and carbon emissions, without an additional use of fuel or the 

installation of equipment [10,11]. 

To make responsive buildings more environmentally effective, a prudent understanding of the 

dynamics of building performance is necessary from the opening stage of a project; both the design 

of morphological variation and control strategies of motional parts need to be carefully tested and 

predicted while exploring design candidates. Well-planned building kinematics will be concerned 

not only with a formal aesthetic quality, but also the capability of making instant and precise 

environmental interventions between interiors and exteriors in rapidly changing building contexts. 

However, practice for the simultaneous identification of design quality and the environmental 

effectiveness of moving parts is still nascent and the best method has yet to be known especially in 

the schematic stages of building projects. Existing design tools and building performance simulation 

(BPS) are insufficient to support dynamic design and the simulation of responsive mechanism. 

Despite many studies on the simulation-deployed design process using building information 

modeling (BIM) [12], BIM and BPS tools carry limited capacity to interface the environmental analysis 

of responsive building form with the architectural design process. BPS engines are primarily targeted 

at building engineers less concerned with building geometry than mechanical systems, and 

simulation algorithms set a limit on associating energetic feedback from dynamic formal change with 

design outcomes. Moreover, lack of actual information on building contexts in BIM and BPS, 

specifically in the early phases of environmental building design, quite often result in incomplete 

performance validation, leaving design decisions with a lot of uncertainty [13]. Also, there is a dearth 

of research on how to test the optimal controllability and performance of responsive operation during 

the design process. Optimization methodologies for building design and software add-ons to support 

geometry optimization (e.g., Goat or Galapagos for Rhino) focus on finding deterministic solutions 

of rigidly finalized forms, and occasionally sluggish convergence of genetic algorithm (GA) and 

simulated annealing (SA) in design search may significantly delay the process of obtaining design 

outcomes [14,15]. 

This study aims to fill these knowledge gaps in early-stage optimal responsive design, 

addressing a practical (designer-oriented) approach built on the integration of BPS, optimization 

algorithms, and electronic sensors with parametric building modeling (Figure 1). A visual 

programming language (VPL) using Python (IPython)in Rhino Grasshopper (GH) is used to 

implement software procedure, as well as hardware-sourced data, through a unified graphical design 

interface (GDI). For the sensor-triggered optimization of responsively operational patterns of façade 

form, metaheuristic algorithms are hybridized to quicken the iterative solution search. A hybrid 

direct search algorithm incorporating the advantages of existing metaheuristic is proposed for this 

study and referred to as tabu-based adaptive pattern search SA (T-APSSA). The objective of this 

research is to demonstrate the efficiency of T-APSSA for rapid and dynamic design decision-making, 

and it is tested on a GDI for schematic façade design. 

  

Figure 1. Test scheme of the sensing-triggered early-stage responsive façade design optimization: 

Use of Wi-Fi and Radio-frequency identification (RFID) for the design workspace. 

Sensing Dynamic 

On-site Information

Digital model(s) of  

Kinetic Façade 

Design (form)(Wifi/RFID)

Building Performance 

Simulation (BPS)

Hybrid Optimization

Building 

Model 

Parameter(s)

Actual building site 

Responsive Design / Dynamic Optimization Tests

Wireless

Transfer

Sensor data 

Filtering and 

Prediction

(Machine 

Learning)

Parametric building 

design interface

Figure 1. Test scheme of the sensing-triggered early-stage responsive façade design optimization:
Use of Wi-Fi and Radio-frequency identification (RFID) for the design workspace.
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2. Related Work: Responsive Façade Design, Parametric Automation, and Optimization

2.1. Responsive Façade Design for Sustainable Architecture

Responsive building design is a subject within the broad domain of environmentally adaptive
architecture, also known as interactive or kinetic architecture. While responsive building interaction can
be addressed at different levels, such as shape, manufacturing, process, and functioning with various
systemic principles [8,16], responsive building kinematics take mechanistic forces and principles of
motion to change the size, form, or composition of a whole building or its parts. Its basic concepts and
terminology were introduced in the 1970s [17], but along with the rise of the green building industry,
the adaptively movable building is once again gaining increasing popularity as an emerging paradigm
in sustainable architecture and building design education. Lee et al. [11] suggested simplified formulas
to estimate the energy performance of movable windows, and Yi [18] discussed robotics-based design
experiments as well as the educational effectiveness of introducing kinematics into design studio
curriculums. In particular, the responsively acclimatized design of building enclosures, inspired by
biomimicry (or biomimetics) that takes the characteristics of nature as a dominant driver for design
strategies and form-making [5,9,19], is progressively studied with a high-level abstraction of natural
principles, owing to the development of robotics and sensor technologies [8]. Nevertheless, despite
many conceptual projects and methodological proposals regarding building responsiveness [6,7,9,19],
the problem of how to incorporate environmental simulations of the motions of building parts is
addressed less in the context of early design processes. This is mainly because (1) the existing tools
are technically insufficient to support the complex design of dynamic building motion [12]; (2) it is
difficult to develop a mathematical simulation algorithm that is generally applicable to the diagnosis
of responsive building performance [11]; and (3) there is a lack of a standardized procedure or protocol
regarding the automation and optimization of adaptively moving geometry [5,9].

2.2. Problems in BPS for Early-Phase Responsive Design Validation

The emerging digital tools integrating BIM, 3D visualization, automation, and BPS have enabled
architects and engineers to process a great deal of building data during design phases [20,21].
In conjunction with increasing awareness of building sustainability, the development of easy-to-use
building design interfaces, and cheap computational platforms supporting BPS, data processing
algorithms, optimization, and/or parametric form generation, are accelerating the wide spread
of environmental information-driven form-making or performance-based design in the practice
of architecture [20,22–24].

Geometrically responsive types of environmental buildings supported by these instruments
are often delivered with complicated building shapes [4], in which, in particular, movable parts
cause an increase in complexity, inputs, and cost of construction. Thus, the practical application
of responsive building ideas must allow for closer examination, from the beginning of building
projects, of the effectiveness and technical merits of formal variations toward the improvement of
building performance. Design decisions for sustainably adaptive geometry should be fully simulated
throughout the process and informed by responsive components and interactively changing building
performances (energy use, indoor comfort, etc.). However, the dynamic BPS of kinetic buildings has
not been fully elucidated and incorporated in terms of design practice, due to the limitation of existing
algorithms and obscurity of the process. For example, EnergyPlus (EP) (National Renewable Energy
Laboratory, USA) offers a behavior-interactive energy simulation module, an energy management
system, and a third-party middleware with simulation-wrapping algorithms such as the functional
mock-up interface and the building controls virtual test bed, which enable interactive co-simulation.
Unfortunately, implementation of these methods to the design of adaptive building geometry is
significantly limited, as they account primarily for non-geometric building variables (e.g., window
shading area, occupancy schedule, or thermostat set points). Lee et al. [11] suggest a numerical
algorithm to simulate the energy use of an external kinetic shading system, yet it means little to the
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practice of early-phase decision-making, which involves commercial design software and the informal
shapes of kinetic components. BPS plug-ins for digital design tools (Insight 360 for Revit, DIVA for
GH, etc.), which are widely used among architects, also expose a fundamental limitation, as their
performance simulation implements as-is existing engines (EP, Radiance, etc.) and nonlinear building
designs, such as non-uniform rational basis spline geometry, that are not completely supported. On the
other hand, responsive building operation depends on real-time changes of interior/exterior building
environments, and BPS-optimization coupling for responsive building design requires actual building
data. Fueling the BPS process with accurate site/building information reduces the uncertainty of
performance results; however, little attention to the early validation of responsive design has been
called for. The difficulty of collecting precise data on local weather or a building site and limited
BPS support for complex geometry, are dominant factors that obstruct rigorous performance tests of
building interaction.

Recently, the rapid spread of sensor and mobile technologies to the architecture, engineering,
and construction (AEC) industry are advancing 3D BIM to the 4D/nD paradigm coupled with a
simultaneous real-time coordinate [21]. However, in the environmental building design process,
the integration of dynamic information from the real-world and BIM-BPS has not yet been fully
highlighted [12,22]. A key to bringing more actualities and accuracies to BPS and design is unfolding
the standalone working of a single-purpose simulation, thereby coupling it with real-world parameters,
so as to strengthen the responsive mechanism between the digital environment and actual representation.
This concern raises cross-disciplinary technical issues, such as tether-free data communication, sensing
of physical systems, remote visualization, and self-adjustment in data transmission.

2.3. A Need for Rapid Optimization Methods in the Early-Stage Simulation of a Moving Pattern of Adaptive
Building Geometry

Environmental responsive buildings assume dynamic operational mechanisms that are
optimized to indoor thermal comfort and energy efficiency. Accordingly, in terms of building
form design, it is important to identify how morphological variations guarantee optimal building
operation in terms of both building aesthetics and performance. Although optimization-embedded
approaches to environmental building design help to find better architectural solutions with formal
prototyping [20,25,26], they entail two major problems: (1) static optimization that is little-concerned
with time-dependent variables; and (2) laggardness of solution search activities [23]. In most cases,
while design optimization focuses upon suggesting a static (non-responsive) design solution for building
shape, space arrangement, and indoor settings [20,22,23], optimization of dynamic formal variation
is hardly taken into consideration. Moreover, BPS-coupled design optimization is computationally
intensive, and may delay the design process as heuristic algorithms run hundreds of simulations [25,26];
it takes a few minutes to hours to converge the exhausting architectural feedback. There can be three
methods to resolve this issue: (1) reduction of model/variable complexity; (2) reframing the search
procedure with simpler sub- or dual-problems [27,28]; and (3) meta-simulation using statistical
approximation [29]. However, simplification of building modeling is not feasible when architectural
design lays stress on the visualized representation of form, as loss of architectural details in BIM
for BPS-optimization occurs. Subdividing an optimization problem into several sub-problems (e.g.,
hierarchical processes) or dual representations can be a good option, but there exist few general
procedures that are applicable to all building problems. Unsuccessful convergence in local problems
may cause failure in global search. Employment of a simplified surrogate of BPS using statistical
techniques (e.g., black box simulation) needs a lot of prior simulation runs and post-processing (e.g.,
uncertainty and sensitivity analysis) to establish a valid meta-model.

Therefore, an alternative robust search algorithm specific to responsive design needs to be
developed to handle dynamic data quickly, and the hybridization of existing algorithms can be an idea.
However, the selection and customization of known algorithms needs to be done carefully, as each has
its pros and cons. Due to the complexity and high-dimensionality of cost functions and constraints,
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the majority of design optimization rests upon metaheuristic techniques, such as SA, pattern search
(PS, also known as direct search), and GAs or EAs. GAs are most widely used for building problems,
and have been found to be well-suited to multi-objective optimization (MOO) [14,20,26]. Nevertheless,
they do not always ensure high-quality solutions as they need some expert skills to predetermine
design operators, and the success of a search depends highly on a set of complex refinement rules and
stochastic parameters regarding the sampling method of individuals, genetic diversity of population
(crossover and the probability of mutation), and elitism (selection of the fittest candidates) [30].
In practice, convergence in GAs can also be significantly delayed or might even fail if the number of
variables increases, because binary (or decimal) encodings of real values may cause search space size
to exponentially grow. More critically, GAs are limited to operating on dynamic datasets, because
evolution strategies often deterministically converge toward local minima before follow up data are
available [30,31]. Meanwhile, SA explicitly (rather than working with a group of feasible solutions)
searches for a global optimum with a far simpler operation; non-reduction of variable complexity
prevents ill-mapping of a global search domain [32]. Although SA is intuitively programmable and
flexibly implementable, longer search times to reach a global solution in continuous domains are
ill-suited to problems with time-dependent variables. Global search methods including GAs and SA
employ stochastic operators to sacrifice short-term fitness to gain global optima, which makes the
search process vulnerable to parameter change, delaying the process. To reduce convergence time,
we can diminish a variable domain into non-continuous space, since geometry variables in building
problems can be converted to domain-specific discrete numbers that are not very sensitive to minute
number change. In this context, implement of PS offers rapid solutions for building problems, as a
fewer number of iterations are necessary. PS significantly reduces time complexity, as the PS heuristic
explores only feasible candidates through discretization of a continuous variable domain (grid mesh).
PS is thus found to be effective for local searches as well as global optimization [33]. That said, it is
too sensitive for mesh definitions, and unsuitable choices of the mesh parameter (mesh size) tend to
end up with local optima [34]. This can be overcome by integrating a global method or tabu search
(TS) [35,36]. For this reason, this study attempts to hybridize the advantages of SA, PS, and TS to
develop a novel fast search method. Section 3.3 demonstrates the effectiveness of this method for BPS
and design optimization.

3. Proposed Method

3.1. Test Building Site and Design

The proposed framework is applied to the test design of a responsive façade (window shading
design) for optimal indoor daylighting. External shading devices are an important component
of building envelope design that largely impacts daylight use and air conditioning, particularly
in hot climates. Due to this significance, optimal shading design and daylight control have been
dominant topics in building design optimization [7,11,37,38]. The test building was part of an
architecture school complex at Florida International University (FIU), located in southwest Miami,
Florida. The redesign target was the fixed double-glazing façade of an interdisciplinary facility,
the Structural and Environmental Technologies Lab (FIU-SETLab), which is dedicated to the teaching
and research of sustainable architecture (Figure 2). The SETLab façade faces a large east courtyard
and is exposed to a significant amount of sunlight and radiance. This space suffers from overheating
and glare during daytime. To integrate parametric design and BPS into GH, DIVA—a Radiance-based
lighting simulation plug-in—was selected to design and simulate the indoor daylight level due to
the façade’s design. The sky illuminance in Radiance was pre-set according to static sky model types
(sunny, clear, overcast), or by using the Perez sky model, which imports historic weather records of a
local area that are neither dynamic nor site-specific. Daylight simulation can become more realistic
and precise by importing the actual solar radiation data of a weather file to construct a customized sky
model (Figure 3). The as-is simulation results in Figure 3 show that indoor daylight levels depended
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highly on the input sky models. In this study, the actual weather information read from light sensors
installed at the site are integrated into GH and DIVA.Sustainability 2019, 11, x FOR PEER REVIEW 6 of 28 
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Figure 3. Geometric modeling of the test building and test results of radiance daylight simulation under
different sky models. Lux measured from an on-site photoresistor was converted to solar radiation
(W/m2) using a daylight luminous efficacy factor (EF) of 121.5 lm/W [39]. (a) Overcast sky model.
(b) Customized sky model with on-site actual data (1:15 p.m., 15 February 2017). (c) Customized sky
model with on-site actual data (1:19 p.m., 15 February 2017).

3.2. Preliminary Sensor Tests and Hardware Installations for Data Transfer

A major task of this study was to integrate on-site measuring hardware with a designer’s
workstation. However, there are few portable irradiance sensors available for laptops; solar radiation is
thus measured indirectly by converting illuminance values. To measure outdoor luminosity, a TSL2591
digital sensor was prepared, as it is a high-precision device for microcontrollers with the widest range
of detection (0–80,000 lux) and the greatest sensitivity (188 lux). Nevertheless, bright sunlight measures
greater than 100,000 lux. A standalone precision sensor (LX1330B; measuring 0–200,000 lux; <±1%
error rate in 0–40 ◦C) was thus used to cover the full range of solar luminosity. Meter readings from
the TSL2591 were converted to actual values of the LX1330B (Figure 4).
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Figure 4. Preliminary field tests of sensors for fault detection. (a) An illuminance meter (LX1330B) and
a solar radiation sensor (SM206). (b) Digital light sensor (TSL 2591) validation.

Installing the equipment on a horizontal ground in front of the test building, preliminary field
tests were conducted to identify different measurements of the sensors and correct their readings.
Solar radiation is interchangeable with luminosity through a luminous efficacy (LE) conversion factor.
To evaluate LE around the site, an SM206 sensor (range:0.1–399.9 W/m2; 0.1 W/m2 resolution with ±3%
accuracy in 0–50 ◦C) was used to gage solar radiation. As shown in Figure 4a–c, solar illuminance and
irradiance were measured on the same horizontal plane every two minutes between 2:00 and 3:00 p.m.
(the hottest hours in Miami) from 14–18 August 2017 (mostly clear and sunny sky, 12~25% clouds) at
the site, with 150 data collected. The daylight efficacy factor (EF) is known to be around 100 lm/W
or greater in a tropical hot climate [39]. An average EF at the site similarly measured 108.6 lm/W,
and Figure 5 shows that the irradiance was linearly proportional to the illuminance, with an R-square
value of 99.5% (luminosity readings are easily convertible to radiation values using a linear regression
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model). Readings between the TSL2591 and LX1330B were linear at lower light levels but exhibited an
overall inconsistency due to their different sensitivities under the spectrum of light intensity (Figure 5).Sustainability 2019, 11, x FOR PEER REVIEW 8 of 28 
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To convert the TSL2591 readings to the more realistic ones of the LX1300B, a prediction model
using a support vector machine (SVM) was identified (Figure 5). SVM offers an efficient learning
algorithm for complex regression analysis. The developed SVM model encoded in IronPython was
implemented in the GH design interface, so that on-site readings from the TSL2591 approximated
the precise luminosity and irradiation used to construct a realistic sky model for a dynamic daylight
simulation. The tested light senor was integrated into an Arduino microcontroller, and the complete
instrument was combined with a WiFi shield (ESP8266). A radio-frequency (RF) radio transmitter
(nRF24L01) was installed in the test building site.

3.3. Hybridization of Optimization Algorithms: Tabu-based Adaptive Pattern Search Simulated Annealing
(T-APSSA)

Given a solution domain Ω, the goal of T-APSSA is to find an optimal value of x´ to minimize the
cost function:

f Ω(x), i.e., x´ = arg min f Ω(x), ∀x ∈ Ω, f : R→ R ∪{∞}. (1)
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In the algorithm, a series of hybrid operation parameters are chosen, such as a step index i ∈ N0,
an initial and loop termination temperature (T0 and Tmin), and an annealing schedule factor (α ∈ (0,1),
a ratio of temperature degradation) from the SA heuristic; ξ denotes the memory size of a tabu list (TL)
containing visited vectors. A solution is expressed as point vector x such that

xθ = {xθik}, θ = 1, . . . , n, k = 1, . . . , p, and n, p ∈ N1 (2)

where xθ denotes the θ-th trial solution (a set of feasible points), n is a sequence, and k is the number of
local points.

This algorithm constructs a loop of SA-based iterations, and at each step candidates are selected
based on the PS strategy that subdivides Ω into a k-dimensional set of mesh points. The grid resolution
is determined by a mesh size parameter, ∆i ∈ Rn. According to the number of trial points (n),
each candidate has an associated neighborhood on the mesh grid, Ni(xθik, θ = 2, . . . , n) ⊂ Ω. At the
first step, i = 0, a feasible vector x0 is set, followed by an initial cost f (x0). A new trial point, xθi,
is then randomly chosen as an incumbent solution, and generates a neighborhood of mesh vertices (Ni)
centered around xθi, defined as

xθ + 1
ik = xθik ± ∆idk (3)

where dk ∈[I] spans the coordinate axes (a mesh frame).
Per each neighbor, fitness (E) is evaluated, and the best value x´θi is obtained within the pool of

mesh points. Compared to the solution in a previous state of the problem, the Boltzmann formula
(e(E-Enew)/T > r ∈ (0,1)) informs the acceptability of the current value. Stochastic transitions to small
downhills prevent the PS from falling into local minima and improve search quality. This heuristic is
iterated until the search converges with a global optimum or suits some termination criteria (Figure 6a).

Integration of a mesh adaptive PS (MAPS) and TS approach [35,36] plays a critical role in increasing
the efficiency of T-APSSA. Uniform spanning of mesh vertices due to fixed mesh size parameter (∆) is
vulnerable to domain scale change, delaying the convergence time. Flexible modification of the mesh
parameter and diversification of the neighbor spanning by dynamically changing ∆ and d can quicken
the heuristic. To this end, on top of the mesh size parameter, the poll size parameter (∆q) is introduced,
so that ∆i

q = k
√

∆i. ∆q defines the boundary of the stepwise refining of an incumbent solution in a state
(Figure 6b), the candidates for which are obtained by

xθ+1
i = xθi ± µ∆id (4)

where µ is a random number from {µ | 1 ≤ µ ≤ ∆p
i /∆i, µ N}.

Note that ∆i+1 = 2∆i if the solution is improved, otherwise ∆i+1 = ∆i/2. Ω is scaled to be [0, 1]
for PS, and xθik = dk, if ∆p

i > ∆i, because all neighbors become placed on the domain boundary. If a
MAPS transition is successfully executed, a TL stores the optimal value (x´θi) and cost as elements,

depending on its memory length ξ ∈ N1. When generating a new candidate, TL =
{
t j
}ξ

j =1
is referred,

to avoid neighborhood areas once visited (tabu regions; TRs) [35]. TRs are circular areas around tj with
a radius rTR. Given a TL and a new trial point x0

i+1, new search directions outside TRs (Figure 6b) are
overridden by:

λ
(
x0

i+1 − t
)

(5)

where t = (
∑ξ

j=1 t j)/ξ, and λ ∈ R is a random number greater than max{||x0
i − tj||}j = 1, . . . , ξ + rTR.
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candidate search from the tabu list (right).

4. Validation of the Method

4.1. Validation of T-APSSA for BPS Practice

The developed hybrid algorithm was coded in GH using Python to seek its practical applicability
to early-stage design optimization. To validate the performance improvement of the algorithmic
hybridization, the degree of convergence rate and the precision of each optimization algorithm were
evaluated with some widely used test functions (Figure 7 and Appendix A). Equations of the cost
functions, boundaries of the object variables, and global minima were given accordingly.
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Simple performance tests with an artificial landscape (Eggholder function: f min (x,y) = −959.6407,
where −512.0 < x, y < 512.0) in Figure 7 show quite different characteristics of algorithms. To overcome
the PS’s tendency to fall easily into a local minimum, a method using a flexible mesh size per each
run was suggested as a mesh adaptive direct search (MAPS) [34]. MAPS apparently outperforms PS,
but does not completely find global optima, as it is also mesh-dependent (Figure 8). To activate global
moves in a direct search, PS or MAPS can be combined with SA so that local minima escape through
stochastic transitions, rather than always finding better solutions. The hybridization of PS with SA
(PSSA) was suggested with a demonstration of superior performance [36]. The potential of PSSA can
be strengthened far more by taking advantage of a set of search rules, such as data logging (tabu direct
search; [36]) and mesh adaptivity. At each iteration, a TL contains individual candidates with the best
cost, so that discrete random walks will not explore neighborhoods previously visited in a search space.
The last result in Figure 8 exhibits the high performance of the mesh adaptive PSSA integrated with
TS (memory size = 50). While SA converges after about 12,000 iterations, T-APSSA finds optima at
around 200 iterations, which is 6–8 times faster than SA.
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4.2. Encoding T-APSSA into BPS and Test Results

To verify the actual performance of T-APSSA in BPS, T-APSSA and other algorithms were scripted
with an architectural BPS tool, Autodesk Ecotect 2015 (Figures 9 and 10). Before this, efficiencies of
the algorithms were compared within a limited iteration (300) using the Eggholder function again.
The results in Figure 9 show that a mesh adaptive hybrid of PS with SA yields better solutions by
escaping local pitfalls with early probabilistic changes, while SA and MAPS hardly converge for the
optimal cost. T-APSSA (initial temperature = 50,000 K; termination = 0.001 K; internal iteration = 3;
cooling rate: 0.85) reached global optima in 150 iterations. For the performance of the metaheuristics
in multi-objective building performance optimization (MOBPO), a simple space volume (Figure 11)
was tested with 10 geometrical variables regarding the glazing size and surface area, such as: 2.00 m
≤ wdfloor, lnfloor ≤ 6.00 m, 0.10 ≤ wg1, hg1, wg2, hg2, wg3, hg3, wg4, hg4 ≤ 0.90, where wdfloor lnfloor =

9.00 (m2), and the ceiling height is 3 m. This test model is assumed to represent a single thermal zone
(a room), as simply as possible, with fenestration on each side. To identify influence from the shape
change of the envelope, the internal volume of the cubic model remains constant.
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Figure 11. Optimization test model configuration.

The goal of this experiment was to characterize the behavior of the algorithms within a limited
number of only 20 iterations. The first MOBPO was tested with the geometric constraints of the Miami
climate, to determine an optimal form minimizing both annual end-energy use and surface irradiance
with the same weight (Figure 9). Although solar radiation over surfaces is a dominant part of energy
loads in hot climates, a minimal energy form needs to orchestrate differently oriented surface areas and
windows. In Figure 9, the best building form tended to minimize both envelope surfaces (especially
south-facing) and window area to avoid overheating. The test results revealed that SA performed
worse than others, while PS and T-APSSA converged very quickly. MAPS was also better than SA,
but in this case, mesh adaptivity degraded the search quality. In this test, we identified that, for a
simple convex function with a limited number of variables, flexible stochastic moves prevent rapid
convergence, and this weakness can be offset by memorizing search traces (Figure 12a). Secondly,
to test a more complex MOBPO case, conflicting performance goals were set with the same variables
and constraints—minimizing energy use and surface radiation, while maximizing interior daylight
(Figure 12b).
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Figure 12. Comparison of algorithm performance. (a) Cost (MWh): energy + irradiation. (b) Cost
(scaled to −1~1): energy + irradiation + daylight.

As found in Figure 12b, SA did not converge within this short-term search, showing the worst
performance. A discrete search performed better. In Figure 10, we find building forms evolved to
minimize glazing on the east and west and reduce energy loss and heat gain, while compromising
daylight availability on the north and south. In this process, PS found an optimal solution rapidly,
whereas MAPS converged at the vicinity of a local optimum. It should be noted that T-APSSA
approximated a global optimum, although an initial solution was the poorest. The findings of these
two tests show that T-APSSA solves MOBPO problems well, even within a limited iteration.
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5. Application to a Design Experiment and Results

5.1. Development of a Cyber-Physical BPS Interface Using VPL

The effectiveness and flexibility of GH as a BPS/parametric design platform was identified by
Shi and Yang [22]. Simulation of illuminance in GH was enabled with DIVA, a Radiance-based GH
plug-in, and the sky model and radiance data of a weather file were customized according to on-site
sensor (photoresistor) data.

5.2. Field Tests: Synchronized Data Transfer and Design Optimization

In most cases of optimal building design using BPS, design objectives and parameters of building
models and simulation are deterministically predefined or assumed [25]. This gives rise to a lot of
uncertainty in optimization, which may even end up with biased results. To compare a conventional
deterministic design optimization with a dynamic process, a baseline model was established. Referring
to the indoor environmental quality (IEQ) credit 8, option 1 of the Leadership in Energy and
Environmental Design (LEED) building certification standard, the baseline was a static form of exterior
shading used to satisfy a spatial daylight autonomy (sDA) of 50% at 300 lux with no less than 55% of
an analyzed space, and an annual solar exposure of no more than 10% of a space that receives above
l000 lux for 250 hours throughout a year.

A cyber-physical interface integrating Arduino microcontrollers, sensors, GH, and BPS was
constructed and tested with a simple box shading model and developed for the dynamic adaptive
optimization process (Figures 13 and 14). A microcontroller with transceivers (RF24L01 and ESP8266)
and a photoresistor were installed on the outside of the test building. The sensors were positioned in
the center of the courtyard so that reception of irradiance was not hindered by any ground obstacles or
shadows during test hours (Figure 13b). Outdoor natural light levels were sent to a remote computer
wirelessly and logged into a data file every 10 minutes. The design interface read sensor data and
reconstructed a local weather file using the database. This approach enabled designers to collect actual
on-site information for early-stage BPS, and to predict the performance of responsive designs more
accurately in remote places where signal reception is available.

5.3. Design Case Studies for Algorithm Verification

5.3.1. Validation of Daylight Performance

T-APSSA was coded to perform both deterministic and dynamic optimal shading design,
and optimization was executed on a system processor of Intel CoreTM i7-7700 CPU 3.6 GHz with
32.0 GB RAM. We chose a honeycomb shape for the design, as it is one of popular parametric design
patterns for shading. Figure 15 shows a responsive surface module (600 × 600 mm) of the test design.
The module shape was designed to increase/reduce façade fenestration by geometry parameters with
control points and θ (0◦ ≤ θ ≤ 41.1◦) in the center. Figure 16 presents the results of an optimization
processed on 13 March 2017. For this actual test, 10:00 a.m. was chosen as the starting time, because
it was the hour that the test façade likely received the most direct sunlight at the site (Figure 13b).
Comparing performances by algorithms (Figure 16a–d), we can see that T-APSSA found solutions more
quickly than other algorithms. Figure 17a–f shows dynamic optimal parametric form specific to actual
outdoor weather data. For sensor-triggered (actual data-based) optimization, daylight simulation and
T-APSSA optimization ran with the geometry parameters at each ping from the RF24L01. As part
of the sustainable campus plan of FIU, the target space was supposed to achieve the certification of
LEED BD+C. Accordingly, optimal parameters were found that permitted the minimum illuminance
in the space to be 300 lux (LEED IEQ credit option 2). These results show that dynamic adaptation
creates various building skins, while deterministic solutions only allow a small portion of perforation
in the façade. Figure 16 plots the optimization process for each algorithm, and Figure 17 visualizes
the morphological variation of the optimal solutions. This demonstrates the robustness of T-APSSA,
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which sufficiently terminated the optimal search within a ping interval, while the final façade form
actively varied according to the external data transfer when indoor daylight levels were optimized
at 300 lux.
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Figure 13. Interface integrated with remote sensor communication, BPS, and the parametric design
process. (a) Installation work: interface, sensors, on-site Wi-Fi-IoT boards. (b) Shadow analysis and
sensor installation (red point in the center): surrounding buildings do not cast shadows on the sensor
from 9:00 a.m. to 3:00 p.m.
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Figure 15. Test responsive surface module and combination over the test façade. (a) test façade module;
(b) module combination over the test building surface.

Sustainability 2019, 11, x FOR PEER REVIEW 19 of 28 

 

 
(a) (b) 

Figure 15. Test responsive surface module and combination over the test façade. (a) test façade 

module; (b) module combination over the test building surface. 

 
(a) 

 
(b) 

600 mm600 mm

6
0

0
 m

m
6
0

0
 m

m

20.55°

1
5
0
 m

m

2
2
5
 m

m

7.2 m

3
 m

Control 

point
θ

0

20

40

60

80

100

120

140

300

305

310

315

320

325

1 101 201 301 401 501 601 701 801 90110011101120113011401150116011701180119012001

Ir
ra

d
ia

n
c
e 

(W
/m

2
)

Il
lu

m
in

a
n
c
e 

(l
u
x
)

Simulated value

Sensor reading (Irradiance)

10:00              10:10               10:20              10:30              10:40              10:50            11:00

Ping time

0

10

20

30

40

50

60

70

80

90

300

320

340

360

380

400

420

440

1 101 201 301 401 501 601 701 801 90110011101120113011401150116011701180119012001

Ir
ra

d
ia

n
c
e 

(W
/m

2
)

Il
lu

m
in

a
n
c
e 

(l
u
x
)

Simulated value

Sensor reading (Irradiance)

10:00              10:10              10:20               10:30              10:40               10:50             11:00

Ping time

Figure 16. Cont.



Sustainability 2019, 11, 2681 20 of 28
Sustainability 2019, 11, x FOR PEER REVIEW 20 of 28 

 

 
(c) 

 
(d) 

Figure 16. Results of optimization for daylight performance (13 March 2017). (a) T-APSSA; 

(b) SA; (c) PS; (d) MAPS. 

   
(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 17. Optimal solutions for responsive shading motion (daylight). (a) 10:10 a.m. (13 March 2017). 

(b) 10:20 a.m. (13 March 2017). (c) 10:30 a.m. (13 March 2017). (d) 10:40 a.m. (13 March 2017). (e) 10:50 

a.m. (13 March 2017). (f) 11:00 a.m. (13 March 2017). 

0

10

20

30

40

50

60

70

80

300

310

320

330

340

350

360

Ir
ra

d
ia

n
c
e 

(W
/m

2
)

Il
lu

m
in

a
n
c
e 

(l
u
x
)

Simulated value

Sensor reading (Irradiance)

10:00              10:10               10:20              10:30              10:40              10:50            11:00

Ping time

0

10

20

30

40

50

60

70

80

300

310

320

330

340

350

360

1 101 201 301 401 501 601 701 801 90110011101120113011401150116011701180119012001

Ir
ra

d
ia

n
c
e 

(W
/m

2
)

Il
lu

m
in

a
n
c
e 

(l
u
x
)

Simulated value

Sensor reading (Irradiance)

10:00              10:10               10:20              10:30              10:40              10:50            11:00

Ping time

Figure 16. Results of optimization for daylight performance (13 March 2017). (a) T-APSSA; (b) SA;
(c) PS; (d) MAPS.

Sustainability 2019, 11, x FOR PEER REVIEW 20 of 28 

 

 
(c) 

 
(d) 

Figure 16. Results of optimization for daylight performance (13 March 2017). (a) T-APSSA; 

(b) SA; (c) PS; (d) MAPS. 

   
(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 17. Optimal solutions for responsive shading motion (daylight). (a) 10:10 a.m. (13 March 2017). 

(b) 10:20 a.m. (13 March 2017). (c) 10:30 a.m. (13 March 2017). (d) 10:40 a.m. (13 March 2017). (e) 10:50 

a.m. (13 March 2017). (f) 11:00 a.m. (13 March 2017). 

0

10

20

30

40

50

60

70

80

300

310

320

330

340

350

360

Ir
ra

d
ia

n
c
e 

(W
/m

2
)

Il
lu

m
in

a
n
c
e 

(l
u
x
)

Simulated value

Sensor reading (Irradiance)

10:00              10:10               10:20              10:30              10:40              10:50            11:00

Ping time

0

10

20

30

40

50

60

70

80

300

310

320

330

340

350

360

1 101 201 301 401 501 601 701 801 90110011101120113011401150116011701180119012001

Ir
ra

d
ia

n
c
e 

(W
/m

2
)

Il
lu

m
in

a
n
c
e 

(l
u
x
)

Simulated value

Sensor reading (Irradiance)

10:00              10:10               10:20              10:30              10:40              10:50            11:00

Ping time

Figure 17. Optimal solutions for responsive shading motion (daylight). (a) 10:10 a.m. (13 March
2017). (b) 10:20 a.m. (13 March 2017). (c) 10:30 a.m. (13 March 2017). (d) 10:40 a.m. (13 March 2017).
(e) 10:50 a.m. (13 March 2017). (f) 11:00 a.m. (13 March 2017).



Sustainability 2019, 11, 2681 21 of 28

5.3.2. Validation of Energy Performance and Multi-Objective Optimization

The performance of T-APSSA was further validated for energy and multi-objective BPS of two
cases (minimizing cooling load and daylight, and minimizing lighting energy and cooling load,
respectively). For the same design and test location, we executed T-APSSA optimization with Rhino
GH VPL (Figure 14a) modified to carry out multi-objective optimization. In daylight simulation
using radiance, an input weather parameter (irradiance) brought out a result at a specific time and
location. However, energy simulation using EP requires a large set of premeasured annual weather
data, and the hourly resolution of energy load calculation made it hard to take temporally changing
on-site information while in simulation. Moreover, the performance of T-APSSA needs to be validated
over a larger period of time before employing it for the long-term responses of building façades.
For this reason, multi-objective T-APSSA was tested by setting specific simulations periods at the
summer solstice (21 June) and over a year, rather than synchronizing on-site sensor data. Figures 18
and 19 exhibit iteration processes and optimal results. Each test was done with five trials to avoid
biased finding. In the experiments, we found that, given the shading design, daily and annual cooling
loads could be reduced up to 26.3 MJ and 10.2 GJ, respectively. Figure 18a,b shows how T-APSSA
finds minimal values (starting temperature: 200 K; cooling rate: 0.8; termination: 0.5 K; number of
mesh loops: 3). These results demonstrate that T-APSSA works with energy simulation at a very
low starting temperature, compared with general SA; all cases were terminated before 100 iterations,
and within only 40 iterations for the annual simulation (Figure 18b), taking an average time of 6 and 11
minutes, respectively. T-APSSA was applied to minimize both cooling energy and indoor illuminance
(Figure 18c,d). For evaluation, two different simulation results were normalized to values between
0 and 1 by using the min–max scaling method. Despite the rapid search ability, Figure 18c,d shows
that multi-objective T-APSSA undergoes a relatively more complex process with a longer termination
time. By increasing the initial temperature to 20,000 K, T-APSSA searched for optima in 200~300
iterations. Hourly daylight simulation of Radiance was much slower than EP and became a primary
cause of delayed searching. T-APSSA took 2 h 14 min and 3 h 43 min for termination for Figure 18c,d,
respectively. To identify reasons for the sharp increase of elapsed time, we randomly generated 1000
solutions for each case. We found that the complexity of multi-objective T-APSSA was also influenced
by the characteristics of a search domain. Figure 18e,d shows that a large number of points are
cornered or concentrated in narrow areas, and Pareto curves included few points around optimal
values. This finding suggests that the appropriate choice of cost-rescaling method, search parameters,
and time window of simulation are important to get a better performance from T-APSSA.
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Figure 18. Results of optimization for daylight performance (energy and multi-objectives). (a) Cooling
energy use (21 June 2017). (b) Annual cooling energy use. (c) Multi-objectives: cooling energy and
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multi-objectives (21 June 2017). (f) Pareto curve: multi-objectives (annual).
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6. Conclusions and Future Work

In the building industry, growing attention to geometrical responsiveness owes its adaptability in
many ways to changes in surroundings and promises of sustainable and healthier built environments.
The architectural practice is transforming toward smart and intelligent environmental building design
and integrating BPS and optimization into the design process has become a major issue in finding
better ways to assure the rapid feedback of decision-making. However, despite significant interest and
advancements over the past few years, research on the performance-based design “process” to support
responsive building is in its infancy. Indeed, although high performance responsive building design
must be built upon the identification of controllable geometry (building envelope, in most cases) as
well as the environmental effectiveness of responsive forms, and there is a dearth of strong practices in
dynamic BPS and in the optimization of movable building forms during the early stages of building
design. This study proposed a methodology for designers to quickly identify optimized variations of
formal responsive patterns and performance of designs with remote sensor data measurements using
a unified design platform. In practice, lagging optimization solutions for building design have been
the most dominant barrier to the application of parametric digital tools for responsive building design.
T-APSSA, a novel rapid optimization algorithm hybridizing tabu, SA, and direct search was suggested
by taking a pragmatic approach to quicken the performance-based optimization of the dynamic forms
of building surfaces. As observed in the algorithm test (Figure 12), T-APSSA outperformed the existing
algorithms by far, taking advantage of the rapid convergence of local searching (PS) and the accuracy
of global/constrained searching (SA and Tabu). The algorithm and wireless data communication
integrated in the VPS-based parametric design software (Rhino) successfully supported streamlined
geometric design, optimization, and simulation.

The experiments in this study presented a comparative study of design optimization algorithms
with the suggestion of an advanced hybrid metaheuristics. For bi-directional parameter updates of
BPS, physical remote data communication equipment was interfaced via a virtual parametric design
tool. The application of the framework to the shading design process (Figure 15) indicates that a
deterministic approach to design optimization with predefined simulation parameters is ill-suited
to characterizing dynamic climatic adaptation in building design. Daylight simulation results also
demonstrated that the formal responses of building façades benefit the comfort and sustainability of
indoor spaces. It is now clearly understood that the combination of rapid optimization and sensor data
communication with machine-learning prediction augments the sustainable building design process,
making it far more suited to handling interactive forms and envisioning a potential of leveraging
BPS to the design and control of building actuation systems. The developed framework can be used
for virtual tests of the remote optimal controllability of the parametric design process, as well as
the rapid prototyping of responsive building designs. In the method, we used a digital building
model coupled with a physical data-transferring system, but the findings suggest that this integration
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could be extended to involve physical scale models or mockups with sensor-simulation networking to
characterize a variety of building performances, including energy use, human behavior, and so forth.

This understanding can be strengthened with various applications, yet this study is limited to
elucidating a single building component (façade window), focusing only on interior illuminance.
Accordingly, future studies need to follow up with further experiments that incorporate various types of
sensor-captured data, co-simulation of lighting, energy use, indoor air-flow, algorithmic advancements
to set dynamic parameters (annealing temperature and cooling rate of SA, TL size, etc.), and MOBPO
with different forms of façade/shading design modules.
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xθ Vector representing θ-th trial solution
∆i Mesh size parameter of direct search
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t Tabu list vector
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