Trade Openness and Carbon Emissions: Evidence from Belt and Road Countries
Abstract
:1. Introduction
2. Literature Review
2.1. The Pollution Haven Hypothesis
2.2. Trade Openness and Carbon Emissions
2.3. Real Income, Energy Consumption, and CO2 Emissions
3. Model and Empirical Analysis
3.1. Methodology and Data Collection
3.2. Data Tests and Analysis
3.2.1. Cross-Sectional Dependence Test
3.2.2. Panel Unit Root Test
3.2.3. Panel Cointegration Test
3.2.4. Panel Cointegration Estimates
3.2.5. Panel Causality Test
4. Results and Discussions
5. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WTO. 2017. Available online: https://www.wto.org/english/news_e/news17_e/fac_31jan17_e.htm (accessed on 10 February 2019).
- United Nations Statistics Division. 2017. Available online: https://comtrade.un.org/data (accessed on 10 February 2019).
- Peters, G.P.; Minx, J.C.; Weber, C.L.; Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. USA 2011, 108, 8903–8908. [Google Scholar] [CrossRef]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is free trade good for the environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.R. Determining the trade—Environment composition effect: The role of capital, labor and environmental regulations. J. Environ. Econ. Manag. 2003, 46, 363–383. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasreen, S.; Ahmed, K.; Hammoudeh, S. Trade openness—Carbon emissions nexus: The importance of turning points of trade openness for country panels. Energy Econ. 2017, 61, 221–232. [Google Scholar] [CrossRef]
- Sebri, M.; Ben-Salha, O. On the causal dynamics between economic growth, renewable energy consumption, CO2 emissions and trade openness: Fresh evidence from BRICS countries. Renew. Sustain. Energy Rev. 2014, 39, 14–23. [Google Scholar] [CrossRef]
- Andersson, F.N.G. International trade and carbon emissions: The role of Chinese institutional and policy reforms. J. Environ. Manag. 2018, 205, 29–39. [Google Scholar] [CrossRef]
- Sbia, R.; Shahbaz, M.; Hamdi, H. A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE. Econ. Model. 2014, 36, 191–197. [Google Scholar] [CrossRef]
- Boutabba, M.A. The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy. Econ. Model. 2014, 40, 33–41. [Google Scholar] [CrossRef]
- Huang, Y. Understanding China’s Belt & Road Initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar] [CrossRef]
- Chang, Y.-C. The ‘21st Century Maritime Silk Road Initiative’ and naval diplomacy in China. Ocean. Coast. Manag. 2018, 153, 148–156. [Google Scholar] [CrossRef]
- Cullinane, K.P.B.; Lee, P.T.-W.; Yang, Z.; Hu, Z.-H. Editorial: China’s Belt and Road Initiative. Transp. Res. Part E Logist. Transp. Rev. 2018, 117, 1–4. [Google Scholar] [CrossRef]
- US EIA. 2009. Available online: https://www.eia.gov/beta/international/ (accessed on 12 February 2019).
- Liu, Z.; Davis, S.J.; Feng, K.; Hubacek, K.; Liang, S.; Anadon, L.D.; Chen, B.; Liu, J.; Yan, J.; Guan, D. Targeted opportunities to address the climate–trade dilemma in China. Nat. Clim. Chang. 2016, 6, 201–206. [Google Scholar] [CrossRef]
- Anderson, J.E.; Wulfhorst, G.; Lang, W. Energy analysis of the built environment—A review and outlook. Renew. Sustain. Energy Rev. 2015, 44, 149–158. [Google Scholar] [CrossRef]
- Ren, S.; Yuan, B.; Ma, X.; Chen, X. The impact of international trade on China’s industrial carbon emissions since its entry into WTO. Energy Policy 2014, 69, 624–634. [Google Scholar] [CrossRef]
- Hasanov, F.J.; Liddle, B.; Mikayilov, J.I. The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting. Energy Econ. 2018, 74, 343–350. [Google Scholar] [CrossRef]
- Cherniwchan, J.; Copeland, B.R.; Taylor, M.S. Trade and the environment: New methods, measurements, and results. Annu. Rev. Econ. 2017, 9, 59–85. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y. The dynamic links between CO2 emissions, energy consumption and economic development in the countries along “the Belt and Road”. Sci. Total Environ. 2018, 645, 674–683. [Google Scholar] [CrossRef]
- Jiang, Y.; Sheu, J.-B.; Peng, Z.; Yu, B. Hinterland patterns of China Railway (CR) express in China under the Belt and Road Initiative: A preliminary analysis. Transp. Res. Part E Logist. Transp. Rev. 2018, 119, 189–201. [Google Scholar] [CrossRef]
- Rauf, A.; Liu, X.; Amin, W.; Ozturk, I.; Rehman, O.U.; Sarwar, S. Energy and ecological sustainability: Challenges and panoramas in Belt and Road Initiative countries. Sustainability 2018, 10, 2743. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger A., B. Environmental Impacts of a North American Free Trade Agreement; The National Bureau of Economic Research: Cambridge, MA, USA, 1991; pp. 1–57. [Google Scholar] [CrossRef]
- Shafik, N.; Bandyopadhyay, S. Economic Growth and Environmental Quality: Time-Series and Cross-Country Evidence. 1992. Available online: http://documents.worldbank.org/curated/en/833431468739515725/ Economic-growth-and-environmental-quality-time-series-and-cross-country-evidence (accessed on 10 February 2019).
- Beckerman, W. ’Sustainable development’: Is it a useful concept? Environ. Values 1994, 3, 191–209. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Co-integration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Trade, growth, and the environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Farhani, S.; Chaibi, A.; Rault, C. CO2 emissions, output, energy consumption, and trade in Tunisia. Econ. Model. 2014, 38, 426–434. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Trade and the Environment: Theory and Evidence; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Power, A.L.; Tennant, R.K.; Jones, R.T.; Tang, Y.; Du, J.; Worsley, A.T.; Love, J. Monitoring impacts of urbanisation and industrialisation on air quality in the Anthropocene using urban pond sediments. Front. Earth Sci. 2018, 6, 1–18. [Google Scholar] [CrossRef]
- Omri, A. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Econ. 2013, 40, 657–664. [Google Scholar] [CrossRef]
- Shahbaz, M.; Hye, Q.M.A.; Tiwari, A.K.; Leitão, N.C. Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renew. Sustain. Energy Rev. 2013, 25, 109–121. [Google Scholar] [CrossRef]
- Sohag, K.; Al Mamun, M.; Uddin, G.S.; Ahmed, A.M. Sectoral output, energy use, and CO2 emission in middle-income countries. Environ. Sci. Pollut. Res. 2017, 24, 9754–9764. [Google Scholar] [CrossRef]
- Managi, S.; Hibiki, A.; Tsurumi, T. Does trade openness improve environmental quality? J. Environ. Econ. Manag. 2009, 58, 346–363. [Google Scholar] [CrossRef]
- Jayanthakumaran, K.; Verma, R.; Liu, Y. CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India. Energy Policy 2012, 42, 450–460. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Ben Youssef, A.; M’Henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef]
- Farhani, S.; Ozturk, I. Causal relationship between CO2 emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia. Environ. Sci. Pollut. Res. 2015, 22, 15663–15676. [Google Scholar] [CrossRef]
- Keppler, J.H.; Mansanet-Bataller, M. Causalities between CO2, electricity, and other energy variables during phase I and phase II of the EU ETS. Energy Policy 2010, 38, 3329–3341. [Google Scholar] [CrossRef]
- Pao, H.-T.; Tsai, C.-M. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2010, 38, 7850–7860. [Google Scholar] [CrossRef]
- Ghosh, S. Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach. Energy Policy 2010, 38, 3008–3014. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Cheng, X.-M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J.; Mohd, S. Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the environmental Kuznets curve. Energy Policy 2012, 51, 184–191. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Acheampong, A.O. Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Econ. 2018, 74, 677–692. [Google Scholar] [CrossRef]
- Gorus, M.S.; Aydin, M. The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain. Energy 2019, 168, 815–822. [Google Scholar] [CrossRef]
- Boulatoff, C.; Jenkins, M. Long-term nexus between openness, income, and environmental quality. Int. Adv. Econ. Res. 2010, 16, 410–418. [Google Scholar] [CrossRef]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Ozturk, I. The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA region. Energy 2015, 84, 382–389. [Google Scholar] [CrossRef]
- Farhani, S.; Mrizak, S.; Chaibi, A.; Rault, C. The environmental Kuznets curve and sustainability: A panel data analysis. Energy Policy 2014, 71, 189–198. [Google Scholar] [CrossRef]
- Kohler, M. CO2 emissions, energy consumption, income and foreign trade: A South African perspective. Energy Policy 2013, 63, 1042–1050. [Google Scholar] [CrossRef]
- Stern, D.I. The environmental Kuznets curve after 25 years. J. Bioecon. 2017, 19, 7–28. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels. 2004, pp. 1–41. Available online: https://ssrn.com/abstract=572504 (accessed on 10 February 2019).
- Pesaran, M.H.; Ullah, A.; Yamagata, T. A bias-adjusted LM test of error cross-section independence. Econ. J. 2008, 11, 105–127. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.-F.; James Chu, C.-S. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econ. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Sinha, A.; Bhattacharya, J. Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities. Ecol. Indic. 2017, 72, 881–894. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Demetriades, P.O.; Law, S.H. Financial development and openness: Evidence from panel data. J. Dev. Econ. 2009, 89, 285–296. [Google Scholar] [CrossRef]
- Bildirici, M.E.; Kayıkçı, F. Economic growth and electricity consumption in former Soviet Republics. Energy Econ. 2012, 34, 747–753. [Google Scholar] [CrossRef]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels (Advances in Econometrics, Volume 15); Emerald Group Publishing Limited: Bingley, UK, 2001; pp. 93–130. [Google Scholar] [CrossRef]
- Frankel, J.; Rose, A. Is trade good or bad for the environment? Sorting out the causality. Rev. Econ. Stat. 2005, 87, 85–91. [Google Scholar] [CrossRef]
- Ozturk, I.; Uddin, G.S. Causality among carbon emissions, energy consumption and growth in India. Econ. Res. Ekonomska Istraživanja 2012, 25, 752–775. [Google Scholar] [CrossRef]
- Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017. Sci. Total Environ. 2019, 649, 31–49. [Google Scholar] [CrossRef]
- Beghin, J.; Roland-Holst, D.; Van der Mensbrugghe, D. Trade liberalization and the environment in the Pacific Basin: Coordinated approaches to Mexican trade and environment policy. Am. J. Agric. Econ. 1995, 77, 778–785. [Google Scholar] [CrossRef]
- Meltzer, J.P. Trade Liberalization and International Co-Operation: A Legal Analysis of the Trans-Pacific Partnership Agreement, Edward Elgar. 2014, pp. 1–32. Available online: https://ssrn.com/abstract=2326723 (accessed on 15 February 2019).
- Outlook, C.s.R.E. 2018. Available online: http://www.cnrec.org.cn/English/ (accessed on 15 February 2019).
Variable | Definition | Units of Measurement |
---|---|---|
CO2 | Carbon emissions per metric ton | Metric ton |
Y | GDP per capita | Current USD |
TR | Import + export | Current USD |
EC | Energy consumption | kg of oil equivalent per capita |
Countries | Variable | Breusch–Pagan LM | Pesaran LM | Pesaran CD |
---|---|---|---|---|
Belt and Road | 12,926.99 (0.0000) * | 242.3014 (0.0000) * | 22.43205 (0.0000) * | |
24,017.5 (0.0000) * | 470.9839 (0.0000) * | 154.6236 (0.0000) * | ||
24,985.2 (0.0000) * | 490.9374 (0.0000) * | 157.8545 (0.0000) * | ||
7994.459 (0.0000) * | 140.5943 (0.0000) * | 25.11911 (0.0000) * | ||
High-Income | 1185.95 (0.0000) * | 63.66259 (0.0000) * | 0.51182 (0.6088) | |
2907.51 (0.0000) * | 168.0475 (0.0000) * | 53.86982 (0.0000) * | ||
2988.747 (0.0000) * | 172.9732 (0.0000) * | 54.61348 (0.0000) * | ||
603.4995 (0.0000) * | 28.34632 (0.0000) * | 4.733538 (0.0000) * | ||
Middle-Income | 4183.259 (0.0000) * | 151.3334 (0.0000) * | 14.87076 (0.0000) * | |
6642.774 (0.0000) * | 247.8035 (0.0000) * | 81.33934 (0.0000) * | ||
6853.511 (0.0000) * | 256.0693 (0.0000) * | 82.66953 (0.0000) * | ||
2780.408 (0.0000) * | 96.30902 (0.0000) * | 17.34194 (0.0000) * | ||
Low-Income | 143.0766 (0.0000) * | 23.38349 (0.0000) * | 7.67568 (0.0000) * | |
299.109 (0.0000) * | 51.87097 (0.0000) * | 17.26065 (0.0000) * | ||
294.9485 (0.0000) * | 51.11136 (0.0000) * | 17.14719 (0.0000) * | ||
136.8153 (0.0000) * | 22.24034 (0.0000) * | 2.180673 (0.0000) * |
Panels/Series | Level | First Difference | ||
---|---|---|---|---|
Intercept | Intercept and Trend | Intercept | Intercept and Trend | |
Belt and Road | ||||
LLC Test | ||||
−3.422 (0.0003) * | −4.73 (0.0000) * | −11.91 (0.0000) * | −8.873 (0.0000) * | |
0.894 (0.8145) | −1.680 (0.0464) ** | −10.616 (0.0000) * | −8.153 (0.0000) * | |
−0.906 (0.1823) | −1.401 (0.0805) *** | −14.561 (0.0000) * | −11.23 (0.0000) * | |
−1.358 (0.0872) *** | −1.285 (0.0993) *** | −9.154 (0.0000)* | −7.365 (0.0000) * | |
IPS Test | ||||
0.857 (0.8044) | −1.475 (0.0700) *** | −15.574 (0.0000) * | −12.97 (0.0000) * | |
7.896 (1.0000) | 0.296 (0.6165) | −11.242 (0.0000) * | −6.881 (0.0000) * | |
7.067 (1.0000) | −0.958 (0.1689) | −14.994 (0.0000) * | −10.83 (0.0000) * | |
−0.948 (0.1715) | −1.449 (0.0736) *** | −13.411 (0.0000) * | −9.508 (0.0000) * | |
High-Income | ||||
LLC Test | ||||
−2.628 (0.0043) * | −0.613 (0.2697) | −7.7673 (0.0000) * | −5.677 (0.0000) * | |
−0.711 (0.2384) | −0.028 (0.4886) | −9.1453 (0.0000) * | −7.705 (0.0000) * | |
0.016 (0.5067) | −1.804 (0.0356) ** | −10.013 (0.0000) * | −8.107 (0.0000) * | |
−0.347 (0.3642) | 2.190 (0.9860) | −3.692 (0.0001) * | −2.561 (0.0052) * | |
IPS Test | ||||
−1.097 (0.1361) | −0.072 (0.4709) | −10.264 (0.0000) * | −9.075 (0.0000) * | |
3.740 (0.9999) | 0.250 (0.6003) | −7.607 (0.0000) * | −5.051 (0.0000) * | |
4.616 (1.0000) | −1.278 (0.1005) | −9.824 (0.0000) * | −7.54 (0.0000) * | |
−2.158 (0.0154) ** | 0.155 (0.5620) | −7.532 (0.0000) * | −5.66 (0.0000) * | |
Middle-Income | ||||
LLC Test | ||||
−3.277 (0.0005) * | −4.253 (0.0000) * | −8.146 (0.0000) * | −5.980 (0.0000) * | |
0.286 (0.6129) | −1.2978 (0.0972) *** | −5.611 (0.0000) * | −3.536 (0.0002) * | |
−1.143 (0.1264) | −0.7078 (0.2395) | −10.484 (0.0000) * | −8.474 (0.0000) * | |
−1.737 (0.0411) ** | −2.705 (0.0034) * | −7.536 (0.0000) * | −6.182 (0.0000) * | |
IPS Test | ||||
1.417 (0.9218) | −1.599 (0.0549) *** | −10.692 (0.0000) * | −8.243 (0.0000) * | |
5.503 (1.0000) | 0.682 (0.7525) | −7.290 (0.0000) * | −3.83 (0.0001) * | |
4.952 (1.0000) | 0.050 (0.5201) | −9.859 (0.0000) * | −6.704 (0.0000) * | |
0.208 (0.5826) | −1.472 (0.0705) *** | −9.869 (0.0000) * | −6.598 (0.0000) * | |
Low-Income | ||||
LLC Test | ||||
0.818 (0.7935) | −2.654 (0.004) * | −2.440 (0.0070) * | −1.356 (0.0874) *** | |
3.022 (0.9987) | −2.406 (0.0081) * | −5.154 (0.0000) * | −4.908 (0.0000) * | |
−0.642 (0.2602) | −0.909 (0.1815) | −2.933 (0.0017) * | −0.524 (0.3001) | |
0.371 (0.6447) | −1.908 (0.0282) ** | −5.003 (0.0000) * | −4.837 (0.0000) * | |
IPS Test | ||||
1.335 (0.9091) | −0.728 (0.2332) | −4.997 (0.0000) * | −4.645 (0.0000) * | |
4.849 (1.0000) | −0.950 (0.1709) | −4.118 (0.0000) * | −3.256 (0.0006) * | |
1.854 (0.9682) | −0.821 (0.2056) | −5.579 (0.0000) * | −3.929 (0.0000) * | |
0.518 (0.6981) | −1.303 (0.0961) *** | −5.026 (0.0000) * | −3.855 (0.0001) * |
Model | Panels | Statistics | P-Value | Model | Panels | Statistic | P-Value |
---|---|---|---|---|---|---|---|
Within-Dimension | Within-Dimension | ||||||
Panel v-Statistic | Belt and Road | 2.7042 | 0.0034 * | Panel v-Statistic | High-Income | 0.7829 | 0.2168 |
Panel rho-Statistic | −2.7354 | 0.0031 * | Panel rho-Statistic | −0.3463 | 0.3646 | ||
Panel PP-Statistic | −13.1135 | 0.0000 * | Panel PP-Statistic | −2.2617 | 0.0119 ** | ||
Panel ADF-Statistic | −2.4385 | 0.0074 * | Panel ADF-Statistic | −2.2013 | 0.0139 ** | ||
Between-Dimension | (Between-Dimension) | ||||||
Group rho-Statistic | 0.6731 | 0.7496 | Group rho-Statistic | 0.1584 | 0.5630 | ||
Group PP-Statistic | −14.9132 | 0.0000 * | Group PP-Statistic | −4.0045 | 0.0000 * | ||
Group ADF-Statistic | −4.2855 | 0.0000 * | Group ADF-Statistic | −2.5734 | 0.0050 * | ||
Within-Dimension | Within-Dimension | ||||||
Panel v-Statistic | Middle-Income | 2.5904 | 0.0048 * | Panel v-Statistic | Low-Income | 3.9026 | 0.0000 * |
Panel rho-Statistic | −3.4590 | 0.0003 * | Panel rho-Statistic | −1.7520 | 0.0399 ** | ||
Panel PP-Statistic | −9.4382 | 0.0000 * | Panel PP-Statistic | −3.9126 | 0.0000 * | ||
Panel ADF-Statistic | −1.3362 | 0.0907 *** | Panel ADF-Statistic | −1.8888 | 0.0295 ** | ||
Between-Dimension | Between-Dimension | ||||||
Group rho-Statistic | 0.112821 | 0.5449 | Group rho-Statistic | −0.6947 | 0.2436 | ||
Group PP-Statistic | −7.29825 | 0.0000 * | Group PP-Statistic | −5.3107 | 0.0000 * | ||
Group ADF-Statistic | −1.83946 | 0.0329 ** | Group ADF-Statistic | −2.3755 | 0.0088 * |
Dependent Variable | |||||
---|---|---|---|---|---|
Panel/Variables | Coefficient | P-Value | Panel/Variable | Coefficient | P-Value |
Belt and Road | Southeast Asia | ||||
−0.2055 | 0.0000 * | 0.1306 | 0.0000 * | ||
0.2240 | 0.0000 * | 0.2368 | 0.0000 * | ||
1.1648 | 0.0000 * | 0.7464 | 0.0000 * | ||
High-Income | Central Asia | ||||
−0.5800 | 0.0000 * | 0.0576 | 0.0303 ** | ||
0.4623 | 0.0000 * | 0.1174 | 0.0596 *** | ||
1.1857 | 0.0000 * | 0.7558 | 0.0000 * | ||
Middle-Income | Middle East/Africa | ||||
−0.0488 | 0.0000 * | −0.0773 | 0.0002 * | ||
0.0471 | 0.0124 ** | 0.3314 | 0.0000 * | ||
1.2701 | 0.0000 * | 0.6140 | 0.0000 * | ||
Low-Income | South Asia | ||||
0.0989 | 0.0000 * | 0.2209 | 0.0000 * | ||
0.3090 | 0.0000 * | 0.1861 | 0.0001 * | ||
1.096 | 0.0000 * | 1.2633 | 0.0000 * | ||
East Asia | Europe | ||||
0.3728 | 0.0000 * | 0.0666 | 0.0000 * | ||
−0.1172 | 0.2625 | −0.1407 | 0.0000 * | ||
0.6835 | 0.0000 * | 1.1414 | 0.0000 * |
Dependent Variables | Independent Variables | ||||
---|---|---|---|---|---|
ECT-1 | |||||
Short Run | Long Run | ||||
Belt and Road | |||||
0 | 1.2487 (0.5356) | 2.9302 (0.2310) | 17.3300 (0.0002) * | −0.0079 (0.0000) * | |
1.6195 (0.4450) | 0 | 0.3005 (0.8605) | 18.6802 (0.0001) * | 0.0011 (0.5428) | |
0.3517 (0.8387) | 3.7997 (0.1496) | 0 | 14.3249 (0.0008) * | 0.0025 (0.2859) | |
13.3974 (0.0012) * | 0.4795 (0.7868) | 0.0925 (0.9548) | 0 | −0.0022 (0.0320) ** | |
High-Income | |||||
0 | 1.3830 (0.5008) | 1.2084 (0.5465) | 12.3981 (0.0020) * | −0.0094 (0.0008) * | |
1.0366 (0.5955) | 0 | 0.7134 (0.7000) | 10.3203 (0.0057) * | −0.0082 (0.0120) ** | |
0.8481 (0.6544) | 0.0086 (0.9957) | 0 | 3.5804 (0.1669) | 0.0028 (0.5079) | |
4.3611 (0.1130) | 1.1299 (0.5684) | 2.3906 (0.3026) | 0 | 0.0024 (0.2079) | |
Middle-Income | |||||
0 | 0.3361 (0.8453) | 5.0801 (0.0789) *** | 6.5886 (0.0371) ** | −0.0031 (0.0000) * | |
2.0913 (0.3514) | 0 | 1.6337 (0.4418) | 8.3475 (0.0154) ** | 0.0001 (0.9209) | |
0.1346 (0.9349) | 7.0280 (0.0298) ** | 0 | 7.9989 (0.0183) ** | −0.0002 (0.8139) | |
25.6053 (0.0000)* | 1.7689 (0.4129) | 0.7490 (0.6876) | 0 | −0.0010 (0.0065) * | |
Low-Income | |||||
0 | 1.4921 (0.4742) | 7.2661 (0.0264) ** | 6.8192 (0.0331) ** | −0.0536 (0.0000) * | |
2.3161 (0.3141) | 0 | 0.6581 (0.7196) | 6.3442 (0.0419) ** | −0.0149 (0.1480) | |
2.9359 (0.2304) | 0.4687 (0.7910) | 0 | 4.3696 (0.1125) | −0.0163 (0.2986) | |
1.4947 (0.4736) | 0.8927 (0.6399) | 1.6468 (0.4389) | 0 | −0.0281 (0.0002) * | |
East Asia | |||||
0 | 1.3295 (0.5144) | 0.7680 (0.6811) | 0.4543 (0.7968) | −0.0901 (0.2115) | |
5.6673 (0.0588) *** | 0 | 1.4974 (0.4730) | 8.8903 (0.0117) ** | 0.0173 (0.7982) | |
7.3016 (0.0260) ** | 4.6727 (0.0967) *** | 0 | 6.0167 (0.0494) ** | −0.1629 (0.0378) ** | |
1.6397 (0.4405) | 8.5985 (0.0136) ** | 7.2096 (0.0272) ** | 0 | −0.0811 (0.0004) * | |
Southeast Asia | |||||
0 | 2.0055 (0.3669) | 0.7635 (0.6827) | 4.9328 (0.0849) *** | 0.0085 (0.1926) | |
0.9883 (0.6101) | 0 | 0.7069 (0.7022) | 0.6981 (0.7053) | 0.0015 (0.8169) | |
2.0244 (0.3634) | 15.23863 (0.0005) * | 0 | 0.9334 (0.6270) | 0.0268 (0.0001) | |
12.5851 (0.0018) * | 2.7928 (0.2475) | 0.9591 (0.6190) | 0 | 0.0015 (0.6956) | |
Central Asia | |||||
0 | 2.3240 (0.3129) | 5.3926 (0.0675) *** | 11.7651 (0.0028) * | 0.0077 (0.7782) | |
3.4059 (0.1821) | 0 | 0.7016 (0.7041) | 3.5999 (0.1653) | 0.0548 (0.0646) | |
10.5200 (0.0052) * | 5.6221 (0.0601) *** | 0 | 8.1708 (0.0168) ** | −0.0897 (0.0325) ** | |
2.9591 (0.2277) | 3.0529 (0.2173) | 0.1795 (0.9142) | 0 | 0.0104 (0.5874) |
Dependent Variables | Independent Variables | ||||
---|---|---|---|---|---|
ECT-1 | |||||
Short Run | Long Run | ||||
Middle East/Africa | |||||
0 | 4.7957(0.0909) *** | 6.3626(0.0415) ** | 6.5713(0.0374) ** | 0.0001(0.9906) | |
1.1447(0.5642) | 0 | 0.2670(0.8750) | 12.8194(0.0016) * | 0.0058(0.6935) | |
0.0507(0.9749) | 4.8561(0.0882) *** | 0 | 3.1981(0.2021) | 0.0327(0.1114) | |
1.3344(0.5131) | 1.2602(0.5325) | 2.1999(0.3329) | 0 | 0.0034(0.7136) | |
South Asia | |||||
0 | 0.5075(0.7759) | 2.4841(0.2888) | 1.5018(0.4719) | 0.0002(0.5460) | |
0.1256(0.9391) | 0 | 1.4524(0.4837) | 1.4525(0.4837) | −0.0001(0.9709) | |
1.0750(0.5842) | 7.7166(0.0211) ** | 0 | 3.0753(0.2149) | 0.0013(0.0204) | |
1.3776(0.5022) | 2.7386(0.2543) | 2.8025(0.2463) | 0 | 0.0004(0.0095) | |
Europe | |||||
0 | 0.3553(0.8372) | 6.6823(0.0354) ** | 4.1866(0.1233) | −0.0169(0.0046) * | |
2.9953(0.2237) | 0 | 0.1447(0.9302) | 4.8213(0.0898) *** | −0.0283(0.0032) * | |
1.6183(0.4452) | 1.5161(0.4686) | 0 | 3.1959(0.2023) | 0.0115(0.3078) | |
32.4836(0.0000) * | 3.2300(0.1989) | 5.8535(0.0536) *** | 0 | 0.0116(0.0061) |
Dependent Variable | |||||
---|---|---|---|---|---|
Variable | Coefficient | P-Value | Variable | Coefficient | P-Value |
Belt and Road | Southeast Asia | ||||
−1.1147 | 0.0000 * | −1.4538 | 0.0000 * | ||
1.5184 | 0.0000 * | 2.555 | 0.0003 * | ||
−0.0590 | 0.0000 * | −0.0814 | 0.1389 | ||
1.0489 | 0.0000 * | 0.8257 | 0.0000 * | ||
Turning point | USD 386,314 | Turning point | USD 8,612,713.642 | ||
High-Income | Central Asia | ||||
−1.2342 | 0.0000 * | 0.1865 | 0.0003 * | ||
1.5347 | 0.0000 * | 1.5288 | 0.0000 * | ||
−0.0710 | 0.0000 * | −0.0639 | 0.0000 * | ||
1.0448 | 0.0000 * | 0.9160 | 0.0000 * | ||
Turning point | USD 57,362.316 | Turning point | USD 338,856.956 | ||
Middle-Income | Middle East/Africa | ||||
−1.0986 | 0.0000 * | −1.1413 | 0.0000 * | ||
1.11871 | 0.0001 * | 1.4808 | 0.0293 ** | ||
−0.0647 | 0.9370 | −0.0633 | 0.6470 | ||
0.9985 | 0.0000 * | 0.9209 | 0.0000 * | ||
Turning point | USD 6212.84 | Turning point | USD 227,142.60 | ||
Low-Income | South Asia | ||||
0.3320 | 0.0799 *** | −1.4674 | 0.0000 * | ||
−1.3137 | 0.0000 * | 8.7983 | 0.0000 * | ||
0.0785 | 0.0000 * | −0.3481 | 0.0000 * | ||
−0.3756 | 0.0545 *** | 0.5951 | 0.0000 * | ||
Turning point | USD 4521.805 | Turning point | USD 308,909.7981 | ||
East Asia | Europe | ||||
−1.0646 | 0.0000 * | −1.1622 | 0.0000 * | ||
1.8589 | 0.0002 * | 1.5937 | 0.0003 * | ||
−0.1144 | 0.1164 | −0.0990 | 0.3096 | ||
0.6946 | 0.0792 *** | 0.0617 | 0.0000 * | ||
Turning point | USD 3460.3423 | Turning point | USD 3119.582 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Attuquaye Clottey, S.; Geng, Y.; Fang, K.; Clifford Kofi Amissah, J. Trade Openness and Carbon Emissions: Evidence from Belt and Road Countries. Sustainability 2019, 11, 2682. https://doi.org/10.3390/su11092682
Sun H, Attuquaye Clottey S, Geng Y, Fang K, Clifford Kofi Amissah J. Trade Openness and Carbon Emissions: Evidence from Belt and Road Countries. Sustainability. 2019; 11(9):2682. https://doi.org/10.3390/su11092682
Chicago/Turabian StyleSun, Huaping, Samuel Attuquaye Clottey, Yong Geng, Kai Fang, and Joshua Clifford Kofi Amissah. 2019. "Trade Openness and Carbon Emissions: Evidence from Belt and Road Countries" Sustainability 11, no. 9: 2682. https://doi.org/10.3390/su11092682
APA StyleSun, H., Attuquaye Clottey, S., Geng, Y., Fang, K., & Clifford Kofi Amissah, J. (2019). Trade Openness and Carbon Emissions: Evidence from Belt and Road Countries. Sustainability, 11(9), 2682. https://doi.org/10.3390/su11092682