Serpentinite from Moeche (Galicia, North Western Spain). A Stone Used for Centuries in the Construction of the Architectural Heritage of the Region
Abstract
:1. Introduction
2. Geological Context
3. Materials and Methods
3.1. Sampling
3.2. Physical Properties
3.3. Ultrasonic Test
- νd: Dynamic Poisson coefficient.
- VP: Compressional ultrasonic wave velocity
- VS: Shear ultrasonic wave velocity
- Ed: Dynamic Young modulus
- ρ: Bulk density
3.4. Uniaxial Compression Strength and Elastic Modulus (Static)
3.5. Mineralogy and Petrographic Analyses
4. Results
- Preferentially mesh texture and sometimes hour-glass texture. This is a typical texture of olivine serpentinization and is frequently observed in nodulous areas (not affected by foliation or fractures) (Figure 5a).
- Bastite texture. Serpentine mineral aggregates elongated and with similar orientation. This is a serpentine that has replaced old pyroxenes, and in these cases, the presence of oriented magnetite following pyroxene exfoliation surfaces is quite frequent (Figure 5b).
- Thorn texture. This has a higher degree of crystallization than the previous textures and is developed from them. Original minerals may not be clear, although there is a tendency for this texture to appear normal to olivine, and parallel to the pyroxenes (Figure 5c).
- Fibrous serpentine (chrysotile) growing normal or parallel to fractures (Figure 5d).
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Hanley, D.S. Serpentinites: Records of Tectonic and Petrological History; Oxford University Press: New York, NY, USA, 1996; p. 277. [Google Scholar]
- Meierding, T.C. Weathering of serpentine stone buildings in the Philadelphia region: a geographic approach related to acidic deposition. In Stone Decay in the Architectural Environment; Turkington, A.V., Ed.; Geological Society of America: Denver, CO, USA, 2005; Volume 399, pp. 17–25. [Google Scholar] [CrossRef]
- Pereira, M.D.; Peinado, M.; Yenes, M.; Monterrubio, S.; Nespereira, J.; Blanco, J.A. Serpentinites from Cabo Ortegal (Galicia, Spain): A search for correct use as ornamental stones. In Natural Stone Resources for Historical Monuments; Prikryl, R., Török, A., Eds.; Geological Society: London, UK, 2010; Volume 333, pp. 81–85. [Google Scholar]
- Navarro, R.; Pereira, D.; Rodríguez-Navarro, C.; Sebastian-Pardo, E. The Sierra Nevada serpentinites: The serpentinites most used in Spanish heritage buildings. In Global Heritage Stone: Towards International Recognition of Building and Ornamental Stones; Pereira, D., Marker, B., Kramar, S., Cooper, B., Schouenborg, B., Eds.; Geological Society: London, UK, 2015; Volume 407, pp. 101–108. [Google Scholar]
- Pereira, M.D.; Blanco, J.A.; Peinado, M. Study on Serpentinites and the consequence of the misuse of natural stone in buildings for construction. J. Mater. Civ. Eng. 2013, 25, 1563–1567. [Google Scholar] [CrossRef]
- Navarro, R.; Pereira, D.; Gimeno, A.; Del Barrio, S. Influence of natural carbonation process in serpentinites used as construction and building materials. Constr. Build. Mater. 2018, 170, 537–546. [Google Scholar] [CrossRef]
- Coumantakis, J. Comportement des peridotites et des serpentinites de la grece en travaux publics et leur proprietes physiques et mecaniques. Bull. Eng. Geol. Environ. 1982, 25, 53–60. [Google Scholar] [CrossRef]
- Glawe, U.; Upreti, B. Better understanding of the strengths of serpentinite bimrock and homogeneous serpentinite. Felsbau Rock Soil Eng. 2004, 22, 53–60. [Google Scholar]
- Ozsoy, E.A.; Yilmaz, G.; Arman, H. Physical, mechanical and mineralogical properties of ophiolitic rocks at the Yakakayi dam site, Eskisehir, Turkey. Sci. Res. Essays 2010, 5, 2579–2587. [Google Scholar]
- Marinos, P.; Hoek, E.; Marinos, V. Variability of the engineering properties of rock masses quantified by the geological strength index: The case of ophiolites with special emphasis on tunnelling. Bull. Eng. Geol. Environ. 2005, 65, 129–142. [Google Scholar] [CrossRef]
- Christensen, N.I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 2004, 46, 795–816. [Google Scholar] [CrossRef]
- Ismael, I.; Hassan, M. Characterization of some Egyptian serpentinites used as ornamental stones. Chin. J. Geochem. 2008, 27, 140–149. [Google Scholar] [CrossRef]
- Diamantis, K.; Gartzos, E.; Migiros, G. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from central Greece: Test results and empirical relations. Eng. Geol. 2009, 108, 199–207. [Google Scholar] [CrossRef]
- Kurtulus, C.; Bozkurt, A.; Endes, H. Physical and mechanical properties of serpentinized ultrabasic rocks in NW Turkey. Pure Appl. Geophys. 2012, 169, 1205–1215. [Google Scholar] [CrossRef]
- Navarro, R.; Pereira, M.D.; Gimeno, A.; Del Barrio, S. Verde Macael: A serpentinite wrongly referred to as a marble. Geoscience 2013, 3, 102–113. [Google Scholar] [CrossRef]
- Navarro, R.; Pereira, D.; Gimeno, A.; del Barrio, S. Characterization of the natural variability of Macael serpentinite (Verde Macael) (Almería, south of Spain) for their appropriate use in the building industry. In Engineering Geology for Society and Territory. Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer International Publishing AG: Cham, Switzerland, 2015; Volume 5, pp. 209–211. [Google Scholar]
- Burgoa-Fernández, J.J. El patrimonio etnográfico y el arte popular: cruceros y petos de ánimas de los municipios de Moeche y San Sadurniño. Anuario Brigantino 2000, 23, 477–494. [Google Scholar]
- Pereira, M.D.; Blanco, J.A.; Yenes, M.; Peinado, M. Las serpentinitas y su correcta utilización en construcción. Roc Maquina 2005, 9, 24–27. [Google Scholar]
- Pereira, M.D.; Peinado, M.; Blanco, J.A.; Yenes, M. Geochemical characterization of serpentinites at Cabo Ortegal, northwestern Spain. Can. Mineral. 2008, 46, 317–327. [Google Scholar] [CrossRef]
- Blanco, J.; Peinado, M.; Pereira, D.; Yenes, M.; Nespereira, J.; Monterrubio, S. Mineralogy of serpentinites: A clue for their use as ornamental stones. Geophys. Res. Abstr. 2007, 9, 05494. [Google Scholar]
- ASTM. C-1526-02 Standard Specification for Serpentine Dimension Stone; American Society for Testing and Materials International: Pennsylvania, PA, USA, 2002; p. 2. [Google Scholar]
- Matte, P. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 2003, 13, 122–128. [Google Scholar] [CrossRef]
- Arenas, R.; Martínez-Catalán, J.R.; Sánchez-Martínez, S.; Díaz-García, F.; Abati, J.; Fernández-Suárez, J.; Andonaegui, P.; Gómez-Barreiro, J. Paleozoic ophiolites in the Variscan suture of Galicia (northwest Spain): Distribution, characteristics, and meaning. In 4-D Framework of Continental Crust; Hatcher, J.R.D., Carlson, M.P., McBride, J.H., Martínez-Catalán, J.R., Eds.; Geological Society of America: Denver, CO, USA, 2007; Volume 200, pp. 425–444. [Google Scholar]
- Arenas, R.; Sánchez-Martínez, S.; Castiñeiras, P.; Jeffries, T.E.; Díez-Fernández, R.; Andonaegui, P. The basal tectonic mélange of the Cabo Ortegal Complex (NW Iberian Massif): A key unit in the suture of Pangea. J. Iberian Geol. 2009, 35, 85–125. [Google Scholar]
- Albert, R.; Arenas, R.; Sánchez-Martínez, S.; Gerdes, A. The eclogite facies gneisses of the Cabo Ortegal Complex (NW Iberian Massif): Tectonothermal evolution and exhumation model. J. Iberian Geol. 2012, 38, 389–406. [Google Scholar] [CrossRef]
- Ordóñez-Casado, B.; Gebauer, D.; Schäfer, H.J.; Gil Ibarguchi, J.I.; Peucat, J.J. A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics 2001, 332, 359–385. [Google Scholar] [CrossRef]
- Mendia, M.; Ibarguchi, J.I. Petrografía y condiciones de formación de las rocas ultramáficas con granate asociadas a las eclogitas de Cabo Ortegal. Geogaceta 2005, 37, 31–34. [Google Scholar]
- Hawkins, A.B. Aspects of rock strength. Bull. Eng. Geol. Environ. 1998, 57, 17–30. [Google Scholar] [CrossRef]
- Benavente, D.; Martínez-Martínez, J.; Jáuregui, P.; Rodríguez, M.A.; García del Cura, M.A. Assesment of the strength of building rocks using signal processing procedures. Constr. Build. Mater. 2006, 20, 562–568. [Google Scholar] [CrossRef]
- AENOR. Geotecnia: ensayos de campo y de laboratorio; Asociacion Española De Normalizacion Y Certificacion: Madrid, Spain, 1999; p. 385. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef] [Green Version]
- ASTM. C1721-15 Standard Guide for Petrographic Examination of Dimension Stone; American Society for Testing and Materials International: Pennsylvania, PA, USA, 2015; p. 2. [Google Scholar]
- Jaeger, J.C. Shear failure of anisotropic rock. Geol. Mag. 1960, 97, 65–72. [Google Scholar] [CrossRef]
- Wicks, F.J.; Whittaker, E.J.W. Serpentinite textures and serpentinization. Can. Mineral. 1977, 15, 459–488. [Google Scholar]
- Donath, F.A. Strength variaton and deformational behaviour of anisotropic rocks. In State of Stress in the Earth’s Crust; Judd, W.R., Ed.; Elsevier: New York, NY, USA, 1964; pp. 281–298. [Google Scholar]
- Hoek, E. Fracture of anisotropic rock. J. South. Afr. Inst. Min. Metall. 1964, 64, 510–518. [Google Scholar]
- Singh, J.; Ramamurthy, T.; Venkatappa Rao, G. Strength anisotropies in rocks. Ind. Geotech. J. 1989, 19, 147–166. [Google Scholar]
- Ramamurthy, T. Strength, modulus responses of anisotropic rocks. In Comprehensive Rock Engineering; Hutson, J.A., Ed.; Pergamon: Oxford, UK, 1993; Volume 1, pp. 313–329. [Google Scholar]
- ISRM. Rock characterization. Testing and monitoring. In Suggested Methods Prepared by the Commission on Testing Methods; Brown, E.T., Ed.; International Society for Rock Mechanics; ISRM Turkish National Group; Pergamon Press: Ankara, Turkey, 1981; p. 221. [Google Scholar]
- Deere, D.U.; Miller, R.P. Engineering Classification and Index Properties for Intact Rock; U.S. Air Force Systems Command Air Force Weapons Lab.: Kirtland Air Force Base, NM, USA, 1966; p. 324. [Google Scholar]
- Pereira, M.D.; Neves, L.; Pereira, A.; González-Neila, C. Natural radioactivity in ornamental stones: An approach to its study using stones from Iberia. Bull. Eng. Geol. Environ. 2011, 70, 543–547. [Google Scholar] [CrossRef]
- Benavente, D. Propiedades físicas y utilización de rocas ornamentales. In Utilización de Rocas y Minerales Industriales. Seminarios de la Sociedad Española de Mineralogía; García del Cura, M.A., Cañaveras, J.C., Eds.; Sociedad Española de Mineralogía: Madrid, Spain, 2006; Volume 2, pp. 123–153. [Google Scholar]
- Romana, M.; Vásárhelyi, B. A Discussion on the decrease of unconfined compressive strength between saturated and dry rock samples. In Proceedings of the 11th ISRM Congress, Lisbon, Portugal, 9–13 July 2007. [Google Scholar]
- Siegesmund, S.; Dürrast, H. Physical and mechanical properties of rocks. In Stone in Architecture: Properties, Durability, 4th ed.; Siegesmund, S., Snethlage, R., Eds.; Springer: Berlin, Germany, 2011; pp. 97–225. [Google Scholar]
- Kahraman, S. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock Mech. Min. Sci. 2001, 38, 981–994. [Google Scholar] [CrossRef]
- Tsiambaos, G.; Sabatakakis, N. Considerations on strength of intact sedimentary rocks. Eng. Geol. 2004, 72, 261–273. [Google Scholar] [CrossRef]
- Sonmez, H.; Gokceoglu, C.; Medley, E.W.; Tuncay, E.; Nefeslioglu, H.A. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci. 2006, 43, 554–561. [Google Scholar] [CrossRef]
- Yesiloglu-Gultekin, N.; Gokceoglu, C.; Sezer, E.A. Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performance. Int. J. Rock Mech. Min. Sci. 2013, 62. [Google Scholar] [CrossRef]
- Nespereira, J.; Blanco, J.A.; Yenes, M.; Pereira, D. Irregular silica cementation in sandstones and its implication on the usability as building stone. Eng. Geol. 2010, 115, 167–174. [Google Scholar] [CrossRef]
- Ulusay, R.; Türeli, K.; Ider, M.H. Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng. Geol. 1994, 38, 135–157. [Google Scholar] [CrossRef]
- Moos, D.; Pezard, P.A. Relationships between strengths and physical properties of samples recovered during Legs 137, 140, and 148 from Hole 504B. In Proceedings ODP, Scientific Results; Alt, J.C., Kinoshita, H., Stokking, L.B., Michael, P.J., Eds.; Ocean Drilling Program: College Station, TX, USA, 1996; Volume 148, pp. 401–407. [Google Scholar]
- Gupta, A.S.; Seshagiri Rao, K. Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state. Eng. Geol. 2000, 56, 257–274. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; García del Cura, M.A. Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull. Eng. Geol. Environ. 2011, 71, 263–268. [Google Scholar] [CrossRef]
- Al-Shayea, N.A. Effects of testing methods and conditions on the elastic properties of limestone rock. Eng. Geol. 2004, 74, 139–156. [Google Scholar] [CrossRef]
- Cressey, B.A.; Whittaker, E.J.W. Five-fold symmetry in chrysotile asbestos revealed by transmission electron microscopy. Mineral. Mag. 1993, 5, 729–732. [Google Scholar] [CrossRef]
Id | Bulk Density | Petrography | UCS | VP/Vs | Strain Gauge | XRD | Water Absorption |
---|---|---|---|---|---|---|---|
M-2d | X | X (2) | X | X | X | X | - |
M-3a | X | X (1) | X | X | X | X | - |
M-3b | X | X (1) | X | X | X fail | X | - |
M-3c | X | - | - | X | - | X | X |
M-3e | X | X (1) | X | X | X | - | X |
M-4a | X | X (1) | X | X | X fail | X | - |
M-4c | X | X (1) | X | X | X | X | - |
M-5a | X | X (1) | X | X | X | X | - |
M-5b | X | X (1) | X | X | X | X | - |
M-5c | X | X (1) | X | X | X | - | X |
M-7a1 | X | X (1) | X | X | X | X | - |
M-7a2 | X | - | - | X | - | - | - |
M-7b1 | X | - | - | X | - | - | - |
M-7b2 | X | X (1) | X | X | X | X | X |
M-7c1 | X | - | - | X | - | X | X |
M-7c2 | X | X (1) | X | X | X | - | X |
M-8a | X | - | - | X | - | X | - |
M-8c | X | X (1) | X | X | X | X | - |
M-8d | X | X (1) | X | X | X | X | X |
M-10a | X | X (2) | X | X | X | X | - |
M-10b | X | - | - | X | - | X | X |
Total | 21 | 17 | 15 | 21 | 15 | 16 | 8 |
Statistic Parameter | Max | Min | Average | Median | Standard Deviation | CV | Total Number of Measurements |
---|---|---|---|---|---|---|---|
ρ (kg/m3) | 2838 | 2597 | 2747 | 2759 | 75 | 3% | 21 |
a (%) | 0.7 | 0.1 | 0.4 | 0.5 | 0.2 | 50% | 8 |
VP (m/s) | 5914 | 1859 | 4673 | 4731 | 1098 | 23% | 21 |
VS (m/s) | 3342 | 1264 | 2657 | 2722 | 567 | 21% | 21 |
VP/VS | 2.05 | 1.35 | 1.75 | 1.23 | 0.18 | 10% | 21 |
VP (m/s)(Sat) | 5983 | 3258 | 5079 | 5082 | 837 | 16% | 9 |
VS (m/s)(Sat) | 3257 | 1608 | 2738 | 2728 | 499 | 18% | 9 |
Ed (GPa) | 78 | 9 | 51 | 49 | 20 | 39% | 21 |
Poisson (νd) | 0.34 | 0.07 | 0.25 | 0.25 | 0.07 | 28% | 20 |
UCS (MPa) | 119.6 | 24.2 | 57.1 | 59 | 24 | 42% | 15 |
Es (GPa) | 66 | 12 | 39 | 44 | 16 | 41% | 15 |
Poisson (νs) | 0.48 | 0.08 | 0.22 | 0.18 | 0.14 | 64% | 13 |
Sample | Serpentine | Magnesite | Talc | Dolomite |
---|---|---|---|---|
M-10a | 100 | 0 | 0 | 0 |
M-2d | 89 | 0 | 0 | 11 |
M-8c | 84 | 12 | 4 | 0 |
M-4c | 79 | 17 | 4 | 0 |
M-7c2 | 79 | 14 | 7 | 0 |
M-4a | 78 | 16 | 6 | 0 |
M-7b2 | 71 | 23 | 6 | 0 |
M-8d | 68 | 25 | 6 | 0 |
M-7a1 | 62 | 29 | 9 | 0 |
M-5a | 53 | 38 | 9 | 0 |
M-3e | 50 | 34 | 12 | 3 |
M-5b | 50 | 24 | 25 | 0 |
M-5c | 50 | 24 | 25 | 0 |
M-3b | 49 | 41 | 8 | 2 |
M-3a | 48 | 40 | 10 | 3 |
Max | 100 | 41 | 25 | 11 |
Min | 48 | 0 | 0 | 0 |
Average | 67 | 22 | 9 | 1 |
Standard Deviation | 16.3 | 12.4 | 7.3 | 2.9 |
Origin | PARAMETER | ||||||
---|---|---|---|---|---|---|---|
UCS (MPa) | ρ (kg/m3) | a (%) | VP (m/s) | VS (m/s) | |||
Moeche (Spain) (this paper) | m | 24 | 2600 | 0.10 | 1859 | 1264 | |
Av | 57 | 2750 | 0.40 | 4673 | 2657 | ||
M | 129 | 2840 | 0.70 | 5914 | 3342 | ||
SD | 24 | 70 | 0.20 | 1098 | 567 | ||
Egypt [12] | m | 89 | 2480 | 0.01 | - | - | |
Av | 152 | 2520 | 0.10 | - | - | ||
M | 189 | 2590 | 0.20 | - | - | ||
SD | 32 | 30 | 0.06 | - | - | ||
Greece [13] | m | 19 | 2490 | 0.14 | 4842 | 2425 | |
Av | 60 | 2610 | 0.57 | 5344 | 2783 | ||
M | 126 | 2730 | 1.84 | 5789 | 3109 | ||
SD | 27 | 60 | 0 | 225 | 170 | ||
Turkey [14] | m | 22 | 2430 | 0.16 | 4265 | - | |
Av | 54 | 2564 | 0.46 | 5018 | - | ||
M | 77 | 2660 | 1.33 | 5461 | - | ||
SD | 16 | 58 | 0.39 | 341 | - | ||
South of Spain [6] | Granada | m | 331 | 2658 | 0.19 | 5532 | - |
Av | 346 | 2662 | 0.26 | 5646 | - | ||
M | 361 | 2666 | 0.33 | 5589 | - | ||
SD | 51 | 18 | 0.10 | 457 | - | ||
Macael (Carbonated) | m | 139 | 2704 | 0.10 | 6024 | - | |
Av | 227 | 2796 | 0.13 | 6078 | - | ||
M | 315 | 2888 | 0.16 | 6132 | - | ||
SD | 43 | 32 | 0.03 | 309 | - | ||
Macael (Non-carbonated) | m | 246 | 2650 | 0.42 | 5308 | - | |
Av | 279 | 2949 | 0.48 | 5203 | - | ||
M | 263 | 2800 | 0.53 | 5378 | - | ||
SD | 61 | 134 | 0.10 | 673 | - |
SAMPLE | UCS (MPa) | ISRM CLASSIF | FOLIATION | MACROSCOPIC FEATURES | FRACTURE SURFACE | FAILURE ANGLE |
---|---|---|---|---|---|---|
M-2d | 120 | VS | No foliation | Nodulous, scarce foliation. Anisotropy due to fractures. Brecciated aspect. | Does not follow previous orientations. Breaks minerals. | 30° |
M-3a | 51 | S | 60–90° | Foliated, nodulous aspect locally. Anisotropic aspect. | Following foliation, within an area where talc is predominant and aligned carbonates appear. | 75° |
M-3b | 24 | W | 60–90° | Foliated, nodulous aspect locally. Anisotropic aspect. | Foliation in talc-rich area. | 75° |
M-3e | 52 | S | 50–60° | Foliated, nodulous aspect locally. | Following foliation. | 90° |
M-4a | 60 | S | 70° | Nodulous and irregular fractures. Scarce foliation. Anisotropic aspect. | Following fractures. | 70° |
M-4c | 60 | S | 20–45° | Nodulous and irregular fractures. Scarce foliation. Anisotropic aspect. | Subvertical, locally following foliation. | 80° |
M-5a | 68 | S | 80° | Irregular. Anisotropic aspect. | Affects both foliated and unfoliated areas. | 60° |
M-5b | 60 | S | 60–70° | Two main foliations easily recognized in the specimen. Important failure at 60°. Anisotropic aspect. | Previous carbonated plane. | 60° |
M-5c | 25 | W | 60–90° | Nodulous areas with mineral alignments (80°–85°) and variable fissures (60°–90°). Anisotropic aspect. | Previous carbonated plane. | 50° |
M-7a1 | 52 | S | 70° | Foliated, locally nodulous aspect. Brecciated. | Carbonated foliation with talc-rich bands. | 70° |
M-7b2 | 87 | S | 40–80° | Nodulous, scarce foliation. Anisotropy due to fractures. Anisotropic aspect. | Partially follows foliation. | 75° |
M-7c2 | 70 | S | 45–70° | Foliated, locally nodulous aspect. Brecciated aspect. | Talc in the foliation and parallel to carbonated bands. | 65° |
M-8c | 59 | S | 40–65° | Foliation marked by fractures and nodulous zones in between. Brecciated and foliated area. | Foliation, but not always. | 45° |
M-8d | 36 | M | No foliation | Irregular due to several orientations. Anisotropic aspect. | Foliation | 55° |
M-10a | 35 | M | 0–50° | Irregular due to several orientations. Massive aspect. | Foliation | 40° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nespereira, J.; Navarro, R.; Monterrubio, S.; Yenes, M.; Pereira, D. Serpentinite from Moeche (Galicia, North Western Spain). A Stone Used for Centuries in the Construction of the Architectural Heritage of the Region. Sustainability 2019, 11, 2700. https://doi.org/10.3390/su11092700
Nespereira J, Navarro R, Monterrubio S, Yenes M, Pereira D. Serpentinite from Moeche (Galicia, North Western Spain). A Stone Used for Centuries in the Construction of the Architectural Heritage of the Region. Sustainability. 2019; 11(9):2700. https://doi.org/10.3390/su11092700
Chicago/Turabian StyleNespereira, José, Rafael Navarro, Serafín Monterrubio, Mariano Yenes, and Dolores Pereira. 2019. "Serpentinite from Moeche (Galicia, North Western Spain). A Stone Used for Centuries in the Construction of the Architectural Heritage of the Region" Sustainability 11, no. 9: 2700. https://doi.org/10.3390/su11092700
APA StyleNespereira, J., Navarro, R., Monterrubio, S., Yenes, M., & Pereira, D. (2019). Serpentinite from Moeche (Galicia, North Western Spain). A Stone Used for Centuries in the Construction of the Architectural Heritage of the Region. Sustainability, 11(9), 2700. https://doi.org/10.3390/su11092700