Mobile Apps for Helping Patient-Users: Is It Still Far-Fetched?
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Our Proposal
3.2. The First Phase: Evaluation and Appraisal
3.3. The Second Phase: Construction of an Ann and Development of an App
3.4. The Third Phase: External Validation of the New System (App+ANN)
- 1.
- Continuous external validation by other Medical Units and professionals in the field, therefore allowing continuous re-adjustment of efficiency and stability of the ANN. This stage involves an extended review and certification process, achieved through the development and use of standardized vocabularies and interfaces for data exchange, storage and reporting.
- 2.
- Running alongside, a feedback from public health experts and Health Organizations is necessary; this can be accomplished by taking into account factors as: comparative impact of false-positives and false-negatives, model accuracy in independent validation sets (and not the reported test set).
3.5. Fourth Phase: Optimization/Enhancements
3.6. Fifth Phase: Product
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Trevitt, S.; Simpson, S.; Wood, A. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes: What Systems Are in Development? J. Diabetes Sci. Technol. 2016, 10, 714–723. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.; Carter, B.; Hewitt, J.; Francisa, T.; Mayor, S. Do Mobile Phone Applications Improve Glycemic Control (HbA1c) in the Self-management of Diabetes? A Systematic Review, Meta-analysis, and GRADE of 14 Randomized Trials. Diabetes Care 2016, 39, 2089–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadakis, S.; Kalogiannakis, M. Mobile educational applications for children: What educators and parents need to know. Int. J. Mob. Learn. Organ. (IJMLO) 2017, 11, 256–277. [Google Scholar] [CrossRef]
- Papadakis, S.; Zaranis, N.; Kalogiannakis, M. Parental involvement and attitudes towards young Greek children’s mobile usage. Int. J. Child-Comput. Interact. 2019, 22, 100144. [Google Scholar] [CrossRef]
- Farag, S.; Chyjek, K.; Chen, K.T. Identification of iPhone and iPad applications for obstetrics and gynecology providers. Obstet. Gynecol. 2014, 124, 941–945. [Google Scholar] [CrossRef]
- Nowak, A.; Lukowicz, P.; Horodecki, P. Assessing Artificial Intelligence for Humanity: Will AI be the Our Biggest Ever Advance ? or the Biggest Threat [Opinion]. IEEE Technol. Soc. Mag. 2018, 37, 26–34. [Google Scholar] [CrossRef]
- Kao, C.K.; Liebovitz, D.M. Consumer Mobile Health Apps: Current State, Barriers, and Future Directions. PM & R. J. Inj. Funct. Rehabil. 2017, 9, S106–S115. [Google Scholar] [CrossRef]
- Siristatidis, C.; Vogiatzi, P.; Pouliakis, A.; Trivella, M.; Papantoniou, N.; Bettocchi, S. Predicting IVF Outcome: A Proposed Web-based System Using Artificial Intelligence. In Vivo 2016, 30, 507–512. [Google Scholar]
- Haykin, S.S. Neural Networks: A Comprehensive Foundation; Maxwell Macmillan Canada: Toronto, SD, Canada, 1994; p. 696. [Google Scholar]
- Lundberg, O.; Berglund Scherwitzl, E.; Gemzell Danielsson, K.; Scherwitzl, R. Fertility awareness-based mobile application. Eur. J. Contracept. Reprod. Health Care 2018, 23, 166–168. [Google Scholar] [CrossRef]
- Brzan, P.P.; Rotman, E.; Pajnkihar, M.; Klanjsek, P. Mobile Applications for Control and Self Management of Diabetes: A Systematic Review. J. Med. Syst. 2016, 40, 210. [Google Scholar] [CrossRef]
- Bender, J.L.; Yue, R.Y.; To, M.J.; Deacken, L.; Jadad, A.R. A lot of action, but not in the right direction: Systematic review and content analysis of smartphone applications for the prevention, detection, and management of cancer. J. Med. Internet Res. 2013, 15, e287. [Google Scholar] [CrossRef] [PubMed]
- Chuchu, N.; Takwoingi, Y.; Dinnes, J.; Matin, R.N.; Bassett, O.; Moreau, J.F.; Bayliss, S.E.; Davenport, C.; Godfrey, K.; O’Connell, S.; et al. Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst. Rev. 2018, 12, CD013192. [Google Scholar] [CrossRef] [PubMed]
- Lunde, B.; Perry, R.; Sridhar, A.; Chen, K.T. An Evaluation of Contraception Education and Health Promotion Applications for Patients. Womens Health Issues Off. Publ. Jacobs Inst. Womens Health 2017, 27, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Baumel, A.; Kane, J.M. Examining Predictors of Real-World User Engagement with Self-Guided eHealth Interventions: Analysis of Mobile Apps and Websites Using a Novel Dataset. J. Med. Internet Res. 2018, 20, e11491. [Google Scholar] [CrossRef] [Green Version]
- Aungst, T.D.; Clauson, K.A.; Misra, S.; Lewis, T.L.; Husain, I. How to identify, assess and utilise mobile medical applications in clinical practice. Int. J. Clin. Pract. 2014, 68, 155–162. [Google Scholar] [CrossRef]
- Lippman, H. How apps are changing family medicine. J. Fam. Pract. 2013, 62, 362–367. [Google Scholar]
- Misra, S.; Lewis, T.L.; Aungst, T.D. Medical application use and the need for further research and assessment for clinical practice: Creation and integration of standards for best practice to alleviate poor application design. JAMA Dermatol. 2013, 149, 661–662. [Google Scholar] [CrossRef]
- Wallace, S.; Clark, M.; White, J. ‘It’s on my iPhone’: Attitudes to the use of mobile computing devices in medical education, a mixed-methods study. BMJ Open 2012, 2, e001099. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Policy for Device Software Functions and Mobile Medical Applications; Guidance for Industry and Food and Drug Administration Staff; U.S. Food and Drug Administration: Shanghai, China, 2019.
- Celi, L.A.; Citi, L.; Ghassemi, M.; Pollard, T.J. The PLOS ONE collection on machine learning in health and biomedicine: Towards open code and open data. PLoS ONE 2019, 14, e0210232. [Google Scholar] [CrossRef]
- van Velsen, L.; Beaujean, D.J.; van Gemert-Pijnen, J.E. Why mobile health app overload drives us crazy, and how to restore the sanity. BMC Med. Inform. Decis. Mak. 2013, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Perroti, R.; Pouliakis, A.; Margari, N.; Panopoulou, E.; Karakitsou, E.; Iliopoulou, D.; Panayiotides, I.G.; Koutsouris, D.D. CytoNet, A Versatile Web-Based System for Accessing Advisory Cytology Services: Application of Artificial Intelligence. Int. J. Reliab. Qual. E-Healthc. (IJRQEH) 2018, 7, 37–56. [Google Scholar] [CrossRef]
- Finlayson, S.; Chung, H.; Kohane, I.; Beam, A. Adversarial Attacks Against Medical Deep Learning Systems. arXiv 2019, arXiv:1804.05296. [Google Scholar]
- Seetharam, K.; Kagiyama, N.; Sengupta, P.P. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res. Pract. 2019, 6, R41–R52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadakis, S.; Kalogiannakis, M. A Research Synthesis of the Real Value of Self-Proclaimed Mobile Educational Applications for Young Children. In Mobile Learning Applications in Early Childhood Education; Papadakis, S., Kalogiannakis, M., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 1–19. [Google Scholar] [CrossRef]
- Sharples, M.; Taylor, J.; Vavoula, G. A theory of learning for the mobile age. In The Sage Handbook of Elearning Research; Andrews, R., Haythornthwaite, C., Eds.; Sage: London, UK, 2007; pp. 221–247. [Google Scholar]
- Shail, M.S. Using Micro-learning on Mobile Applications to Increase Knowledge Retention and Work Performance: A Review of Literature. Cureus 2019, 11, e5307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, R.; Dy, G.; Sherman, D.; Sonnenberg, D. Smart Phone Display Screen with a Graphical User Interface. U.S. Patent USD718778S1, 8 October 2012. [Google Scholar]
- Bolt, S.; Butmir, A. Interactive Display. U.S. Patent USD635189S1, 13 January 2010. [Google Scholar]
- Vegesna, A.; Tran, M.; Angelaccio, M.; Arcona, S. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. Telemed. J. E-Health: Off. J. Am. Telemed. Assoc. 2017, 23, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Chase, T.J.G.; Julius, A.; Chandan, J.S.; Powell, E.; Hall, C.S.; Phillips, B.L.; Burnett, R.; Gill, D.; Fernando, B. Mobile learning in medicine: An evaluation of attitudes and behaviours of medical students. BMC Med. Educ. 2018, 18, 152. [Google Scholar] [CrossRef] [Green Version]
- Lall, P.; Rees, R.; Law, G.C.Y.; Dunleavy, G.; Cotic, Z.; Car, J. Influences on the Implementation of Mobile Learning for Medical and Nursing Education: Qualitative Systematic Review by the Digital Health Education Collaboration. J. Med. Internet Res. 2019, 21, e12895. [Google Scholar] [CrossRef]
- Klimova, B. Mobile Learning in Medical Education. J. Med. Syst. 2018, 42, 194. [Google Scholar] [CrossRef]
- Pouliakis, A.; Margari, N.; Karakitsou, E.; Archondakis, S.; Karakitsos, P. Emerging Technologies Serving Cytopathology: Big Data, the Cloud, and Mobile Computing. In Emerging Developments and Practices in Oncology; IGI Global: Hershey, PA, USA, 2018; pp. 114–152. [Google Scholar] [CrossRef]
- Pouliakis, A.; Karakitsou, E.; Margari, N. Cytopathology and the Smartphone: An Update. In Mobile Health Applications for Quality Healthcare Delivery; IGI Global: Hershey, PA, USA, 2019; Chapter 7; pp. 136–164. [Google Scholar] [CrossRef]
- Garg, S.; Williams, N.L.; Ip, A.; Dicker, A.P. Clinical Integration of Digital Solutions in Health Care: An Overview of the Current Landscape of Digital Technologies in Cancer Care. JCO Clin. Cancer Inform. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- Riaz, M.S.; Atreja, A. Personalized Technologies in Chronic Gastrointestinal Disorders: Self-monitoring and Remote Sensor Technologies. Clin. Gastroenterol. Hepatol: Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2016, 14, 1697–1705. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.F.; Markus, H.S.; Leslie, R.D.; Topol, E.J. Personalized medicine: Risk prediction, targeted therapies and mobile health technology. BMC Med. 2014, 12, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Sanzo, M.; Cipolloni, L.; Borro, M.; La Russa, R.; Santurro, A.; Scopetti, M.; Simmaco, M.; Frati, P. Clinical Applications of Personalized Medicine: A New Paradigm and Challenge. Curr. Pharm. Biotechnol. 2017, 18, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Wildenbos, G.A.; Jaspers, M.W.M.; Schijven, M.P.; Dusseljee-Peute, L.W. Mobile health for older adult patients: Using an aging barriers framework to classify usability problems. Int. J. Med Inform. 2019, 124, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Pouliakis, A. Third Age and Mobile Health. Int. J. Reliab. Qual. E-Healthc. (IJRQEH) 2019, 8, 67–79. [Google Scholar] [CrossRef]
- Mehdizadeh, H.; Asadi, F.; Mehrvar, A.; Nazemi, E.; Emami, H. Smartphone apps to help children and adolescents with cancer and their families: A scoping review. Acta Oncol. 2019, 58, 1003–1014. [Google Scholar] [CrossRef]
- Vogiatzi, P.; Pouliakis, A.; Siristatidis, C. An artificial neural network for the prediction of assisted reproduction outcome. J. Assist. Reprod. Genet. 2019, 36, 1441–1448. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siristatidis, C.; Pouliakis, A.; Karageorgiou, V.; Vogiatzi, P. Mobile Apps for Helping Patient-Users: Is It Still Far-Fetched? Sustainability 2020, 12, 106. https://doi.org/10.3390/su12010106
Siristatidis C, Pouliakis A, Karageorgiou V, Vogiatzi P. Mobile Apps for Helping Patient-Users: Is It Still Far-Fetched? Sustainability. 2020; 12(1):106. https://doi.org/10.3390/su12010106
Chicago/Turabian StyleSiristatidis, Charalampos, Abraham Pouliakis, Vasilios Karageorgiou, and Paraskevi Vogiatzi. 2020. "Mobile Apps for Helping Patient-Users: Is It Still Far-Fetched?" Sustainability 12, no. 1: 106. https://doi.org/10.3390/su12010106
APA StyleSiristatidis, C., Pouliakis, A., Karageorgiou, V., & Vogiatzi, P. (2020). Mobile Apps for Helping Patient-Users: Is It Still Far-Fetched? Sustainability, 12(1), 106. https://doi.org/10.3390/su12010106