Is Sustainable Watershed Management Feasible under Climate Change? An Economic Appraisal of the Nile River
Abstract
:1. Introduction
2. Theoretical Model Specification
2.1. Upstream Watershed Agriculture
2.2. Reservoir-Level Benefits Function
2.3. Downstream Watershed Benefits and Externalities
2.4. Social Planner’s Optimization Framework
3. Case Study and Empirical Specification
3.1. The Nile River (Blue Nile) and the Aswan High Dam
3.2. Data Collection
3.3. Simulation Procedure
4. Results
4.1. Simulation Results
4.2. Sensitivity Analysis
5. Conclusion and Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Yoon, T.; Shah, F.A. Economics of integrated watershed management in the presence of a dam. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Lee, Y.; Yoon, T.; Shah, F.A. Optimal watershed management for reservoir sustainability: Economic appraisal. J. Water Resour. Plan. Manag. 2012, 139, 129–138. [Google Scholar] [CrossRef]
- Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. Mitigating the effects of climate change on the water resources of the Columbia River basin. Clim. Chang. 2004, 62, 233–256. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.; Wu, S. Climate Change and Water; Intergovernmental Panel on Climate Change Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Pearce, F. On the River Nile, a Move to Avert a Conflict Over Water; YaleEnvironment360; Yale School of Forestry & Environmental Studies: New Heaven, CT, USA, 12 March 2015. [Google Scholar]
- Palmieri, A.; Shah, F.; Dinar, A. Economics of reservoir sedimentation and sustainable management of dams. J. Environ. Manag. 2001, 61, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Pattanapanchai, M. Economics of Renewable Resource Management: An Application to Multipurpose Dams; University of Connecticut: Storrs, CT, USA, 2005. [Google Scholar]
- Kawashima, S. Conserving reservoir water storage: An economic appraisal. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Barnes, J. The future of the Nile: Climate change, land use, infrastructure management, and treaty negotiations in a transboundary river basin. Wiley Interdiscip. Rev. Clim. Chang. 2017, 8, e449. [Google Scholar] [CrossRef]
- Kim, U.; Kaluarachchi, J.J. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia 1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1361–1378. [Google Scholar] [CrossRef]
- Dile, Y.T.; Berndtsson, R.; Setegn, S.G. Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin-upper Blue Nile Basin of Ethiopia. PLoS ONE 2013, 8, e79296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollenweider, R.A. Advances in Defining Critical Loading Levels for Phosphorus in Lake Eutrophication; Memorie dell’Istituto Italiano di Idrobiologia, Dott. Marco de Marchi Verbania Pallanza; dell’Istituto Italiano di Idrobiologia: Verbania Pallanza, Italy, 1976. [Google Scholar]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use; McGraw Hill Professional: New York, NY, USA, 1998. [Google Scholar]
- Jobin, W. Dams and Disease: Ecological Design and Health Impacts of Large Dams, Canals and Irrigation Systems; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Conway, D. From headwater tributaries to international river: Observing and adapting to climate variability and change in the Nile basin. Glob. Environ. Chang. 2005, 15, 99–114. [Google Scholar] [CrossRef]
- Ouda, S.A.; El-Marsafawy, S.M.; Eid, H.M. Assessing the Economic Impacts of Climate Change on Agriculture in Egypt: A Ricardian Approach; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Blair, R. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezzat, M.N.; Shehab, H.; Hassan, A.A.; El-Sharkawy, M.; El-Diasty, A.; El-Assiouty, I.; Tczap, A. APRP-Water Policy Activity: Survey of Nile System Pollution Sources; Report No. 64; USAID: Washington, DC, USA, 2002.
- Aly, I.; Zein, R.; Abou-Sassd, H. Irrigation water pricing: Is it an efficient instrument for water consumption rationalization? Minufiya J. Agric. Res. 2005, 30, 817–833. [Google Scholar]
- Nixon, S.W. Replacing the Nile: Are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river? AMBIO A J. Hum. Environ. 2003, 32, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Yongguan, C.; Seip, H.M.; Vennemo, H. The environmental cost of water pollution in Chongqing, China. Environ. Dev. Econ. 2001, 6, 313–333. [Google Scholar] [CrossRef]
- Seo, J.; Shim, C.; Hong, J.; Kang, S.; Moon, N.; Hwang, Y.S. Application of the WRF Model for Dynamical Downscaling of Climate Projections from the Community Earth System Model (CESM). Atmosphere 2013, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
Description | Notation | Value | Unit | Source | |
---|---|---|---|---|---|
Upstream | Price of crops | 215 | $/ton | FAOSTAT | |
Cost of soil conservation efforts | 6 | $/ton/ha | [19] | ||
Cost of fertilizer | 160 | $/ton | FAOSTAT | ||
Agriculture land | 4 | million ha | |||
Annual soil loss | 30 | ton/ha | [2] | ||
Reservoir-level | Fertilizer residual rate | 0.5 | fraction | [2] | |
Mean annual water flow | 80 | BCM | ILEC database | ||
Storage capacity | 31.5 | BCM | |||
Water quality threshold | 10 | ppm | [20] | ||
Cost of water treatment | 0.02 | $/m3 | [5] | ||
Price of irrigation water | 0.02 | $/m3 | [21] | ||
Price of hydropower | 0.01 | $/m3 | KOTRA database | ||
Unit cost of HSRS | 7.23 | $/ m3 | [7] | ||
Annual reservoir operation cost | 10 | million $ | [2] | ||
Total incoming sediment | 200 | million ton | [15] | ||
Sediment from upstream agriculture | 120 | million ton | [2] | ||
Trap efficiency | 99 | % | [15] | ||
Downstream | Agriculture land | 2.9 | million ha | FAOSTAT | |
Population | 80 | million | |||
Discount factor | 5 | % | [2] | ||
Nutrient deposition | 7 | % | [21] | ||
Unit cost of pollution | 32 | $ | [22] |
Climate Change Scenarios | Phase I | Phase II | Phase III |
---|---|---|---|
2010~2039 | 2040~2069 | 2070~ | |
RCP8.5 | |||
Temperature (°C) | +1.76 | +3.56 | +4.72 |
Production (%) | −35.2 | −71.2 | −94.4 |
Evaporation (%) | +7.04 | +14.24 | +18.88 |
Stream flow (%) | −0.23 | −0.29 | −0.38 |
Baseline (RCP4.5) | |||
Temperature (°C) | +1.34 | +2.54 | +3.83 |
Production (%) | −20.1 | −38.1 | −57.45 |
Evaporation (%) | +5.36 | +10.16 | +15.32 |
Stream flow (%) | +0.08 | +0.02 | +0.07 |
RCP2.6 | |||
Temperature (°C) | +0.78 | +1.55 | +2.87 |
Production (%) | −7.8 | −15.5 | −28.7 |
Evaporation (%) | +3.12 | +6.2 | 11.48 |
Stream flow (%) | +0.36 | +0.27 | +0.15 |
Management Scenario | RCP8.5 | Baseline (RCP4.5) | RCP2.6 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U * | D * | Ds * | Da * | PV * | DL * | U * | D * | Ds * | Da * | PV * | DL * | U * | D * | Ds * | Da * | PV * | DL * | |||
No Management (Baseline) | 23.9 | 52.3 | 215.6 | −763.6 | −471.9 | Un | 32.6 | 71.5 | 225.9 | −607.1 | −277.0 | Un | 30.7 | 91.1 | 232.3 | −487.2 | −133.1 | Un | ||
No Soil Conservation | HSRS | (a) | 24.7 | 35.1 | 189.5 | −24.0 | 224.5 | Sus | 32.6 | 51.5 | 225.7 | −34.7 | 270.1 | Sus | 30.7 | 67.1 | 243.6 | −37.2 | 303.2 | Sus |
(b) | 24.7 | 34.8 | 185.5 | −25.3 | 219.0 | Sus | 32.6 | 51.0 | 219.8 | −35.6 | 262.9 | Sus | 30.7 | 67.9 | 254.1 | −38.5 | 314.2 | Sus | ||
No Flow Control | HSRS | (a) | 27.6 | 49.6 | 130.6 | −38.0 | 169.8 | Un | 39.1 | 67.3 | 125.5 | −30.4 | 193.9 | Un | 35.6 | 85.7 | 110.1 | −38.9 | 192.5 | Un |
(b) | 27.6 | 49.5 | 113.8 | −41.7 | 147.5 | Sus | 39.1 | 67.1 | 115.8 | −45.3 | 168.8 | Sus | 35.6 | 86.8 | 133.7 | −39.8 | 216.2 | Sus | ||
Socially Optimal | HSRS | (a) | 27.6 | 37.0 | 191.8 | −23.7 | 232.7 | Sus | 39.1 | 54.0 | 227.4 | −33.9 | 278.9 | Sus | 35.6 | 69.4 | 243.5 | −37.7 | 310.7 | Sus |
(b) | 27.6 | 36.8 | 188.0 | −25.0 | 255.6 | Sus | 39.1 | 53.6 | 222.5 | −34.7 | 272.6 | Sus | 35.6 | 70.1 | 254.3 | −38.2 | 321.7 | Sus |
Management Alternatives (unit: billion $) | U * | D * | Ds * | Da * | NSPV * | Dam Life | |
---|---|---|---|---|---|---|---|
Socially Optimal (RCP8.5) | |||||||
HSRS | (a) | 27.33 | 37.04 | 261.54 | −23.68 | 302.21 | Sus |
(b) | 25.24 | 36.75 | 243.69 | −25.03 | 281.24 | Sus | |
Socially Optimal (RCP4.5) | |||||||
HSRS | (a) | 31.53 | 54.00 | 296.90 | −33.96 | 348.47 | Sus |
(b) | 31.24 | 53.59 | 276.74 | −34.73 | 326.81 | Sus | |
Socially Optimal (RCP2.6) | |||||||
HSRS | (a) | 35.56 | 69.35 | 295.49 | −37.73 | 362.67 | Sus |
(b) | 35.50 | 70.05 | 324.11 | −38.17 | 391.50 | Sus |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Yoon, T.; Hong, Y. Is Sustainable Watershed Management Feasible under Climate Change? An Economic Appraisal of the Nile River. Sustainability 2020, 12, 162. https://doi.org/10.3390/su12010162
Lee Y, Yoon T, Hong Y. Is Sustainable Watershed Management Feasible under Climate Change? An Economic Appraisal of the Nile River. Sustainability. 2020; 12(1):162. https://doi.org/10.3390/su12010162
Chicago/Turabian StyleLee, Yoon, Taeyeon Yoon, and Yongsuk Hong. 2020. "Is Sustainable Watershed Management Feasible under Climate Change? An Economic Appraisal of the Nile River" Sustainability 12, no. 1: 162. https://doi.org/10.3390/su12010162
APA StyleLee, Y., Yoon, T., & Hong, Y. (2020). Is Sustainable Watershed Management Feasible under Climate Change? An Economic Appraisal of the Nile River. Sustainability, 12(1), 162. https://doi.org/10.3390/su12010162