Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon
Abstract
:1. Introduction
2. Model Construction and Data Processing
2.1. Model Setting
2.2. Sample Data and Variable Selection
2.2.1. Data Source
2.2.2. Indicator Selection and Data Processing
3. Empirical Analysis
3.1. Calculation and Analysis of the GTFP of the Logistics Industry in 13 Cities in Jiangsu Province Based on the SBM Model
3.2. Analysis of the Temporal Effect of ER on the GTFP of the Logistics Industry in Jiangsu Province
3.3. Analysis of the Spatial Effect of ER on the GTFP of the Logistics Industry in Jiangsu Province
4. Conclusions and Suggestions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jorgenson, D.W.; Wilcoxen, P.J. Environmental regulation and US economic growth. Rand J. Econ. 1990, 21, 314–340. [Google Scholar] [CrossRef]
- Filbeck, G.; Gorman, R.F. The relationship between the environmental and financial performance of public utilities. Environ. Resour. Econ. 2004, 29, 137–157. [Google Scholar] [CrossRef] [Green Version]
- Ang, J.B. CO2 emissions research and technology transfer in China. Ecol. Econ. 2009, 68, 2658–2665. [Google Scholar] [CrossRef] [Green Version]
- Kiuila, O.; Pesako, G. Sectoral and macroeconomic impacts of the large combustion plants in Poland: A general equilibrium analysis. Energy Econ. 2006, 8, 288–307. [Google Scholar] [CrossRef]
- State Council the People’s Republic of China. Medium and Long Term Planning of Logistics Development (2014–2020). Available online: http://www.gov.cn/zhengce/content/2014-10/04/content_9120.htm (accessed on 14 December 2019).
- Jiangsu Province “13th Five Year” Logistics Industry Development Plan. Available online: http://www.jiangsu.gov.cn/art/2016/11/24/art_46556_3614923 (accessed on 24 November 2016).
- Gray, W.B.; Shadbegian, R.J. Plant vintage, technology, and environmental regulation. J. Environ. Econ. Manag. 2003, 46, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Yale University. The Environmental Performance Index Ranks Countries’ Performance on High-Priority Environmental Issues. Available online: http://epi.yale.edu/sites/default/fifiles/Yale%20EPI%202016_Report_0.pdf (accessed on 2 August 2019).
- He, L. Research on the Measurement of Total Factor Productivity of Logistics Industry in Jiangsu Province. Mod. Mark. Inf. Ed. 2019, 4, 52–53. [Google Scholar]
- Yu, C.L. Analyse on Logistics Industry TFP and Its Influencing Factors. Stat. Inf. Forum 2018, 33, 50–57. [Google Scholar]
- Shao, J.G.; Zhao, H.Q. The Contribution of Technical Progress to Economic Growth Based on Solow Residual: An Analysis of the Data of Shanghai from 1990 to 2013. J. Mianyang Teach. Coll. 2017, 36, 8–14. [Google Scholar]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. The Estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Tu, Z.G.; Xiao, G. The Transformation of China’s Industrial Growth Model—A Nonparametric Production Frontier Dynamic Analysis of Labor Productivity in Large and Medium-sized Enterprises. Manag. World 2006, 10, 57–67. [Google Scholar]
- Wang, Y.H.; Wu, F.; Wang, Z. Bootstrap-Malmquist Index Analysis of Productivity Changes in the Transportation Industry (1980–2005). China Econ. Q. 2008, 3, 891–912. [Google Scholar]
- Wang, F.; Ouyang, T. Analysis of factors’ contribution to Hunan economic growth based on Solow residual method. J. Hunan Agric. Univ. Soc. Sci. 2013, 14, 64–69. [Google Scholar]
- Li, X.S.; Chen, L.D. Analysis of Logistics Industry’s Contribution to Scientific Advancement in Hebei Based on Solow Residue Method. Logist. Technol. 2014, 17, 207–210. [Google Scholar]
- Dong, F.Y.; Han, Y.M. Tecnology Progress Contribution Rate Calculatio of Wheat in Henan Province Basid on the Exeded Grey Relation Degree. Chin. J. Mgmt. Sci. 2015, 23, 667–671. [Google Scholar]
- Yu, X.; Ling, Y.Y. Calculation Errors of Agricultural Technological Progress Contribution under Yield Fluctuations Rate. Sci. Technol. Manag. Res. 2016, 36, 56–59. [Google Scholar]
- Fu, L.N.; Chen, X.H.; Leng, Z.H. Urban Agglomerations Eco-efficiency Analysis Based on Super-efficienty DEA Model: Case Study of Chang-Zhu-Tan “3+5” Urban Agglomeration. China Popul. Resour. Environ. 2013, 23, 169–175. [Google Scholar]
- Xiong, S.; Mai, Y.Y.; He, X.B.; Xiao, R.Q. A Study on Operational Efficiency of Hi-tech Startups in China Based on DEA Methods. J. Manag. Sci. 2014, 27, 26–37. [Google Scholar]
- Li, J.Y.; Mu, Y. Innovation Performance of Chinese Public Companies Based on DEA Method. Sci. Sci. Manag. S T 2015, 36, 111–121. [Google Scholar]
- Han, S.; Su, X. Study on Structure Efficiency of Chinese Commercial banking:Basing on Complex Network DEA model. Chin. J. Manag. Sci. 2016, 24, 1–9. [Google Scholar]
- Liu, F.; Deng, M.L. The Technology Innovation Efficiency Analysis of Yangtze River Economic Belt Using PCA and SE-DEA Joint Model. Sci. Technol. Prog. Policy 2017, 34, 48–53. [Google Scholar]
- Guo, S.D.; Tong, M.; Guo, J.; Han, Y. Measurement and influencing factors of inter-provincial real environmental efficiency based on three-stage DEA model. China Popul. Resour. Environ. 2018, 28, 106–116. [Google Scholar]
- Wang, X.H.; Wen, J.Y. The Agricultural Products Logistics Efficiency and Its Regional Difference in China: A SFA Method Analysis Based on Provincial Panel Data. Contemp. Econ. Manag. 2015, 37, 26–32. [Google Scholar]
- Fan, Y.J.; Wang, J. Research on the Production Service Efficiency of China’s Logistic Corridors—An Empirical Study Based on SFA Panel Data Model. J. Yunnan Univ. Financ. Econ. 2016, 32, 22–36. [Google Scholar]
- Yu, L.J.; Wang, H.F.; Jang, Y.Q. Research on Regional Logistics Efficiency in Shandong Province Based on Stochastic Frontier Analysis. Logist. Eng. Manag. 2017, 39, 16–18. [Google Scholar]
- Lin, J. China Logistics Total Factor Productivity and Its Influencing Factors Studies. Ph.D. Thesis, Hunan University, Changsha, China, 2010. [Google Scholar]
- Wang, Q.M.; Tan, C.E. An Empirical Study on the Logistics Efficiency of Xi’an and its Influencing Factors—Based on the Analysis of the DEA Model and the Tobit Regression Model. Soft Sci. 2013, 27, 70–74. [Google Scholar]
- Ding, R. Study on the Dynamic Evolution of Total Factor Productivity and Its Affect Factors in Jiangxi Logistics Industry. Ph.D. Thesis, East China Jiaotong University, Nanchang, China, 2014. [Google Scholar]
- Zhao, L. The Research on the Efficiency of China’s Provincial Logistics Industry and Its Factors. Ph.D. Thesis, Beijing Jiaotong University, Beijing, China, 2014. [Google Scholar]
- Yang, J.; Song, M.L. Efficiency Evalution on China’s Logistics Industry and the Analysis of Influencial Factors: A Provincial Panel Data-based Study. J. Shijiazhuang Univ. Econ. 2010, 33, 77–80. [Google Scholar]
- Liang, W.; Xu, L.Y. An Empirical Study on Total Factor Productivity and Influencing Factors in Logistics Industry. J. Mianyang Teach. Coll. 2017, 36, 34–40. [Google Scholar]
- Porter, M.E.; van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Berman, E.; Bui, L.T.M. Environmental regulation and productivity: Evidence from oil refineries. Rev. Econ. Stat. 2001, 83, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Mazzanti, M.; Zoboli, R. Enviromental efficiency and labour productivity: trade-off o rjoint dynamics? Ecol. Econ. 2009, 68, 1182–1194. [Google Scholar] [CrossRef]
- Sun, Y.H.; Liu, N.N.; Zhang, Y.H. Regional Comparison of the Relationship between Environmental Regulation and TFP in China. J. Dongbei Univ. Financ. Econ. 2018, 1, 33–40. [Google Scholar]
- Cai, N.; Wu, J.W.; Liu, S.Y. On Environmental Regulation and the Green Industrial Total Factor Productivity—Empirical Analysis Based on the Data of 30 Provinces in China. J. Liaoning Univ. Philos. Soc. Sci. 2014, 42, 65–73. [Google Scholar]
- Wu, Z.X.; Zhang, Z.Y. The Study of Environmental Regulations Impact on China’s Manufacturing Industry Total Factor Productivity. J. Xiangtan Univ. Philos. Soc. Sci. 2016, 40, 77–81. [Google Scholar]
- Hu, J.; Wang, Z.; Lian, Y.; Huang, Q.H. Environmental regulation, foreign direct investment and green technological progress-Evidence from Chinese manufacturing industries. Int. J. Environ. Res. Public Health 2018, 15, 221–235. [Google Scholar]
- Jiang, L.P. A Comparative Study of the Total Factor Productivity of Chinese Industry under Environmental Regulation. Knowl. Econ. 2016, 8, 25–26. [Google Scholar]
- Jin, Y.X. The Effect of Environmental Regulation on Industrial Green TFP Analysis—In Shanxi Province as an Example. Ph.D. Thesis, Shanxi University of Finance and Economics, Taiyuan, China, 2016. [Google Scholar]
- Du, J.; Liu, Y.; Diao, W. Assessing Regional Differences in Green Innovation Efficiency of Industrial Enterprises in China. Int. J. Environ. Res. Public Health 2019, 16, 940. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.Q. Environmental Regulation and China’s Green Total Factor Productivities: Based on the Perspective of Vertical Specialization. China Popul. Resour. Environ. 2012, 22, 60–66. [Google Scholar]
- Ma, S.P. A Research on Impact of Environmental Regulation on Total Factor Producticity. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2015. [Google Scholar]
- Guo, Q.G. Study on the Impact of Environmental Regulation on Construction Industries’ TFP Growth. Constr. Econ. 2015, 36, 24–27. [Google Scholar]
- Liu, H.W.; Zheng, S.L.; Zuo, W.T. The influence mechanism of environmental regulation on TFP of enterprises. Sci. Res. Manag. 2016, 37, 33–41. [Google Scholar]
- Cai, W.G.; Zhou, X.L. Dual Effect of Chinese Environmental Regulation on Green Total Factor Productivity. Economist 2017, 9, 27–35. [Google Scholar]
- Liu, Y. The Impact of Environmental Regulation on Firms’ Total Factor Productivity in China. Ph.D. Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2017. [Google Scholar]
- Hansen, L.P. Large Sample Properties of Generalized Method of Moments Estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Pagan, A.; Wickens, M. A Survey of Some Recent Economertic Methods. Econ. J. 1989, 99, 962–1025. [Google Scholar] [CrossRef]
- Harberger, A.C. The Incidence of corporation Income Tax. J. Polit. Econ. 1962, 70, 215–240. [Google Scholar] [CrossRef]
Type of Indicator | Name of Indicator | Meaning of Indicator | Unit | Measurement Method |
---|---|---|---|---|
Input indicator | Capital input | Capital formation of the logistics industry | 100 million yuan | See Formulas (1) and (2) below |
Labor input | Number of employees in the logistics industry | 10,000 people | Number of people engaged in the logistics industry at the end of the year | |
Energy input | Energy consumption in the logistics industry | 10,000 t standard coal | Converting various chemical energy sources such as coal, oil, and natural gas into standard coal, see Table 2 | |
Output indicator | Expected output | Added value of the logistics industry | 100 million yuan | Constant price based on 2005 |
Freight turnover | 10,000 t-km | The sum of the products of the numbers of goods transported by various means of transport and their corresponding transportation distances | ||
Unexpected output | CO2 emissions by the logistics industry | 10,000 t | See Formula 3 below |
Type of Energy | Low Calorific Value (KJ/Kg) | Carbon Oxidation Factor | Conversion Coefficient of Standard Coal (kgce/kg) | Carbon Emission Coefficient (kgC/GJ) |
---|---|---|---|---|
Raw coal | 20,908 | 1 | 0.7143 | 25.8 |
Kerosene | 43,070 | 1 | 1.4714 | 19.6 |
Diesel oil | 42,652 | 1 | 1.4571 | 20.2 |
Gasoline | 43,070 | 1 | 1.4714 | 18.9 |
Fuel oil | 41,816 | 1 | 1.4283 | 21.2 |
Natural gas | 38,931 (kJ/m3) | 1 | 1.3301 | 15.2 |
Liquefied petroleum gas | 50,179 | 1 | 1.7141 | 17.3 |
Variable | Capital Investment | Labor Input | Energy Input | Added Value of Logistics Industry | Freight Turnover | CO2 Emissions |
---|---|---|---|---|---|---|
Minimum | 6.65 | 0.86 | 3.067 | 26.45 | 19.0433 | 153.256 |
Maximum | 598.50 | 16.04 | 325.111 | 990.90 | 4977.900 | 1576.302 |
Average | 141.30 | 4.04 | 80.656 | 242.50 | 1324.823 | 815.237 |
Standard deviation | 122.50 | 3.31 | 60.215 | 199.29 | 598.431 | 399.767 |
Variables | Capital Input | Labor Input | Energy Input | Added Value of Logistics Industry | Freight Turnover | CO2 Emissions |
---|---|---|---|---|---|---|
Capital input | 1.000 | |||||
Labor input | 0.433 ** | 1.000 | ||||
Energy input | 0.660 ** | 0.634 ** | 1.000 | |||
Added value of logistics industry | 0.696 ** | 0.576 ** | 0.755 ** | 1.000 | ||
Freight turnover | 0.632 ** | 0.537 ** | 0.696 ** | 0.735 ** | 1.000 | |
CO2 emissions | 0.654 ** | 0.633 ** | 1.000 ** | 0.765 ** | 0.698 ** | 1.000 |
Variable | Number of Variables | Maximum | Minimum | Average | Standard Deviation |
---|---|---|---|---|---|
Environmental regulation (ER) | 169 | 2.69 | 0.036 | 0.342 | 0.0133 |
Labor productivity (LP) | 169 | 32.87 | 1.11 | 7.31 | 0.075 |
Energy productivity (EP) | 169 | 28.56 | 0.99 | 7.12 | 0.053 |
Per capita GDP (PGDP) | 169 | 115,168 | 28,685 | 67,976 | 2916.0395 |
Level of technological innovation (R and D) | 169 | 6.71 | 0.82 | 2.56 | 0.3012 |
Degree of logistics industry agglomeration (AGG) | 169 | 67.61 | 9.34 | 23.87 | 0.1051 |
Region | City | Without Considering Carbon Emissions | Considering Carbon Emissions | ||||||
---|---|---|---|---|---|---|---|---|---|
TFP * | Rank | EC | TC | GTFP ** | Rank | EC | TC | ||
Southen Jiangsu | Nanjing | 1.0247 | 1 | 0.9986 | 1.0261 | 1.0589 | 2 | 1.0194 | 1.0387 |
Suzhou | 1.0072 | 2 | 0.9858 | 1.0217 | 1.0628 | 1 | 0.9981 | 1.0448 | |
Wuxi | 0.9806 | 3 | 0.9846 | 0.9959 | 1.0142 | 5 | 0.9969 | 1.0174 | |
Changzhou | 0.9768 | 5 | 0.9634 | 1.0139 | 1.0143 | 6 | 0.9969 | 1.0174 | |
Zhenjiang | 0.9652 | 8 | 0.9785 | 0.9864 | 0.9963 | 7 | 0.9915 | 1.0048 | |
Central Jiangsu | Yangzhou | 0.9661 | 7 | 0.9728 | 1.0217 | 1.0428 | 3 | 0.9981 | 1.0448 |
Nantong | 0.9731 | 6 | 0.9807 | 0.9923 | 1.0148 | 4 | 0.9929 | 1.0221 | |
Taizhou | 0.9601 | 10 | 0.9742 | 0.9855 | 0.9887 | 9 | 0.9842 | 1.0046 | |
Northern Jiangsu | Xuzhou | 0.9787 | 4 | 0.9852 | 0.9934 | 0.9929 | 8 | 0.9953 | 0.9976 |
Lianyungang | 0.9603 | 9 | 0.9738 | 0.9861 | 0.9865 | 11 | 0.9548 | 1.0332 | |
Suqian | 0.9544 | 11 | 0.9514 | 1.0032 | 0.9881 | 10 | 0.9836 | 1.0046 | |
Huai’an | 0.9535 | 12 | 0.9814 | 0.9818 | 0.9800 | 12 | 0.9871 | 0.9928 | |
Yancheng | 0.9407 | 13 | 0.9759 | 0.9639 | 0.9799 | 13 | 0.9857 | 0.9941 | |
Geometric mean | 0.9732 | - | 0.9774 | 0.9978 | 1.0092 | - | 0.9911 | 1.0167 |
Variable | j = 1 | j = 2 | j = 3 |
---|---|---|---|
LnGTFP(I, t − j) (Green Total Factor Productivity) | 0.8436 *** (0.1946) | 0.7945 *** (0.1825) | 0.7026 *** (0.1917) |
LnER (Environmental Regulation) | −2.9472 (1.3469) | −2.4592 (1.3639) | −2.7943 (1.1955) |
LnER(I, t − j) (Environmental Regulation) | 2.1381 *** (0.5142) | 2.3043 *** (0.5491) | 1.4929 (0.6943) |
LnLP (Labor Productivity) | 0.3841 (0.2648) | 0.4956 (0.3843) | 0.3938 (0.3190) |
LnEP (Energy Productivity) | 0.6429 *** (0.1842) | 0.6329 *** (0.1293) | 0.8411 *** (0.1715) |
LnPGDP (Per GDP) | 0.3043 ** (0.1191) | 0.3184 *** (0.1194) | 0.3028 *** (0.1273) |
LnRD (Research and Development) | 0.2853 *** (0.0742) | 0.2742 *** (0.0597) | 0.2944 *** (0.0619) |
LnAGG (Aggregate) | 0.3542 *** (0.0793) | 0.3943 (0.1831) | 0.4194 (0.2945) |
conj | 7.9325 (9.4260) | 8.5093 (6.4396) | 7.4239 (7.4328) |
Hansen test | 1.0000 | 1.0000 | 1.0000 |
AR(1)-p value | 0.0002 | 0.0000 | 0.0001 |
AR(2)-p value | 0.1931 | 0.1042 | 0.1692 |
Variable | j = 1 | j = 2 | j = 3 | Variable | j = 1 | j = 2 | j = 3 |
---|---|---|---|---|---|---|---|
LnEC(I, t − j) (Efficiency Change) | 0.9429 *** (0.2814) | 0.8042 ** (0.2939) | 0.7491 (0.3031) | LnTC(I, t − j) (Technical Change) | 0.7634 *** (0.1748) | 0.6942 *** (0.1841) | 0.6103 *** (0.1496) |
LnER | 1.4398 (0.7432) | 1.1946 (0.6268) | 1.8426 (0.8435) | LnER | −1.4306 (1.3469) | −1.1046 (1.4519) | −0.4159 (1.2413) |
LnER(I, t − j) | −0.8936 *** (0.1974) | −0.5032 *** (0.1147) | −0.1035 (0.2653) | LnER(I, t − j) | 1.9396 *** (0.4542) | 1.8451 *** (0.1974) | 1.3935 *** (0.4542) |
LnLP | 0.2043 (0.1764) | 0.1953 (0.1185) | 0.2189 (0.1843) | LnLP | 0.4691 (0.2845) | 0.3495 (0.2945) | 0.4942 (0.2738) |
LnEP | 0.8463 *** (0.1945) | 0.7594 *** (0.2199) | 0.9063 *** (0.2744) | LnEP | 0.5125 *** (0.1083) | 0.5190 *** (0.1395) | 0.7915 *** (0.1691) |
LnPGDP | 0.2732 (0.1942) | 0.2842 (0.1619) | 0.2894 (0.1531) | LnPGDP | 0.4358 *** (0.1245) | 0.4351 (0.1736) | 0.4172 (0.1559) |
LnRD | 0.1993 (0.1644) | 0.2042 (0.1938) | 0.1951 (0.1631) | LnRD | 0.2945 *** (0.0264) | 0.2996 *** (0.0210) | 0.3173 *** (0.0264) |
LnAGG | 0.4350 *** (0.1449) | 0.6421 *** (0.1292) | 0.4742 *** (0.1879) | LnAGG | 0.4264 (0.2291) | 0.3836 (0.1692) | 0.3964 (0.1734) |
conj | 6.3619 (5.9348) | −4.539 (5.4294) | −7.013 (4.5318) | conj | 8.9114 (4.3956) | 12.1074 (5.7461) | 10.4210 (5.9645) |
Hansen test | 1.0000 | 1.0000 | 1.0000 | Hansen test | 1.0000 | 1.0000 | 1.0000 |
AR(1)-p value | 0.0000 | 0.0002 | 0.0005 | AR(1)-p value | 0.002 | 0.0001 | 0.002 |
AR(2)-p value | 0.1845 | 0.1983 | 0.1744 | AR(2)-p value | 0.1741 | 0.1945 | 0.2164 |
Variable | GTFP | EC | TC |
---|---|---|---|
LnER | −11.4580 (11.1478) | −10.4649 (11.5393) | −12.4326 (11.4397) |
LnER2 | 1.8114 *** (0.4424) | 1.6421 *** (0.4192) | 1.9619 *** (0.3461) |
LnLP | 0.1609 (0.0920) | 0.1642 (0.0829) | 0.2243 (0.1123) |
LnEP | 0.4642 *** (0.1974) | 0.7043 *** (0.2432) | 0.6543 * (0.2746) |
LnPGDP | 0.2643 ** (0.1131) | 0.3042 ** (0.1389) | 0.2109 *** (0.0772) |
LnRD | 0.2437 *** (0.0463) | 0.1492 *** (0.0832) | 0.3253 *** (0.0894) |
LnAGG | 0.2473 *** (0.0436) | 0.2252 *** (0.0474) | 0.2113 *** (0.0463) |
conj | 12.4865 (11.3326) | 11.5393 (9.4298) | 13.7509 (14.9821) |
Variable | Northern Jiangsu | Central Jiangsu | Southern Jiangsu |
---|---|---|---|
LnER | −11.4957 (10.1637) | −10.4588 (12.4956) | −11.5342 (14.5329) |
LnER2 | 1.6198 *** (0.2835) | 1.6113 *** (0.3058) | 2.1358 *** (0.2841) |
LnLP | 0.1364 (0.0635) | 0.1463 (0.0692) | 0.1846 * (0.0723) |
LnEP | 0.5957 ** (0.2194) | 0.7395 *** (0.2243) | 0.6540 * (0.2139) |
LnPGDP | 0.1846 ** (0.0674) | 0.4853 (0.2523) | 0.3194 *** (0.0946) |
LnRD | 0.2946 *** (0.0492) | 0.1845 *** (0.0542) | 0.1642 * (0.0664) |
LnAGG | 0.2198 *** (0.0548) | 0.2745 *** (0.0621) | 0.2826 *** (0.0427) |
conj | 10.9361 (12.4936) | 12.4856 (9.4298) | 9.4865 (14.9821) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Chiu, Y.-h.; Li, X.; Guo, Q.; Yun, Y. Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon. Sustainability 2020, 12, 175. https://doi.org/10.3390/su12010175
Liang Z, Chiu Y-h, Li X, Guo Q, Yun Y. Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon. Sustainability. 2020; 12(1):175. https://doi.org/10.3390/su12010175
Chicago/Turabian StyleLiang, Zijing, Yung-ho Chiu, Xinchun Li, Quan Guo, and Yue Yun. 2020. "Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon" Sustainability 12, no. 1: 175. https://doi.org/10.3390/su12010175
APA StyleLiang, Z., Chiu, Y. -h., Li, X., Guo, Q., & Yun, Y. (2020). Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon. Sustainability, 12(1), 175. https://doi.org/10.3390/su12010175