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Abstract: Soil moisture sensors can be effective and promising decision-making tools for diverse
applications and audiences, including agricultural managers, irrigation practitioners, and researchers.
Nevertheless, there exists immense adoption potential in the United States, with only 1.2 in 10 farms
nationally using soil moisture sensors to decide when to irrigate. This number is much lower in the
global scale. Increased adoption is likely hindered by lack of scientific support in need assessment,
selection, suitability and use of these sensors. Here, through extensive field research, we address
the operational feasibility of soil moisture sensors, an aspect which has been overlooked in the past,
and integrate it with their performance accuracy, in order to develop a quantitative framework to
guide users in the selection of best-suited sensors for varying applications. These evaluations were
conducted for nine commercially available sensors under silt loam and loamy sand soils in irrigated
cropland and rainfed grassland for two different installation orientations [sensing component parallel
(horizontal) and perpendicular (vertical) to the ground surface] typically used. All the sensors were
assessed for their aptness in terms of cost, ease of operation, convenience of telemetry, and performance
accuracy. Best sensors under each soil condition, sensor orientation, and user applications (research
versus agricultural production) were identified. The step-by-step guide presented here will serve
as an unprecedented and holistic adoption-assisting resource and can be extended to other sensors
as well.

Keywords: soil moisture; sensors; irrigation; accuracy; site-specific calibration; time-domain
reflectometry; capacitance; electrical resistance; cost; telemetry.

1. Introduction

The past few decades have seen extensive research being carried out in the area of development
and evaluation of different technologies available to estimate/measure soil moisture to aid in various
applications. The most sought-after application of soil moisture sensing technology has been farm-based
irrigation decisions. Effective use of scientific methodologies in irrigation decision-making has been
shown to prevent economic losses resulting from over- and under-irrigation, excessive pumping costs,
inefficient fertilizer management, nitrate leaching, and greenhouse gas emissions [1], thus improving
farm water management [2]. Thus, a significant proportion of the research in this direction is focused on
evaluating the accuracy of the soil moisture status information reported by these sensors in different soil
conditions when compared against true soil moisture measured using standardized techniques [3–16].
These studies have served to generate useful quantitative information that can aid in (a) selection of an
accurate sensor by the user to suit a given soil texture; (b) conveying the error that is expected with a
given sensor’s use; and (c) using sensor-specific calibration functions/correction factors to carry out
decision-making with improved accuracy.
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During the recent past, irrigators have shown a moderate level of adoption rates for these technologies
in the United States and even lower adoption rates globally. For example, as of 2013, 30.5% of farms in
Nebraska used soil moisture sensing devices as their method of irrigation scheduling [17]. This method,
while scientifically accepted by substantial research, is also equally or more practical than other available
technology-based methods, which include plant moisture sensing devices, crop evapotranspiration
(ETc) reports, computer simulation models and commercial or government scheduling services,
as well as non-technology-based methods such as condition of crop, feel of soil, personal calendar
schedule, neighbor irrigation-based, etc. [17]. At 30.5%, Nebraska leads the nation in the adoption
of soil moisture sensing devices (see Figure 1) and has demonstrated exceptional stewardship in
agricultural water management. This has been possible, in part, through efforts of the scientific extension
activities and support provided to the stakeholders, e.g., Nebraska Agricultural Water Management
Network (NAWMN; https://water.unl.edu/category/nawmn) [18]. The network disseminates advanced
farm-scale water management technologies, including soil moisture sensing-based irrigation scheduling
to about 1500 collaborators. One of the key emphases of such programs is to increase the adoption rates
of technology by producers and their advisors, crop consultants, and other stakeholders. Despite the
encouraging success of soil moisture sensing adoption, there still remains immense potential that has to
be tapped if the challenge of producing more crop yield from increasingly limited freshwater resources
is to be met in the future. In the United States, 11.2% of the farms use soil moisture sensing devices [17],
which shows the substantial untapped potential to improve agricultural water use and management.
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One of the significant challenges in irrigated/water management is the fact that approximately
9 in 10 farms in the United States are currently not using science-based practical tools for irrigation
management decision-making, which raises concerns about the effectiveness of supportive research
and outreach in the domain of technology adoption. We hypothesize that a significant hindrance
to soil moisture sensor adoption is the lack of a well-defined guide to aid users in understanding
and prioritizing their expectations from technology. Selection is especially problematic when there
is a multitude of sensor variants available that rely on varying principles and hence are subject to

https://water.unl.edu/category/nawmn


Sustainability 2020, 12, 321 3 of 19

varying uncertainties when employed in different soil textures. The suitability of a sensor, when
directed towards adoption by various user groups, is an important aspect of the sensor selection
process, but one that has been overlooked in most, if not all, of the research conducted in this
direction. While almost the entirety of the literature discusses sensor performance accuracy as the
sole criterion for the sensor selection process, we argue that operational feasibility plays a significant
role, in addition to performance accuracy, and should be emphasized. Operational feasibility can
include monetary and logistical features associated with the sensor that lead to preferential selection of
one sensor over another. Although performance accuracy is the foremost concern for scientific users,
commercial agricultural users often prioritize operational feasibility that includes monetary aspects,
ease of operation, durability, labor, management, etc. For instance, a commercial production field
with high soil spatial variability entails that soil moisture be measured at numerous sites, requiring
substantial investment in sensors and their connectivity. In addition, it would be a labor-intensive task
for the irrigation manager to retrieve and analyze and interpret soil moisture data from these sites
frequently to carry out decision-making. Time, cost, and labor are crucial inputs in any commercial
operation, underscoring the importance of operational feasibility of soil moisture, in addition to
performance accuracy. This research aims to fill a significant knowledge gap in the area of consideration
of operational feasibility of soil moisture sensing technology, which has not received any emphasis in
the past.

The overall goal of this research is to develop, evaluate, and propose a framework that can
comprehensively evaluate soil moisture sensors with respect to: (a) performance accuracy; and (b)
operational feasibility. These evaluations were conducted for nine commercially available sensors
[TrueTDR-315L (Acclima, Inc., Meridian, ID), CS616 and CS655 (Campbell Scientific, Inc., Logan, UT),
5TE, 10HS, EC-5 and MPS-6 (Meter Group, Pullman, WA), SM150 (Delta-T Devices Ltd., Cambridge,
UK) and John Deere Field Connect (John Deere Water, San Marcos, Cal.)] under silt loam and loamy
sand soils for two different installation orientations [sensing component parallel (horizontal) and
perpendicular (vertical) to the ground surface] typically used. A decision-making guide is proposed
that will aid in the selection of the best sensor, both performance-wise and feasibility-wise, under
different conditions of use by a large spectrum of users.

2. Materials and Methods

2.1. Description of Soils, Vegetative Characteristics, and Management at the Experimental Sites

Two dominant soil types in Nebraska were selected for the field experiments, which were carried
out in the 2017 and 2018 growing seasons. Hereon, we will refer to Site 1 and Site 2 (Figure 2) by their
soil types, i.e., silt loam and loamy sand, respectively.

Silt loam (Site 1): The first experimental site (Site 1) was at the University of Nebraska-Lincoln
South Central Agricultural Laboratory (SCAL) (40◦ 43′ N and 98◦8′ W at an elevation of 552 m above
mean sea level), near Clay Center, Nebraska. The long-term average annual precipitation in this area is
730 mm and the long-term average growing season (May 1—September 30) precipitation is 437 mm.
This site has well-drained Hastings silt loam soil (Crete fine, smectitic, mesic Pachic Argiustolls) with
field capacity (FC) and permanent wilting point (PWP) of 0.34 m3 m−3 and 0.14 m3 m−3, respectively.
Irrigated row crops were grown during the experimental period. Field maize (Zea mays L.) and soybean
(Glycine max) were grown in 2017 and 2018, respectively. Typical effective rooting depth of field maize
and soybean at the experimental site is 1.20 m and 0.90 m, respectively. Total available water holding
capacity of the top 1.50 m soil profile is approximately 300 mm. The experimental field (16.5 ha) was
irrigated using a four-span hydraulic and continuous-move center-pivot irrigation system (T-L Irrigation,
Hastings, Nebraska). Irrigation management was conducted to maintain crops at optimum growth
conditions and maintain soil-water near 40%–45% of maximum allowable depletion. The irrigation
amount applied was 159 mm in 2017 and 64 mm in 2018.
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Loamy sand (Site 2): The second experimental site (Site 2) was at Central City, (41◦16′ N 97◦56′ W
at an elevation of 549 m above mean sea level) approximately 10 km north of the Platte River,
Nebraska. Here, the long-term average annual and growing season precipitation is 732 mm and
464 mm, respectively. This site has deep, moderately drained, and moderately permeable loamy sand
(Ipage mixed, mesic, Oxyaquic Ustipsamments) with a FC and PWP of 0.19 m3 m−3, and 0.05 m3 m−3,
respectively. This site was a rainfed native grassland approximately 70 ha in size and contains primarily
buffalograss [Bouteloua dactyloides (Nutt.)] (∼90%) and tall fescue (Festuca arundinacea). This grassland
was established in 1980 and still maintains its natural establishment conditions. Due to rainfed
conditions, the vegetation experiences water stress, especially during July and August. It is grazed
throughout most of the growing season, and the grass height varies between approximately 5 and
13 cm throughout the season [19]. Nebraska has approximately 19.6 million ha of land that comprises
approximately 12 million ha of grassland (rangeland), 1.9 million ha of irrigated maize, and 0.8 million
ha of irrigated soybean [19]. Thus, the vegetative surfaces in these experiments are well representative
of Nebraska and the Midwestern region and many other parts of the US and world, and hence hold
significance for the state and other states and locations of the world with similar soil characteristics
and cropping systems. Table 1 presents some of the measured basic soil characteristics at both sites.
The inclusion of these two soil types for our experiments provides an opportunity to evaluate the
sensors for use in conditions representative of irrigated and rainfed agricultural production systems.

2.2. Soil Moisture Sensors Investigated

We used nine different commercial soil moisture sensors in our evaluations that fall into three
main categories when classified by operational principles. At each site, we evaluated two sets of each
sensor, one of which was installed in horizontal (parallel to the ground surface) orientation and the
other in vertical (perpendicular to the ground surface) orientation. The only exceptions were the JD
multi-sensor probe, which can only be installed vertically and TDR315L (Acclima), which was only
evaluated in horizontal orientation. Following are all the sensors included in this research under their
corresponding principles of operations:

Time-Domain Reflectometry (TDR)-based Sensors

• TrueTDR-315L Acclima (Acclima, Inc., Meridian, ID)
• CS616 (Campbell Scientific, Inc., Logan, UT)
• CS655 (Campbell Scientific, Inc., Logan, UT)

Capacitance-based Sensors

• 5TE (Meter Group, Pullman, WA)
• 10HS (Meter Group, Pullman, WA)
• EC-5 (Meter Group, Pullman, WA)
• SM150 (Delta-T Devices, Cambridge, U.K.)
• John Deere (JD) Field Connect (John Deere Water, San Marcos, Cal.)
• Dielectric Water Potential-based SensorTEROS 21 (MPS-6) (Meter Group, Pullman, WA)

All sensors report soil moisture status as volumetric water content (θv) (m3 m−3% vol), except
TEROS 21 (MPS-6), which reports soil matrix potential (Ψm) (kPa). We converted each soil layer’s Ψm

measurements to θv using soil-specific soil-water release curves developed by [20].
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Table 1. Measured physical, hydraulic, and chemical properties of the two experimental soils.

Soil Type Soil Layer
(cm)

Particle Size Distribution ρb
1 OMC 2 FC 3 PWP 4 Saturation Slope Comp 5 EC 6

(%) Sand (%) Silt (%) Clay (g cm−3) (%) (m3 m−3) (m3 m−3) (m3 m−3) (%) kPa dS/m

Silt Loam

0–30 18.7 55.6 25.6

1.35

2.81 0.34 0.17 0.50

0 0.90 0.3530–60 16.2 45.3 38.5 2 0.38 0.23 0.50

60–90 15.8 51 33.2 1.3 0.36 0.20 0.47

90–120 15.8 56.1 28.1 1.07 0.35 0.17 0.46

Loamy Sand 0–120 77 16 7 1.54 1.1 0.19 0.05 0.42 1.0 0.96 0.13

Soil Type pH N P K Ca Mg Na Zn Fe Mn Cu CEC SAR

ppm

Silt Loam 5.8 25.7 33 528 1950 321 45 2.5 64.8 12.4 0.5 19 0.83

Loamy Sand 6.4 12.3 14 172 1140 206 57 0.7 32.7 3.7 0.4 8.1 1.09
1 ρb: bulk density; 2 OMC: organic matter content. 3 FC: field capacity; 4 PWP: permanent wilting point. 5 Comp: compaction. 6 EC: electrical conductivity.
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2.3. Reference (True) Moisture Measurement

We used a new Troxler Model 4302 neutron probe (NP) soil moisture gauge (Troxler Electronic
Laboratories, Inc., Research Triangle Park, N.C.) to represent true θv (θvref) information in our research.
All other sensors in question have been compared, assessed, and calibrated against NP measurements.
For accurate soil moisture measurements, site-specific calibration equations were developed [20] for
both sites by correlating the factory-calibrated NP measurements to the gravimetric-sample-determined
θv (Figure 3; Equations (1) and (2)).Sustainability 2020, 12, x FOR PEER REVIEW  8 of 20 
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content and the gravimetrically determined volumetric soil water content in (a) silt loam (SCAL) and
(b) loamy sand (Central City) soils [20].

Silt Loam:
y = 0.9061x + 0.0354 (1)

Loamy Sand:
y = 1.0848x− 0.0246 (2)

where, y refers to factory calibration θvref, and x refers to gravimetric θv.
Two NP access tubes were installed at each of the sites for reference (true) soil moisture information.

These tubes were installed in very close vicinity of the sampling area of the sensors to be evaluated.
For example, in silt loam, NP access tubes were installed in the inter-plant spacing in the same row as
other sensors, ensuring fair evaluation (the row spacing in the silt loam soil-Site 1 was 0.76 m for maize
and soybean). The access tubes were covered at all times, except when measuring soil moisture, to
avoid any interaction with ambient moisture conditions (rainfall, irrigation, dew formation, etc.).

2.4. Installation Specifications

We investigated all the sensors that can be installed in varying orientations under two orientations
(vertical and horizontal). Hereon, the four different soil type-orientation combinations are referred
to as silt loam H (for horizontal), silt loam V (for vertical), loamy sand H, and loamy sand V. Soil
profiles (pits) were dug at both sites for horizontal sensor orientation so that the four boundary walls
of the pits were perpendicular to the pit bottom plane. The soil beyond the cuboidal pit was ensured
to be undisturbed and soil structure was maintained. In silt loam soil, the pit was dug in the furrow,
whereas in loamy sand soil, the pit was dug in a representative grassed area. For horizontal orientation
(silt loam H and loamy sand H), the sensors were installed parallel to the ground surface against one of
the pit walls at 60 cm depth from soil surface, such that the sensing components of the sensor (prongs,
ceramic disks, etc.) resided in undisturbed soil and sampled soil moisture in undisturbed soil. Sensor
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outputs are highly sensitive to the effectiveness of sensor installation, requiring that extreme caution
is used in the installation procedure. The inter-sensor distance was kept such that volumes (area) of
influence of various sensors are independent. Post-installation, the pit was refilled with the same
volume of soil, compacted to original conditions) and the same soil layers were placed back in their
original depths to enable the construction of the original soil layers.

For vertical orientation (silt loam V and loamy sand V), the sensors were installed perpendicular
to the ground surface, such that the sensing components were placed in undisturbed soil. The vertical
sensors were oriented so that the geometrical midpoints of the sensing components lie on the same
horizontal plane, ensuring fair comparisons across sensors with variable sensing volumes. For silt
loam V, the horizontal plane was at 30 cm from the ground surface, while for loamy sand V, it was
50 cm from the ground surface. For silt loam site H, the sensors were installed directly under the plant
row within the root zone; and for silt loam V, they were installed in the inter-plant spacing, ensuring
sampling of the root zone.

The JD probe, being a multidepth probe had different installation specifications than those
discussed above. JD probes can only be vertically installed perpendicular to the ground, and hence,
we were not concerned with installation orientations in this case. The JD probes were compared to NP
soil moisture measurements at five different depths where the capacitors are placed, i.e., 10, 20, 30, 50,
and 100 cm. While these depths are alterable, manufacturer default depths were used in this research.

2.5. Soil Mositure Data Measurement and Retrieval

All the sensors in question were equipped with various manufacturer-recommended dataloggers
that read soil moisture status every minute and output hourly averages throughout the two growing
seasons. The datasets were retrieved manually, except for the JD probe, for which telemetry was used
for data retrieval. The NP measurements were conducted at both access tubes at the two sites every
week throughout the two growing seasons. At each access tube, eight neutron count measurements
were conducted each week, each corresponding to the depths where various sensors were installed,
i.e., 10 cm (JD probe), 20 cm (JD probe), 30 cm (JD probe and all sensors under silt loam V), 50 cm (JD
probe and all sensors under loamy sand V), 60 cm (for all sensors under silt loam H and loamy sand
H), 90 cm [(for all sensors under loamy sand and silt loam (both H and V)], 100 cm (JD probe) and
120 cm [for all sensors under loamy sand and silt loam (both H and V)].

2.6. Statistical Analysis

All sensors were evaluated for their performance in estimating θv accurately using root mean
squared error (RMSE, m3 m−3), computed as described in Equation (3).

RMSE =

√∑n
i = 1(Ei −Mi)

2

n
(3)

where, Mi is sensor-computed variables, Ei is corresponding NP-measured (true) variables, and n
is number of observations. RMSE was used to denote the absolute value of the error that would be
associated with these sensor-estimated variables, if the sensor in question is used to report soil moisture
status, as calculated from the experimental data.

2.7. Evaluation Metrics

Each sensor included in this research was subject to evaluation for two major characteristics
that are expected from an ideal sensor used for agricultural irrigation management by any user.
These characteristics were: (i) operational feasibility; and (ii) performance accuracy. The following
sections describe the methodology adopted in this research to address the suitability of the sensors
under these criteria.
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2.7.1. Operational Feasibility

The definition of operational feasibility in this research includes four characteristics that an ideal
sensor is expected to possess. These are: (a) telemetry; (b) sensor cost; (c) data logging cost; and (d) ease
of operation. A detailed description of each of these factors as well as how they were addressed in a
quantitative framework is presented in the following sections.

Telemetry

Telemetry (TM) is referred to as the ability to have near-real-time access to the data that is collected
at the monitoring site. The moisture data is usually made available in the web platform and can be
accessed through a cell phone, iPad, and other devices. The data transmittal is achieved via terrestrial
radio or satellite systems, and usually a wireless cost is incurred that could be a fixed cost or can vary with
per unit of data transfer. Solar panels are usually employed to generate electrical power; hence, the data
collection and transfer is independent of the power grid. A soil moisture sensor system equipped with
TM options provides the user with the ability to monitor the soil profile for available water in near-real
time, and prevents the time and labor investment to physically visit the monitoring site repeatedly.
Moreover, it could also prevent risky situations where the moisture levels are close to the irrigation
trigger, and the user does not have access to the data, given time and labor constraints. Generally, most
of the sensors available currently have some provision of being equipped with a telemetric system
with an associated cost. Typically, on a commercial level, this is accomplished either by adding a TM
module to an existing datalogger, or by using a datalogger with built-in telemetry provision.

In this research, we converted the qualitative information of availability or nonavailability of TM
to a quantifiable metric, to which we refer to as Score 1, and is determined using the following equation:

Score 1 =

{
0 if no provision of telemetry

100 if telemetric provision exists
(4)

Sensor Cost

The cost of the sensing device is a very important factor for consideration, especially for a
commercial producer, to consider in the selection criteria. The cost of each sensor included in this
research was enquired from the respective manufacturers, and the costs (Table 2) represent those
effective on March 13, 2019, and are subjected to change with time. However, the relative magnitudes
of the costs will remain equivalent to what is reported in this research, and, hence, our findings will
hold true.

It is crucial to rescale the absolute sensor costs to a scale of 0–100 in order to be consistent with the
other factor-specific scores that we have quantified. The score for sensor cost is referred to as Score 2,
and is calculated using the following equation:

Score 2 = 100−
(Maxscaled − Minscaled

Maxcost − Mincost

)
× (Sensor cost− Mincost) + Minscaled (5)

where, Maxscaled and Minscaled are the extremes of the scale of the score metric, i.e., 0 and 100, Maxcost

and Mincost are the extremes of the scale of the absolute sensor cost (US dollar amount in Table 2),
sensor cost is the dollar amount of the cost of the sensor for which Score 2 is calculated. Thus, using
this scaling technique, the sensor that is the cheapest in the complete sensor panel is assigned a Score 2
of 100; and the costliest sensor is assigned a Score 2 of 0. All other sensors were assigned accordingly
within this scale of 0 to 100.
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Table 2. Cost of sensor and sensor and datalogger [with and without telemetry (TM)] used in the
deduction of scores. The prices are in US Dollars and reflect the prices obtained from the manufacturers
that were in effect as on 13 March 2019.

Sensor Sensor Cost ($) Sensing and Logging Cost
($) (No TM)

Sensing and Logging Cost
($) (TM)

CS655 228 1928 2378

CS616 148 1848 2298

SM150 230 1590 3590

10HS 128 624 1274

EC-5 120 616 1266

5TE 225 721 1371

TEROS 21 (MPS-6) 225 721 1371

JD Probe 193 1193 2193

TDR315L (Acclima) 295 670 N/A 7

N/A: not available either from manufacturer or our research data.

Sensing and Logging Cost

Effective and accurate sensing and datalogging of soil moisture data constitutes important
consideration in cost. Operational use of a soil moisture sensing device for irrigation management in a
commercial field entails that the data are logged at fixed intervals, typically at 30–60 min intervals.
This is advantageous for three major reasons: (i) having a representative daily soil moisture status
independent of diurnal variations; (ii) access to historical data for retrospection in decision-making;
and (iii) access to historical data for scrutiny for data quality assurance in case of sensor malfunction
or due to other sources of error. Thus, in the majority of cases, the total incurred cost by the user
will include both sensing and data logging (DL) cost (Equation (6)). Further, this cost will depend on
whether or not the sensing operation includes TM (Equation (7)).

Total CostNo TM = Sensor Cost + DL cost (6)

Total CostTM = Per sensor cost + DL cost + TM cos t (7)

Following the computation of the total cost (Table 2), the total cost was rescaled as Score 3, using a
method parallel to the one used when computing Score 2, and is indicated by Equation (8):

Score 3 = 100−
(

Maxscaled − Minscaled

MaxTotal cos t − MinTotal cost

)
× (Total cost− MinTotal cost) + Minscaled (8)

where, Maxscaled and Minscaled are the extremes of the scale of the score metric, i.e., 0 and 100,
MaxTotal cost and MinTotal cost are the extremes of the scale of the absolute total cost (dollar amount in
Table 2), Total cost is the dollar amount of the cost of the sensor and datalogger (and TM, if desired)
for which Score 3 is calculated (using Equations (6) or (7), whichever is applicable). Thus, using this
scaling method, the sensor package (Sensor + DL + TM) that is the cheapest in the complete sensor
panel is assigned a Score 3 of 100; and the costliest sensor package is assigned a Score 3 of 0. All other
sensors are assigned accordingly within this scale of 0 to 100.

Ease of Operation

This factor is a highly subjective factor that addresses the degree of ease of various interactions of
the user with the sensor package at various stages. These stages include any potential programming
(or setting up) of a datalogger, data retrieval from a datalogger, and data post-processing that is required
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prior to data use for decision-making. The evaluation for this factor in each sensor was reflected by
Score 4, which was based on: (i) whether the datalogger associated with a graphical user interface
(GUI); and (ii) whether any post-processing on the sensor data was necessary. Dataloggers which
have a GUI when used with a computer are considerably easier to set up and more user-friendly than
others that require programming skills (CR10X datalogger for CS616 and CS655 requires programming
in Visual Basic). Any data post-processing that is required in a given sensor package is a reason for
avoidable delay before actual decision-making. For example, TEROS21 (MPS-6) output data are in
units of soil matric potential (kPa), rather than volumetric water content (m3 m−3). This necessitates
conversion of kPa to m3 m−3, which requires careful laboratory-based development of soil–water
retention curves, causing additional costs. The following equation (Equation (9)) represents our
methodology of assigning a quantifiable score from the qualitative information discussed above:

Score 4 =


0 if no GUI

100 if GUI available, no data post processing
50 if GUI available, require data post processing

1

(9)

It has to be noted that all of the sensor-specific scores developed under operational feasibility
(Scores 1, 2, 3, 4) are common for any soil conditions and sensor orientations. Moreover, they are also
unaltered, whether factory calibrations (F.C.) or site-specific calibrations (S.S.C.) are used.

2.7.2. Performance Accuracy

The performance accuracy metric quantifies the success of a sensor to reflect accurate soil moisture
status under a given set of soil type (silt loam and loamy sand), orientation (H or V), and calibration (F.C.
or S.S.C.). Unlike operational feasibility features, the performance accuracy is specific to a particular
soil type and orientation the sensor is installed in. For each soil type-orientation combination (silt
loam H, silt loam V, loamy sand H, and loamy sand V), root mean squared error (RMSE) for each
sensor’s volumetric water content θv (m3 m−3) against reference neutron scattering-measured θv was
calculated. Moreover, RMSE obtained under both F.C. and S.S.C. were used in this research.

It is necessary that the RMSE statistic be converted to a scale that is consistent to that of operational
feasibility metrics, i.e., score on a scale of 0–100. We refer to this as the performance accuracy (P.A.)
score and is computed using the following rescaling equation:

P.A. score = 100 −
(

Maxscaled − Minscaled

MaxRMSE − MinRMSE

)
× (RMSE − MinRMSE) + Minscaled (10)

where, Maxscaled and Minscaled are the extremes of the scale of the score metric, i.e., 0 and 100, MaxRMSE

and MinRMSE are the extremes of the scale of the sensor-specific RMSE in different soil type, orientation,
and calibration combination (Table 3), RMSE is the root mean squared error for a sensor under a certain
soil type, orientation, and calibration combination for which a P.A. score is calculated. Thus, using this
scaling technique, the sensor that is the most accurate in the complete sensor panel is assigned a P.A.
score of 100; and the least accurate sensor is assigned a P.A. score of 0. All other sensors are assigned
scores accordingly within this scale of 0 to 100.
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Table 3. Root mean squared error (RMSE) in m3 m−3 for each sensor under the two soil types, two
orientations, and two calibration types.

Soil Type Sensor
RMSE (m3 m−3)

Vertical Horizontal

F.C. 8 S.S.C. 9 F.C. S.S.C.

Silt Loam

CS655 0.05 0.03 0.15 0.05

CS616 0.06 0.03 0.40 0.05

SM150 0.07 0.02 0.06 0.04

10HS 0.10 0.03 0.07 0.06

EC-5 0.15 0.03 0.15 N/A 10

5TE 0.05 0.02 0.06 0.04

TEROS 21 (MPS-6) 0.08 0.03 0.11 0.05

JD Probe 0.05 0.06 N/A N/A

TDR315L (Acclima) N/A N/A 0.06 0.04

Loamy Sand

CS655 0.03 0.03 0.01 0.02

CS616 0.03 0.02 0.03 0.02

SM150 0.04 0.04 0.02 0.02

10HS 0.04 0.02 0.14 0.02

EC-5 0.05 0.04 0.09 0.02

5TE 0.04 0.04 0.03 0.01

TEROS 21 (MPS-6) 0.21 0.03 0.22 N/A

JD Probe 0.01 0.02 N/A N/A

TDR315L (Acclima) N/A N/A 0.02 0.02
8 F.C.: factory calibration; 9 S.S.C.: site-specific calibration; 10 N/A: not available either from manufacturer or in our
research data.

3. Results and Discussion

3.1. Assessment of Sensor-Specific Operational Feasibility Score

The algorithms presented earlier (equations 4, 5, 8, 9) were used to compute scores 1, 2,3, 4 for
each sensor to represent their evaluation for telemetry, sensor cost, sensing and logging cost (with TM
and no TM), and ease of operation, respectively. All sensors performed equally when evaluated for
TM availability, and had Score 1 of 100 (Table 4, col. 1), with the exception of TDR-315L (Acclima),
for which TM was not available, and hence was assigned a Score 1 of 0.

The sensor cost was the lowest and highest for EC-5 and TDR-315L (Acclima) sensors. In other
words, they were the best and the worst sensors cost-wise, and hence were assigned a Score 2 of 100 and
0 (Table 4, column 2), respectively. However, there was not much difference ($225–$230) among sensing
costs of CS655, SM150, 5TE, TEROS 21 (MPS-6) (Table 2). These comparatively similar costs were also
reflected in the Score 2 assigned to these sensors, which was in the range of 37–40. Unlike Score 1,
Score 2 showed greater variability across sensors, and hence would contribute in a crucial fashion to
the sensor selection process. As mentioned earlier, sensor cost is one of the most fundamental factors
that governs sensor selection by a commercial grower, especially if the target field has considerable
soil spatial variability. A multiplier (number of sensors to be installed) can be used to upscale the
sensor cost in such a situation. Score 1 is relatively more useful for research and scientific applications,
where numerous sensors are required to monitor experimental field plots and greenhouse pots, and
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the user might not be interested in logging the data, given sufficient labor and time to manually read
and record the data.

In practical (and commercial) situations, sensing and logging cost will be the actual total cost
incurred by the user. Further, depending on the desire of a user for a TM connectivity, the cost can vary
accordingly. Thus, we present Score 3 under two scenarios, i.e., non-TM sensing and datalogging and
sensing and datalogging with TM, and are conveyed in Table 4, col. 3 and col. 4, respectively. For non-TM
sensing and logging, EC-5 and CS655 scored the highest (100) and the lowest (0), respectively, while
for sensing and datalogging with TM, EC-5 and SM150 scored the highest and the lowest, respectively.
It was observed that, in most cases, telemetry option affects the total cost and so, can be the priority of
the sensor selection. Score 3 also shows substantial variability across sensors, and thus governs the
selection to a considerable degree, similar to Score 2. It has to be noted that Score 3 represents the cost
for a single sensor and datalogger. In certain cases, the datalogger allows for integration of multiple
sensors (EM-50; CR10X; DL-6), and in such cases, the total cost would be readjusted.

Lastly, ease of operation, as assessed by Score 4 (Table 4, col. 5), revealed that all sensors were
optimal on this frontier (score of 100), except CS616, CS655, and TEROS 21 (MPS-6). Both CS616
and CS655, since being associated with the CR10X datalogger, which requires programming skills
to set them up, to read and record the data, were assigned a Score 4 of 0. TEROS 21, due to the
requirement of data post-processing (conversion from kPa to m3 m−3), was assigned a Score 4 of 50
(see Equation (9)). These requirements for the use of these sensors present challenges, especially when
commercial production is the area of sensor use.

3.2. Performance Accuracy Score

Performance accuracy (P.A.) scores are presented in column 6 in Table 4, individually for silt
loam and loamy sand soils under vertical and horizontal orientations when used with field calibration
(F.C.) and site-specific calibration (S.S.C.). P.A. scores were computed for each sensor using Equation
(10), using sensor-specific RMSE. P.A. scores are site-specific, orientation-specific, and calibration
type-specific, and are studied individually for each of these scenarios.

It was found that, for silt loam V under F.C., CS655 and EC-5 had highest and lowest P.A. scores,
respectively, due to their low and RMSE values. Lowest RMSE implies highest P.A. score, and vice
versa. For silt loam V under S.S.C., SM150 and JD Probe scored the highest and lowest, respectively.
It is interesting to note that how using S.S.C. rather than F.C. alters the best and worst choices of
sensors. This is because some sensors perform reasonably under F.C. and do not necessarily require a
S.S.C. This implies that the sensor selection process has to respect the fact that whether the sensor will
be used with a certain S.S.C., as a part of a research and outreach program. This information about
calibration-specific uncertainties in soil moisture measurement has been generated through extensive
datasets collected through field research for sensor-measured and actual soil moisture over two years.
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Table 4. Scores calculated for various operational feasibility (O.F.) factors and performance accuracy (P.A.) for each sensor. The O.F. scores are universal, whereas P.A.
score varies with soil types, installation orientations, and calibration types.

Operational Feasibility (O.F.) Score Performance Accuracy (P.A.) Score

Column ID 1 2 3 4 5 6

Sensor Score 1 Score 2 Score 3 (Non-TM) Score 3 (TM) Score 4
Silt Loam V Silt Loam H Loamy Sand V Loamy Sand H

F.C. 11 S.S.C. 12 F.C. S.S.C. F.C. S.S.C. F.C. S.S.C.

CS655 100 38 0 52 0 100 76 73 47 90 66 100 53

CS616 100 84 6 56 0 87 80 0 31 94 74 95 79

SM150 100 37 26 0 100 74 100 100 80 85 0 98 0

10HS 100 95 99 100 100 44 84 95 2 87 100 41 8

EC-5 100 100 100 100 100 0 75 73 N/A 84 17 65 84

5TE 100 40 92 95 100 97 94 100 100 87 11 91 100

TEROS 21 (MPS-6) 100 40 92 95 50 67 80 85 72 0 23 0 N/A

JD Probe 100 58 N/A 13 60 100 99 0 N/A N/A 100 81 N/A N/A

TDR315L (Acclima) 0 0 96 N/A 100 N/A N/A 98 83 N/A N/A 97 8
11 F.C.: factory calibration; 12 S.S.C.: site-specific calibration; 13 N/A: not available either from manufacturer or from our research data.
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Similarly, for silt loam H under F.C., 5TE and SM150 scored the highest and CS616 the lowest, while
silt loam H under S.S.C., 5TE and 10 HS scored the highest and the lowest, respectively. Overall, it can
be observed that, among all sensors, 5TE performed the best under all orientation and calibration-type
combinations in silt loam soil when P.A. score was considered (P.A. score was at least 94), implying
that it can be well suited for irrigation management and soil water status monitoring in silt loam soils.
Nevertheless, we recommend that the users should identify the best sensor given their conditions
(orientation, calibration type), rather than selecting a sensor across the spectrum.

The best-suited sensors shifted significantly when the soil type was changed. The best sensors,
as reported by P.A. scores in loamy sand soil were JD probe (for loamy sand V under F.C.), 10 HS
(loamy sand V under S.S.C.), CS655 (loamy sand H under F.C.), and 5TE (loamy sand H under S.S.C.).
Since there are no constituent subfactors in P.A., unlike O.F., the P.A. score is the singular score that
was used to assess the suitability of sensors when the degree of accuracy associated with the use of a
sensor is a priority. However, unlike O.F., P.A. scores are not universal across the conditions in which
they are used, and should be selected based on the soil type, sensor orientation, and calibration type
for which they are to be deployed.

3.3. Step-By-Step User Guide for Sensor Selection

We proposed a framework to aid in sensor selection by a user by developing a methodology
to account for various factors that can affect the efficacy or success of a sensor in a given condition
(Figure 4). We suggest that the following step-by-step methodology should be followed:

Step 1: Select the factors that are relevant to the user’s situation from the pool of different factors
that can be addressed. This includes sensing cost, sensing and datalogging cost (TM or non-TM),
ease of operation, which are subfactors under a broad operational feasibility framework, and lastly,
performance analysis. The factor selection step aims at recognizing characteristics associated with the
sensors that concern the user and can vary widely among different users. For example, if the user is a
highly skilled researcher, ease of operation might not be a relevant driver. In such a case, Score 4 can
be ignored. On the other hand, if the user is a commercial grower who intends to install a single sensor
near the field boundary close to his/her homestead, telemetry costs might not be a concerning factor.
In this case, Score 3 (TM) shall be considered. Thus, fulfilling this step would provide clarity on what
factors to include in the selection process going forward.

Step 2: Assign desired weightage to each factor, which would also be a function of the intended
importance assigned to each factor based on their use. The total weightage (as a fraction of 1) can be
divided among the selected factors mentioned in step 1. For example, if the intended use is research,
greater weightage can be assigned to P.A. score.

Step 3: Multiply the assigned weightage factor to each score with the corresponding score quantity
provided in Table 4. The following equation is used for a situation where sensing and datalogging cost
(Score 3), ease of operation (Score 4) and performance accuracy (P.A. score) are weighted by β1, β2, and
β3, respectively.

Final sensor score

= β1 × Score 3 (either non− TM or TM) + β2 × Score 4

+ β3 × P.A. Score

(11)

where, final sensor score is the metric compared across the sensors for selection, Scores 3 and 4 are
sensor-specific quantities to be used from columns 3 (non-TM)/4 (TM) and 5 from Table 4. β1, β2, and
β3 are the weightage factors assigned to sensing and logging cost, ease of operation, and performance
accuracy, by the user.
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Step 4: Finally, the final sensor score is compared across the sensors to evaluate the relative degree
of success and effective operational feasibility expected with the use of the sensors. The sensor for which
the final sensor score is the maximum is ideally the best-suited sensor for the intended application.

As a case study to explain this workflow described in the above steps, the entire sensor selection
process was carried out under certain example conditions. Table 5 lists the considerations and factors
that are relevant in this particular case study and lists the quantities obtained at each step of the guide.
This case study acts as an example resource to understand the process of sensor selection that we
proposed in this research.
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Table 5. Case study considerations, step-wise computations, and final sensor selection details for the case study shown.

Case Study Considerations

Soil Type: Silt Loam

Orientation: Vertical

Calibration Type: Factory Calibration

TM: No

Step 1 (Factor selection)
Sensing and logging cost (non-TM)

Ease of operation

Performance accuracy

Step 2 (Assign weightage)
β1 = 0.1

β2 = 0.3

β3 = 0.6

Step 3 (Add weighted scores)

Step 4 (Compare final sensor scores)

Sensor β1 × Score 3 β2 × Score 4 β3 × P.A. Score Final sensor score Rank

CS655 0 0 60 60 5

CS616 1 0 52 53 6

SM150 3 30 44 77 2

10HS 10 30 26 66 3

EC-5 10 30 0 40 7

5TE 9 30 58 98 1

TEROS 21 (MPS-6) 9 15 40 64 4

JD Probe N/A14 30 59 N/A N/A

TDR315L (Acclima) 10 30 N/A N/A N/A

Best-suited sensor: 5TE
14 N/A: not available either from manufacturer or our research data.
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4. Conclusions

This research recognizes the crucial need to emphasize factors that play a significant role in the
desirability/selection of soil moisture sensors. These factors elucidate the operational feasibility of
nine commercially available soil moisture sensors by identifying and quantifying factors such as cost
of sensing, datalogging, telemetry and ease of sensor operation. This was achieved by assessing
the abovementioned characteristics in all nine sensors and quantifying scores that ranged from 0
to 100 for each of these governing factors. The operational feasibility of the sensors was merged in
conjunction with sensor accuracy. Finally, a step-by-step guide was proposed that aimed at appropriate
sensor selection under various expectations, considerations, soil types, orientations and calibration
types. We expect the resources in the form of scores and ranks presented here for each sensor to be
valuable to a wide community of users, ranging from researchers to commercial growers. In addition
to the sensor-specific information and analysis presented here, the conceptual framework of sensor
selection presented can be extended to any other soil moisture sensors that are not been included in
this research. To the best of our knowledge, this research is the first attempt to address the need of
non-sensor-performance-related expectations from a desired sensor in a quantitative fashion.

Author Contributions: M.S.K., S.I., and K.S. contributed towards conceptualization of the experiments and
methodology, formal analysis, interpretation, and writing. Original draft preparation, M.S.K. and K.S.; detailed
review, revisions and editing, S.I.; visualization, K.S., M.S.K., S.I.; supervision, S.I.; project administration, S.I.;
funding acquisition, S.I. All authors have read and agreed to the published version of the manuscript.

Funding: This project was partially supported by a grant obtained from the National Science Foundation (NSF)
under the project number CNS-1619285. This research is partially based upon work that is supported by the
National Institute of Food and Agriculture, U.S. Department of Agriculture, Professor Suat Irmak’s Hatch Project,
under the Project Number NEB-21-155.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Doorenbos, J.; Kassam, A.H. Yield Response to Water. Irrig. Drain. Pap. 1979, 33, 257.
2. Dong, X.; Vuran, M.C.; Irmak, S. Autonomous Precision Agriculture through Integration of Wireless

Underground Sensor Networks with Center Pivot Irrigation Systems. Ad Hoc Netw. 2013, 11, 1975–1987.
[CrossRef]

3. Zhu, Y.; Irmak, S.; Jhala, A.J.; Vuran, M.C.; Diotto, A. Time-domain and frequency-domain reflectometry type
soil moisture sensor performance and soil temperature effects in fine-and coarse-textured soils. Appl. Eng.
Agric. 2019, 35, 117–134. [CrossRef]

4. Datta, S.; Taghvaeian, S.; Ochsner, T.; Moriasi, D.; Gowda, P.; Steiner, J. Performance Assessment of Five
Different Soil Moisture Sensors Under Irrigated Field Conditions in Oklahoma. Sensors 2018, 18, 3786.
[CrossRef] [PubMed]

5. Rudnick, D.R.; Djaman, K.; Irmak, S. Performance Analysis of Capacitance and Electrical Resistance-Type
Soil Moisture Sensors in a Silt Loam Soil. Trans. ASABE 2015, 58, 649–665.

6. Singh, J.; Lo, T.; Rudnick, D.R.; Dorr, T.J.; Burr, C.A.; Werle, R.; Shaver, T.M.; Muñoz-Arriola, F. Performance
Assessment of Factory and Field Calibrations for Electromagnetic Sensors in a Loam Soil. Agric. Water Manag.
2018, 196, 87–98. [CrossRef]

7. Leib, B.G.; Jabro, J.D.; Matthews, G.R. Field Evaluation and Performance Comparison of Soil Moisture
Sensors. Soil Sci. 2003, 168, 396–408. [CrossRef]

8. Evett, S.; Laurent, J.; Cepuder, P.; Hignett, C. Neutron Scattering, Capacitance, and TDR Soil Water Content
Measurements Compared on Four Continents. In Proceedings of the 17th World Congress of Soil Science,
Bangkok, Thailand, 14–21 August 2002; pp. 14–21.

9. Hanson, B.; Peters, D. Soil Type Affects Accuracy of Dielectric Moisture Sensors. Calif. Agric. 2000, 54, 43–47.
[CrossRef]

http://dx.doi.org/10.1016/j.adhoc.2012.06.012
http://dx.doi.org/10.13031/aea.12908
http://dx.doi.org/10.3390/s18113786
http://www.ncbi.nlm.nih.gov/pubmed/30400674
http://dx.doi.org/10.1016/j.agwat.2017.10.020
http://dx.doi.org/10.1097/01.ss.0000075285.87447.86
http://dx.doi.org/10.3733/ca.v054n03p43


Sustainability 2020, 12, 321 19 of 19

10. Kizito, F.; Campbell, C.S.; Campbell, G.S.; Cobos, D.R.; Teare, B.L.; Carter, B.; Hopmans, J.W. Frequency,
Electrical Conductivity and Temperature Analysis of a Low-Cost Capacitance Soil Moisture Sensor. J. Hydrol.
2008, 352, 367–378. [CrossRef]

11. Quinones, H.; Ruelle, P.; Nemeth, I. Comparison of Three Calibration Procedures for TDR Soil Moisture
Sensors. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2003, 52, 203–217. [CrossRef]

12. Irmak, S.; Haman, D.Z. Performance of the Watermark. Granular Matrix Sensor in Sandy Soils. Appl. Eng.
Agric. 2001, 17, 787. [CrossRef]

13. Irmak, S.; Irmak, A. Performance of Frequency-Domain Reflectometer, Capacitance, and Psuedo-Transit
Time-Based Soil Water Content Probes in Four Coarse-Textured Soils. Appl. Eng. Agric. 2005, 21, 999–1008.
[CrossRef]

14. Jabro, J.D.; Stevens, W.B.; Iversen, W.M. Field Performance of Three Real-Time Moisture Sensors in Sandy
Loam and Clay Loam Soils. Arch. Agron. Soil Sci. 2018, 64, 930–938. [CrossRef]

15. Seyfried, M.S.; Murdock, M.D. Response of a New Soil Water Sensor to Variable Soil, Water Content, and
Temperature. Soil Sci. Soc. Am. J. 2001, 65, 28–34. [CrossRef]

16. Vaz, C.M.; Jones, S.; Meding, M.; Tuller, M. Evaluation of Standard Calibration Functions for Eight
Electromagnetic Soil Moisture Sensors. Vadose Zone J. 2013, 12. [CrossRef]

17. USDA 2018. Census of Agriculture. 2018 Irrigation and Water Management Survey.
Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Farm_and_Ranch_
Irrigation_Survey/fris.pdf (accessed on 2 December 2019).

18. Irmak, S.; Rees, J.M.; Zoubek, G.L.; van DeWalle, B.S.; Rathje, W.R.; DeBuhr, R.; Leininger, D.; Siekman, D.D.;
Schneider, J.W.; Christiansen, A.P. Nebraska Agricultural Water Management Demonstration Network
(NAWMDN): Integrating Research and Extension/Outreach. Appl. Eng. Agric. 2010, 26, 599–613. [CrossRef]

19. Irmak, S. Nebraska Water and Energy Flux Measurement, Modeling, and Research Network (NEBFLUX).
Trans. ASABE 2010, 53, 1097–1115. [CrossRef]

20. Irmak, S. Perspectives and Considerations for Soil Moisture Sensing Technologies and Soil Water Content- and
Soil Matric Potential-Based Irrigation Trigger Values. Extension NebGuide 3045. 2019; 8p. Available online:
http://extensionpublications.unl.edu/assets/pdf/ec3045.pdf (accessed on 2 December 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2008.01.021
http://dx.doi.org/10.1002/ird.95
http://dx.doi.org/10.13031/2013.6848
http://dx.doi.org/10.13031/2013.20035
http://dx.doi.org/10.1080/03650340.2017.1393528
http://dx.doi.org/10.2136/sssaj2001.65128x
http://dx.doi.org/10.2136/vzj2012.0160
https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Farm_and_Ranch_Irrigation_Survey/fris.pdf
https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Farm_and_Ranch_Irrigation_Survey/fris.pdf
http://dx.doi.org/10.13031/2013.32066
http://dx.doi.org/10.13031/2013.32600
http://extensionpublications.unl.edu/assets/pdf/ec3045.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Description of Soils, Vegetative Characteristics, and Management at the Experimental Sites 
	Soil Moisture Sensors Investigated 
	Reference (True) Moisture Measurement 
	Installation Specifications 
	Soil Mositure Data Measurement and Retrieval 
	Statistical Analysis 
	Evaluation Metrics 
	Operational Feasibility 
	Performance Accuracy 


	Results and Discussion 
	Assessment of Sensor-Specific Operational Feasibility Score 
	Performance Accuracy Score 
	Step-By-Step User Guide for Sensor Selection 

	Conclusions 
	References

