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Abstract: The objective of this work is to identify and classify the relative importance of several
socioeconomic factors which explain life expectancy at birth in the European Union (EU) countries in
the period 2008–2017, paying special attention to greenhouse gas emissions and public environmental
expenditures. Methods: The Random Forests methodology was employed, which allows classification
of the socioeconomic variables considered in the analysis according to their relative importance to
explain health outcomes. Results: Per capita income, the educational level of the population, and the
variable AREA (which reflects the subdivision of Europe into four relatively homogeneous areas),
followed by the public expenditures on environmental and social protection, are the variables with the
highest relevance in explaining life expectancy at birth in Europe over the perip.1 he peusto el correo
e inciod 2008–2017. Conclusions: We have identified seven sectors as the main sources of greenhouse
gas emissions: Electricity, gas, steam, and air conditioning supply; manufacturing; transportation and
storage; agriculture, forestry, and fishing; construction; wholesale and retail trade, repair of motor
vehicles and motorcycles; and mining and quarrying. Therefore, any public intervention related
to environmental policy should be aimed at these economic sectors. Furthermore, it will be more
effective to focus on public programs with higher relevance to the health status of the population,
such as environmental and social protection expenditures.

Keywords: life expectancy at birth; socioeconomic factors; Random Forests; public expenditures;
greenhouse gas emissions

1. Introduction

The impact of water, soil, noise, and air pollution on health has typically been recognized [1].
Specifically, air pollution continues to be one of the main environmental risk factors, with an estimated
impact of 5.5 million deaths per year worldwide [2]. Air pollutants differ not only in their chemical
composition, reaction properties, and emission, but in their time of disintegration and ability of
diffusion over long or short distances [3].

However, in this paper, the main greenhouse gases (CO2, N2O, and CH4) will be analyzed instead
of air pollutants. Specifically, it is estimated that CO2 emissions represent about three quarters of
global greenhouse gas emissions, whereby CO2 is seen as a major contributor to climate change [4].
This justifies the steadily growing number of researches referring to CO2 emissions and climate
change [5–10].

From a clinical or epidemiological approach, the influence of air pollution on health status has
been widely documented by using microdata [11–17]. Furthermore, air pollution is a socioeconomic
factor which is receiving growing interest in studies referring to the determinants of health outcomes
from a macroeconomic approach in developed countries [18–20]. The major advantage of a macro-level
approach is that it allows researchers to analyze health outcomes at a country level—by using state,
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regional, or local data—and to obtain suitable economic policy implications. For this reason, in this
work, it was preferred to follow this second perspective of analysis.

Traditionally, public health expenditure has been considered as a health resource in previous
literature referring to the determinants of health status of population from a macro-level
perspective [21–25]. However, it should be noted that, recently, there has been a movement towards
including new categories of public expenditure related to health—such as social expenditures—in
this type of literature [26], but government environmental expenditure has not been included in the
existing literature so far.

Therefore, the objective of this study is to identify and classify the relative importance of the
socioeconomic factors in explaining life expectancy at birth in the European Union (EU) countries
throughout the period 2008–2017, paying special attention to greenhouse gas emissions and public
environmental expenditure. For this purpose, and according to previous studies, some “traditional”
socioeconomic indicators are also included in the analysis, such as per capita income and education
level of the population, in addition to some components of public budgets, such as health care and
social protection expenditures.

2. Literature Review

Previous literature, starting from Auster et al. [27], has grouped the determinants of health status
in developed countries into three categories—specifically, socio-economic factors (gross domestic
product, per capita income, education, income distribution, unemployment and poverty, among others),
health care resources (total, public, or private health care expenditure, expenditure on pharmaceutical
products, doctors, nurses, and hospital beds), and lifestyle-related factors (such as consumption of
alcohol and tobacco, and some proxies for diet such as, for example, consumption of sugar, calories and
vegetables) [28,29].

It is important to note that most previous literature which follows a macroeconomic approach
to study this topic refers to OECD (Organization for Economic Co-operation and Development)
countries [21–24,27,30–43] or to a mix of OECD and non-OECD countries [19,44–52], as Table A1—which
includes a selection of the most impactful papers, arranged chronologically—shows (see Appendix A).
However, fewer studies are limited to some European countries [18,53–55].

Focused on socioeconomic factors, these preliminary studies, conducted at a macro level and
referring to developed countries, have also included pollution, generally represented by emissions of
polluting substances. Garbaccio et al. [56] concentrated on PM10 and SO2 to estimate the local effect of
their emissions on health outcomes in China in 1992. In [21], NOx emissions per capita were selected
as an approximation of air pollution in order to find the determinants of premature mortality in 21
OECD countries between 1970 and 1992. The authors of [22] also considered NOx emissions per capita
to explore the effect of variations in the volume of health care and in certain characteristics of health
systems on mortality across 21 OECD countries for the period 1970–1995 after controlling certain
other determinants of health status, such as the education level of population. Nixon and Ullman [18]
analyzed the relationship between total health care expenditure and health outcomes in European
countries over the period 1980–1995 by using pollution and other factors affecting health outcomes.
Joumard et al. [28] employed a panel of 23 OECD countries over the period 1981–2003 to assess the
impact of health care resources on the health status of the population once due account is taken of
other determinants of the population health status, such as NOx emissions. Mariani et al. [50] studied
the two-way causality between life expectancy at birth and an environmental quality indicator and the
resulting dynamic implications over a sample of 132 countries with different levels of development in
2006. Halicioglu [57] studied the determinants of life expectancy in Turkey for the period 1965–2005 by
selecting social, economic, and environmental factors such as urbanization, considered as a proxy of
pollution. De Keijzer et al. [58] investigated the association of exposure to air pollution (PM10, PM2.5,
NO2, and O3) and greenness with mortality and life expectancy in Spain from an ecological perspective
for the period 2009–2013. Jiang et al. [20] selected SO2 emissions to examine the effects of healthcare,



Sustainability 2020, 12, 413 3 of 17

education, environment, and social harmony development on life expectancy in 31 Chinese provinces
between 2000 and 2010. Cheng et al. [59] analyzed the response of air pollutant emissions to climate
change and the potential effects of these emissions on human health in China during 1970–2010.

However, other studies prefer to analyze the effect of greenhouse gas emissions, mainly CO2,
on health outcome. Thus, Monsef and Mehrjardi [19] investigated the factors affecting life expectancy
in 136 (developed and developing) countries for the period 2002–2010, focusing on CO2 emissions as an
environmental factor. Jorgenson and Givens [60] compared CO2 emissions with the changes in average
life expectancy from 1990 to 2008 for OECD and non-OECD countries. Mohmmed et al. [61] studied the
drivers and variations of CO2 emissions by using data from the top 10 emitting countries (China, USA,
India, Russian Federation, Japan, Germany, South Korea, Iran, Canada, and Saudi Arabia), as well as
the impact of CO2 emissions on healthy life expectancy.

This current study refers to EU countries, due to the scarce available literature on the socioeconomic
determinants of health outcomes in this group of countries. Unlike previous researches, this study not
only aims to examine the relationship between some socioeconomic indicators—such as greenhouse
gas emissions and life expectancy at birth—but to classify these types of variables according to their
relative importance as classification criteria. For this purpose, a Random-Forests-based methodology
has been employed.

3. Materials and Methods

3.1. Variables

As indicated in the Introduction, the aim of this paper is to determine the relative importance of
five socioeconomic factors and other two ad hoc variables in explaining life expectancy at birth in 28
EU countries for the period 2008–2017. In the following subsections, we will describe the variables
used in this paper and the reasons whereby we consider that they could explain life expectancy at birth.

3.1.1. Socio-Economic Variables

Four socio-economic variables (per capita income, the educational level of the population,
public social protection expenditure, and public health care expenditure) were selected because,
according to the specialized literature on this topic [18,41,42,55], they are related to health status.
Observe that the third and fourth variables are two categories of public expenditures. However, to the
extent of our knowledge, environmental protection expenditure has never been considered in this
analysis. This justifies its inclusion as the fifth socio-economic variable used in this manuscript.

For the sake of clarity, these socioeconomic variables have been defined (and numbered from 1 to
5) in Table 1.

Table 1. Variables names and definitions. Source: Own elaboration.

Variable Types Abbreviated Variable
Name Variable Name

Dependent variable LE Life expectancy at birth
Independent variable #1 INCO Per capita income 1

Independent variable #2 LEDU Educational level 2

Independent variable #3 ENVIRO Environmental protection 3

Independent variable #4 SOPRO Social protection 4

Independent variable #5 HEALTH Health 5

Variable definitions: 1 Gross National Income per capita of population at current prices (in thousands of Euro).
2 Percentage of population with upper secondary, post-secondary non-tertiary, and tertiary education: Levels 3–8.
3 General government expenditure on environmental protection (percentage of Gross Domestic Product, GDP).
4 General government expenditure on social protection (percentage of GDP). 5 General government expenditure on
health (percentage of GDP).
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3.1.2. Ad hoc Variables

Two other ad hoc variables were considered in this paper, viz. the total greenhouse gas emissions
(denoted by GHG) and the area (represented by AREA) in which the analyzed country is included,
according to the four European areas predefined following the spatial taxonomy performed by Ustaoglu
and Williams [62]. In the following paragraphs of this subsection, we will justify the inclusion of these
two variables.

Greenhouse gas emissions have been considered by the existing literature as an environmental
factor of health status determinants [19,60,61]. With respect to the greenhouse gas emissions data in
the EU, we have to take into account that not all productive sectors in the European economy are
equally polluting [63]. Therefore, in order to quantify the greenhouse gas emissions in the EU, we have
taken into account the different incidence of emissions from each of the productive sectors. This could
be of relevance for implementing specific public policies oriented to restrict gas emissions. To do
this, we employed Eurostat data of three of the main greenhouse gases (CO2, N2O, and CH4, all of
them expressed in kilograms per capita), as indicated by [64], for the 21 economic sectors in the 28 EU
member states.

More specifically, the procedure used to determine the variable GHG corresponding to each
country was the following:

1. The subscript i = 1, 2, 3 represents the greenhouse gases included in the analysis: CO2,
N2O and CH4.

2. The subscript j = 1, 2, . . . , 21 represents the economic sectors.

3. AVERAGE j
i denotes the annual average of the greenhouse gas i emitted by the economic sector j.

4. k =
3∑

i=1

21∑
j=1

AVERAGE j
i represents the aggregate average of the 3 greenhouse gases emitted by the

21 economic sectors.

5. k j =

3∑
i=1

AVERAGE j
i

k denotes the percentage of greenhouse gas emissions attributable to sector j with
respect to the average sum.

6. GHG =
∑

k j≥0.01
k j reflects the total percentage greenhouse gas emitted by sectors whose k j are

greater than 1%. A justification of this choice will be displayed in Section 3.2.

On the other hand, the variable AREA is defined according to the categorization proposed by
Ustaoglu and Williams [62], inspired by UNO (United Nations Organization) [65]. The importance of
this variable lies in that it does not follow a strictly geographical [64] but a socio-political criterion.
Specifically, these areas are:

• Eastern EU countries (Bulgaria, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lithuania,
Poland, Romania, Slovakia, and Slovenia),

• Northern EU countries (Denmark, Finland, Ireland, Sweden, and United Kingdom),
• Southern EU countries (Cyprus, Greece, Italy, Malta, Portugal, and Spain), and
• Western EU countries (Austria, Belgium, France, Germany, Luxembourg, and Netherlands).

Therefore, the categorical variable AREA is a “collecting variable” which could be related with
previous works which have analyzed life expectancy at birth from very different points of view: From
a genetic point view [66] or by relating it to the degree of sun exposure [67], to the predominant
traditional type of diet [68], to religiosity—according to the practice of a certain religious confession [69]
or the frequency with which it is practiced, including atheism [70,71], or to the degree of perception of
“health equality” [72].
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3.1.3. Other Potential Variables

We would have liked to consider in this study other variables corresponding to lifestyle factors,
such as smoking, obesity, and drinking, but unfortunately their respective data are not available for the
28 EU countries during the period 2008–2017.

3.2. Data

The socio-economic data used in this paper were obtained from Eurostat for the 28 countries that
are currently members of the EU throughout the period 2008–2017. The main descriptive statistics
have been compiled in Table 2.

Table 2. Main descriptive statistics. Source: Own elaboration.

Statistic LE INCO LEDU ENVIRO SOPRO HEALTH

Mean 79.3 24.6 72.6 0.8 16.8 6.3
Median 80.6 21.2 75.4 0.7 16.6 6.7

Maximum 83.5 65.7 88.0 1.9 25.6 8.9
Minimum 71.7 4.7 29.2 −0.3 9.1 2.6

Range 11.8 61.0 58.8 2.2 16.5 6.3
Interquartile

range 4.5 23.5 11.1 0.5 6.1 2.4

Standard
deviation 2.9 14.0 11.8 0.3 3.8 1.5

Skewness −0.7 0.6 −1.5 0.5 0.3 −0.5
Kurtosis 2.2 2.4 5.0 3.6 2.3 2.4

The inclusion of the greenhouse gas emissions in our study is justified by taking into account that
this factor undoubtedly contributes to climate change [73].

On the other hand, the average emission by economic sector and greenhouse gas was calculated by
using an initial database of 1764 observations. Subsequently, an average of the overall greenhouse gas
emissions was calculated for each sector in Europe and then for its participation on the total emission
amount (6804.91 kg per capita). This is represented in Figure 1.

It can be observed that, over the 21 analyzed economic sectors, only those seven with a percentage
of greater than 1% over the calculated percentage average represent 94.38% of the greenhouse
gas emissions. These seven sectors are: (1) Electricity, gas, steam, and air conditioning supply,
(2) manufacturing, (3) transportation and storage, (4) agriculture, forestry and fishing, (5) construction,
(6) wholesale and retail trade, repair of motor vehicles and motorcycles, and (7) mining and quarrying.
This justifies that the variable GHG is defined as the sum of average emissions of CO2, N2O, and CH4

coming from these sectors (see item #6, Section 3.1.2), making it necessary to highlight the huge
presence of CO2 with respect to the total average of the period (99.41%) versus the low levels of CH4

and N2O (0.56% and 0.03%, respectively).

3.3. Random Forests Methodology

In this paper, we used the Random Forests methodology by Breiman [74,75] (or Breiman–Cutler’s
algorithm) due to its versatility. This model is especially suited to analyze the incidence or response,
in terms of “relative importance”, of a certain number of variables on another variable. This
methodology, an extension of the “bagging” method [76], supposes the iteration and selection of n
random trees based—among others—on the observations by Ho [77,78], who determined that, as a
greater number of decision trees were randomly added to a previously created set, the performance of
the predictions of the final generated model was improved (most times, at a monotonic rhythm).
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Figure 1. Relative greenhouse gas emissions (%) by sectors in the European economy. Source:
Own elaboration.

The Random Forests methodology generates a random extraction of mi predictors and an average
of (p −mi)/p divisions, where p =

∑
mi. This characteristic avoids the preponderance of a certain

predictor or variable, reducing the correlation between predictors.
The algorithm of Random Forest, derived from bagging predictors [76], can be described in the

following way. We start from a p-dimensional random vector X = (X1, X2, . . . , Xp)
T which represents

the predictor variables and a random variable Y (called the real-valued response). An unknown joint
distribution, denoted by PXY(X, Y), is assumed.

The aim of this algorithm is to find a prediction function f (X) for predicting Y. To do this,
we minimize the expected value EXY(L(Y, f (X))), where L(Y, f (X)) is the so-called loss function
which is an indicator of closeness between f (X) and Y.

In this case, by denoting Ψ the set of possible values of Y, the minimization of EXY(L(Y, f (X)))

gives f (x) = argmax
y∈Ψ

P(Y = y|X = x).

For the k-th tree (k = 1, 2, . . . , K), we are going to generate a random vector Θk, independent of
the former random vectors Θ1, Θ2, . . . , Θk−1 but identically distributed, which results in a classifier,
denoted by h(x, Θk), where x is an input vector. Thus, f (x) is the most frequently predicted class:

f (x) = argmax
y∈Ψ

K∑
k=1

I(y = h(x, Θk)). (1)

In a first step, the variable LE (life expectancy at birth) was categorized according to the following
dichotomous specification, in which the increases or decreases of the 28 European countries included
in the database are taken into account:

• If LE(countryi/yearj) > AVERAGE(LE/yeari = 2008, . . . ,2017)⇒ “LE increasing”⇒ “Yes”.
• If LE(countryi/yearj) ≤ AVERAGE(LE/yeari = 2008, . . . ,2017)⇒ “LE decreasing”⇒ “No”.
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4. Results

Table 3 displays the results derived from the constructed model. Accordingly, the main
characteristics of the model are collected, following the specifications suggested by [79], and using the
area under a Receiver Operating Characteristic (ROC) curve [80] as a measure of its reliability.

Table 3. Random Forests: Model diagnosis. Source: Own elaboration.

Summary of the Achieved Random Forests Model Results Implemented in the Variable LE

No. of observations used to build the model: 196
Type of Random Forests: Classification

Number of trees: 10,000
No. of variables tried at each split: 6

Out-of-bag (OOB) estimate of error rate: 1.02%
Confusion matrix

NO YES Classification error

NO 59 1 0.016666667 (1/60)
YES 1 135 0.007352941 (1/136)

Area under the curve: 95% confidence interval: 0.9701 (see [80])
Variable importance

NO YES Mean decrease accuracy Mean decrease Gini

INCO 311.02 147.93 250.60 37.40
LEDU 73.29 75.12 86.40 2.35
AREA 67.97 42.95 67.11 10.72

ENVIRO 47.40 44.95 52.43 1.13
SOPRO 23.07 14.90 26.15 0.48

GHG 18.02 11.20 18.40 0.25
HEALTH 10.78 14.83 17.56 0.15

Finally, in the implementation of the Random Forests model, 196 observations and six variables in
each of the sub-divisions (“splits”) were used, obtaining 10,000 random decision trees.

With respect to the performance evaluation, the error rate (“out-of-bag”, denoted by OOB) was
estimated, based on those observations which have not been included in the “bag”, that is, the subset
of the initial set of learning data used in the iterative construction of each decision tree. Starting from
this “unbiased” estimated error, it can be explained that, once the model has been constructed and
new observations have been iteratively incorporated, the responses will lead to this residual error.
Taking into account the generated model, the estimated OOB error is very low (1.02%). So, it is evident
that this model is suitable to explain the behavior of life expectancy at birth, given that its accuracy is
very high (98.98%).

Another proof of the degree of reliability of this model can be detected in Figure 2, since usually
the increase in the number of random trees is associated with a growing decrease in the error rate
(OOB). However, this particular model reaches a minimum error rate which is constant from a small
number of random trees (around 300).

Additionally, the confusion matrix (or error matrix) provides the level of agreement–disagreement
between the predictions obtained by the implemented model and the data generated by the learning
observations—in this case, 196. In other words, it reflects the actual results vs. the predicted ones
by calculating the true and false positive cases. With respect to the generated model, there is almost
a coincidence between the joint value predicted by the model and the learning data: Both predict
“Yes” (increase in life expectancy at birth) in 135 cases and “No” (decrease in life expectancy at birth)
in 59 cases, showing a very low level of disparity or disagreement (no–yes = 1.667% and yes–no =

0.735%). Likewise, it should be noted that the reliability of the generated model is also high according
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to the procedure of the area under an ROC (Receiver Operating Characteristic) curve once the DeLong
test [80] has been implemented (with a result very close to 1).
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Finally, we will analyze the relative importance of variables. In effect, the increments (LE =

“Yes”) or decreases (LE = “No”) are represented in Figure 3, jointly associated with the rest of the
variables included in the Random Forests model. More specifically, the mean decrease Gini and mean
decrease accuracy measures indicate the order of relative importance of each variable in relation to LE.
With respect to the first measure (mean decrease Gini), only the variables INCO (per capita income)
and AREA would be representative, whilst the rest of variables only reach values denoting a very
low relative importance. On the contrary, the mean decrease in the accuracy measure provides the
following order regarding its relative representativeness: INCO, LEDU (educational level), AREA,
ENVIRO (environmental protection), SOPRO (social protection), GHG, and HEALTH.
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5. Discussion

According to the obtained results, per capita income, the educational level of the population,
and the variable AREA (representative of belonging to a specific group of countries), followed by the
public expenditure on environmental and social protection, are the variables with the highest relevance
in explaining life expectancy at birth in Europe over the period 2008–2017. On the other hand, the least
important variables are greenhouse gas emissions and public healthcare expenditure.

With respect to per capita income, our findings are consistent with previous studies about the
major determinant of the population health status. Higher per capita income (or Gross Domestic
Product) is associated with a healthier population and greater longevity [28,81,82]. In addition,
our findings suggest that the educational level of a population has a strong influence in determining
health outcomes, as confirmed by previous empirical studies [41,42,83]. Belonging to a specific group
of countries, as indicated by Álvarez-Gálvez et al. [84], is another factor with high influence on
health outcomes.

A lower relative importance on health status of public environmental expenditure is showed in this
work. To the best of our knowledge, this is the first time that this type of public expenditure is included
in the analysis of the determinants of health outcomes. Consequently, more research is needed on this
topic. On the contrary, the impact of government intervention in the field of environmental protection
through fiscal policy has received more attention [85]. Government often transforms environmental
costs into internal costs for enterprises through taxes. However, the impact of fiscal expenditures on
environmental pollution is uncertain because this instrument reduces environmental pollution through
structural and substitution effects, whilst improving environmental pollution through the growth
effect [85].

Additional components of the government budget included in this study are social protection
and health care expenditures. Public programs of social protection register more relative importance
than public health care expenditure in explaining life expectancy at birth. The positive influence
of social expenditure on health outcomes has been identified previously by Stuckler et al. [86],
Bradley et al. [40,87], Vavken et al. [88], and McCullough and Leider [89]. On the other hand,
health expenditure financed by the government is in the last position in terms of relative importance.
Although some works reveal a positive significant contribution of this type of public expenditure
on health outcomes [22,24,25,54], there is no consensus about its final impact [23,46,48]. Moreover,
Kim and Wang [90] recently showed that the quality of government (measured by corruption control,
government effectiveness, regulatory quality, voice and accountability, and rule of law) has a greater
impact on public health than the quantity of government (measured by public expenditure on health).

The available evidence on the impact of greenhouse gas emissions on life expectancy from a macro
approach is less scarce and conclusive. For this reason, this work has included this factor in this type of
research by using macro data. Our results conclude that greenhouse gas emissions are one of the least
important socioeconomic factors related to life expectancy at birth; this does not mean that these types
of gases has no effect on health status, but that this item has less relevance than other factors such as
per capita income and education. Previous research has shown no significant relationship between
greenhouse gas emissions and health outcomes [19]. On the contrary, Mohmmed et al. [61] show,
for the top ten CO2-emitting countries, a strong relationship between some sectors of CO2 emission
and healthy life expectancy which, according to these authors, indicates that an increase in the former
factor will lead to a corresponding increase in the latter variable.

6. Conclusions

To the best of our knowledge, the analysis of greenhouse gas emissions—in different economic
sectors—as a determinant of the health status of a population has not been extensively summarized
and discussed. In order to overcome this limitation, this paper employed disaggregated data on the
main greenhouse gas emissions (CO2, N2O, and CH4) by economic sector. In this way, we identified
seven sectors as the main sources of this type of emission: Electricity, gas, steam, and air conditioning
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supply; manufacturing; transportation and storage; agriculture, forestry, and fishing; construction;
wholesale and retail trade, repair of motor vehicles and motorcycles; and mining and quarrying.
Therefore, any public intervention addressed to environmental policy should be aimed at these
economic sectors. At this point, our findings confirm part of Gao et al.’s [8] results, since they
consider energy generation, transport, food and agriculture, household, and industry as the most
GHG-emitting sectors.

This paper contributes to the existing literature in four ways: First, it extends previous
literature about the socioeconomic determinants of health focused on European countries. Second,
existing studies consider greenhouse gas emissions from the perspective of the economy as a whole;
however, in this study, data on these types of gases will be considered as disaggregated by economic
sectors. Third, there is scarce evidence so far demonstrating the extent to which government expenditure
on environmental protection contributes to improvement of a population’s health. Consequently,
one of the main contributions of this study is the inclusion of this public expenditure in the empirical
analysis. Fourth, we employ a Random Forests methodology which, to the extent of our knowledge,
has not been applied before to study the variables related to health outcomes in Europe. As an
advantage, this method provides a classification of the socioeconomic factors according to their relative
importance to explain life expectancy at birth.

However, a limitation of this study is that lifestyle factors such as smoking, obesity, and drinking,
among others, have not been considered, because their respective data are not available for the
European countries during a consistent period. So, future research should incorporate this type of
information if data is available.

In addition, based on the results of this Random Forests analysis, policy makers should concentrate
efforts to improve per capita income and education. A novel contribution of this research is that
it is crucial to evaluating the composition of the public budget because, in this paper, it has been
concluded that certain public expenditure functions are more important in explaining life expectancy
at birth in European countries. Consequently, it will be more effective to focus on public programs,
such as environmental and social protection expenditures, with a higher relevance to the health
status of a population. In order to work towards the target of improving or maintaining population
health, joint actions and collaborations from different governmental departments are required at a
national level.
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Appendix A

Table A1. Empirical studies on the determinants of health status of population. Source: Own elaboration.

Author (Date) [Reference
Number] Country Period Proxy of Health Status 1 Methodology and Data 2

Auster et al. (1969) [27] US states 1967 M CSR

Cochrane and St. Ledger (1978)
[44] 18 developed countries 1970 (1969 or 1971) MAG CSR

Rodgers (1979) [45] 56 countries (developed and
developing countries) Not specified LEAB and IM CSR

Wolfe and Gabay (1987) [30] 22 OECD countries 1960, 1970, 1980 LEAB, LE 60, and IM LSR approach for simultaneous
models using CS

Peltzman (1987) [46] 22 middle-income countries 1970–1980 M CSR

McAvinchey (1988) [53] 5 European countries 1960–1982 M ADL using TS

Hitiris and Posnett (1992) [31] 28 OECD countries 1960–1987 M PR

Grubaugh and Rexford (1994)
[32] 12 OECD countries 1960–1987 IM PR

Elola et al. (1995) [54] 17 European countries 1990 or 1991 LE, PM, and IM CSR

Crémieux et al. (1999) [33] Canadian provinces 1978–1992 LEAB and IM PR

Or (2000a) [21] 21 OECD countries 1970–1992 PM PR

Or (2000b) [22] 21 OECD countries 1970–1995 LE 65, IM, and PM PR

Garbaccio and Jorgenson (2000)
[56] China Simulation for 1995, 2010, and

2030 PM A single-country CGE model

Robalino et al. (2001) [47] 67 countries (OECD and less
developed countries) 1970–1995 IM PR
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Table A1. Cont.

Author (Date) [Reference
Number] Country Period Proxy of Health Status 1 Methodology and Data 2

Berger and Messer (2002) [23] 20 OECD countries 1960–1992 M PR

Miller and Frech (2002) [36] 18 OECD countries 1998–1999 LEAB, LE 40, LE 60, DALEB,
DALE 60 and PM CSR

Thornton (2002) [34] US states 1990 AAM CSR

Lichtenberg (2002) [35] US 1960–1997 LEAB MLE using TS

Self and Grabowski (2003) [48]
191 countries (developed,

middle-income, and
less-developed countries)

2000 DALEB CSRs

Laporte (2004) [37] US 1948–1996 M ECM using TS

Shaw et al. (2005) [39] 19 OECD countries 1980, 1985, 1990, and 1997 LE 40, LE 60, and LE 65 CSR

Crémieux et al. (2005) [38] A set of Canadian provinces 1975–1998 LEAB, LE 65 and IM PR

Nixon and Ullmann (2006) [18] 15 European countries 1980–1995 LEAB and IM PR

Joumard et al. (2008) [28] 23 OECD countries 1981–2003 LEAB, LE 65, PMA, and IM PR

Bergh and Nilsson (2010) [49] 92 countries (with different
levels of development) 1970–2005 LEAB PR using PCSE

Mariani et al. (2010) [50] 132 countries (with different
levels of development) 2006 LEAB OLG using CS

Halicioglu (2011) [57] Turkey 1965–2005 LEAB ARDL to cointegration method
using TS

Bradley et al. (2011) [40] 30 OECD countries 1995–2005 LEAB, IM, LBW, MM, and PYLL Pooled cross-sectional analysis

Cutler and Lleras-Muney (2012)
[51]

61 countries (with different
levels of development) 2004–2009 Others health behavior

indicators 3 CSR

Heijink et al. (2013) [52] 14 developed countries 1996–2006 AM PR and macro-level
cost-effectiveness analysis

Monsef and Mehrjardi (2015)
[19]

136 countries (with different
levels of development) 2002–2010 LEAB PR
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Table A1. Cont.

Author (Date) [Reference
Number] Country Period Proxy of Health Status 1 Methodology and Data 2

Jorgenson and Givens (2015)
[60]

69 OECD and non-OECD
countries 1990–2008 LE TSCS Prais–Winsten regression

model with PCSE,

Linden and Ray (2017) [24] 34 OECD countries 1970–2012 LEAB VAR using panel TS

Reynolds and Avendano (2017)
[41] 20 OECD countries 1980–2010 LE PR

Van den Heuvel and Olaroiu
(2017) [55] 31 European countries 2013 LEAB CSR

Toader et al. (2017) [25] European countries of OECD 1970–2014 LEAB PR
De Keijzer et al. (2017) [58] Spain 2009–2013 LEAB and M Poisson and linear regressions

Ketency and Murthy (2018) [42] US 1960–2012 LEAB Unit root testing and
cointegration analysis using TS

Jiang et al. (2018) [20] 31 Chinese provinces 2000 and 2010 LE CSR

Hill and Jorgenson (2018) [43] 50 US states and the District of
Columbia 2000, 2005, and 2010 LEAB PR

Martín-Cervantes et al. (2019)
[29] 17 Spanish regions 2006–2016 LEAB Granger causality test

Chen et al. (2019) [59] 43 developed countries and 33
Chinese provinces 1970–2010 LE loss The air pollutant emission

simulation model (GAINS)

Mohmmed et al. (2019) [61] The top 10 CO2-emitting
countries 1991–2014 HLE PR

1 LE: Life expectancy/LEAB: Life expectancy at birth/LE 40: Life expectancy at age 40/LE 60: Life expectancy at age 60/LE 65: Life expectancy at age 65/HLE: Healthy life expectancy/M:
Mortality rate/MAG: Mortality at specific age/IM: Infant mortality/PM: Premature mortality/PMA: Premature mortality adjusted/AAM: Age-adjusted mortality rate/AM: Avoidable
mortality/MM: Maternal mortality/LBW: Low birth weight/DALEB: Disability-adjusted life expectancy at birth/DALE 60: Disability-adjusted life expectancy at 60 years/PYLL: Potential
years of life lost. 2 CS: Cross-section data/TS: Time series data/P: Panel data/CSR: Cross-section regressions/PR: Panel data regressions/LSR: Linear structural relations/ADL: Almon
Distributed Lag/CGE: Computable General Equilibrium/MLE: Maximum likelihood estimates/ECM: Error correction model/PCSE: Panel-corrected standard errors/OLG: Overlapping
generations model/ARDL: Autoregressive–Distributed Lag model/TSCS: Time-series cross-section model/VAR: Panel Vector Autoregressive model. 3 Body mass index, obesity, underweight,
smoking and drinking, among others.
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