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Abstract: Forecasting extreme hydrological events is critical for drought risk and efficient water
resource management in semi-arid environments that are prone to natural hazards. This study aimed
at forecasting drought conditions in a semi-arid region in north-eastern South Africa. The Standardized
Precipitation Evaporation Index (SPEI) was used as a drought-quantifying parameter. Data for SPEI
formulation for eight weather stations were obtained from South Africa Weather Services. Forecasting
of the SPEI was achieved by using Generalized Additive Models (GAMs) at 1, 6, and 12 month
timescales. Time series decomposition was done to reduce time series complexities, and variable
selection was done using Lasso. Mild drought conditions were found to be more prevalent in the
study area compared to other drought categories. Four models were developed to forecast drought in
the Luvuvhu River Catchment (i.e., GAM, Ensemble Empirical Mode Decomposition (EEMD)-GAM,
EEMD-Autoregressive Integrated Moving Average (ARIMA)-GAM, and Forecast Quantile Regression
Averaging (fQRA)). At the first two timescales, fQRA forecasted the test data better than the other
models, while GAMs were best at the 12 month timescale. Root Mean Square Error values of
0.0599, 0.2609, and 0.1809 were shown by fQRA and GAM at the 1, 6, and 12 month timescales,
respectively. The study findings demonstrated the strength of GAMs in short- and medium-term
drought forecasting.

Keywords: drought; forecasting; generalized additive models; hydrological extremes; SPEI; water
resources; variable of importance

1. Introduction

Rainfall variability is highly significant on several temporal and spatial scales in southern
Africa [1–4], as most rural livelihoods in the region depend on agriculture, which is largely rainfed.
Increasing trends of rainfall have been reported for a few locations over South Africa [5–8]. However,
the authors of [9] cautioned that whilst this may suggest an increase in water resource availability,
an increasing population and land use changes, coupled with intensification of agricultural activities,
exert pressure on them. Although rainfall trends have been predicted to decrease in the Luvuvhu
River Catchment (LRC) in the northeast of South Africa, some stations exhibited increasing trends,
which were potentially attributed to the 10 year decadal mean daily fluctuations [10]. The chronic
nature of drought disasters in the region further affects social, economic, and environmental aspects
negatively [11]. The authors of [9] found an increasing trend of annual maximum temperatures in
the Limpopo River Basin, which is consistent with several other land areas. Increased temperatures
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exacerbate drought characteristics (i.e., frequency, duration, and severity) [12], since there exists
a positive linear relationship between increased temperature and evapotranspiration.

Prolonged droughts are a regular and recurrent feature of the southern African summer climate [13]
and threaten vulnerable communities (most of whom are rural) of the region. About 60% of
Sub-Saharan Africa is vulnerable to drought, with 30% being highly vulnerable [14]. The Southern
Africa Development Community (SADC) region was struck by major droughts, notably in the years
1982/83, 1987/88, 1991/92, 1994/95 [15], and 2005/06 [9]. The authors of [16] further reported regular
occurrences of drought in the LRC with a return period of 10 years, which ranged from 22.4% to 65%
mild drought conditions. It was estimated that the 1991/92 drought resulted in 50,000 job losses in the
agricultural sector in South Africa, which affected over 250,000 citizens [17].

More recently, the country experienced two consecutive droughts in 2014/2015 and 2015/2016,
which resulted in severe water shortages in the Western Cape Province [18]. The Limpopo region,
located in north-eastern South Africa, is prone to severe drought and flood events due to significant
intra-seasonal variability during the core rainy season (December–February) [19,20]. Although the LRC
has a substantial flow of water derived from the mountainous area at its source, during drought season,
water resources become inadequate to meet the ecological reserve and domestic water supply [21].

Due to the increasing frequency and magnitude of drought events in the study area, area-specific
forecasting has become of importance. Drought-index-based drought forecasting has been reported in
northern areas of Pakistan and in Australia by [22,23], respectively. Forecasting and early warning of
the drought phenomenon are increasingly being applied in many regions in the world. This is being
done to mitigate the consequences of drought in vulnerable river basins. Although earth systems
models to forecast drought have been developed over the years, these are large-scale models that are
not area-specific. To adequately assess and manage drought risk in a catchment, finer-scale forecasting
is important. This has potential to generate information on water resources that is useful to affected
communities, including those whose livelihoods depend on rainfed agriculture.

Recent decades have seen the development of area-specific models applicable at finer scales.
These models range from regression-based, probability, dynamical modeling, artificial neural networks,
hybrids, etc. Two distinct studies [24,25] have carried out a detailed review of these drought forecasting
models. Some of the common drought forecasting models include the autoregressive integrated moving
average (ARIMA) [26] and its many variations, adaptive neuro-fuzzy inference system, Markov chain
model [27], log-linear model, Empirical Mode Decomposition (EMD) [28], Empirical Wavelet Transform
(EWT) [29], and Artificial Neural Network (ANN) [30] model, among others. Studies such as [23]
successfully forecasted six-month lead time NADI (Non-linear Aggregated Drought Index) values
for the Yara River Catchment in Australia, making use of ANN (DMSNN—Direct Multi Step Neural
Network and RMSNN—Recursive Multi Step Neural Network). Generalized Additive Models (GAMs),
however, have not been well documented in their capability and efficiency in forecasting drought
conditions. This study, therefore, aims to forecast short- and medium-term drought conditions in the
LRC using the Standardized Precipitation Evaporation Index (SPEI) as a drought-quantifying variable.

2. Materials and Methods

2.1. Case Study Description (LRC) and Datasets

The study area, the LRC, is located between latitudes 22◦17′33.57”S and 23◦17′57.31”S and
longitudes 29◦49′46.16”E and 31◦23′32.02”E in Vhembe District of Limpopo Province in northeastern
South Africa, as shown in Figure 1. The catchment covers an area of approximately 5941 km2 and
is situated on a plateau about 1500 m above sea level. The catchment consists of a relatively rolling
landscape, which gives rise to shallow storage dams that have large water surfaces exposed to
evaporation. The topography of the catchment influences rainfall distribution with the highest rainfall
received in the upper reaches (1800 mm/a), while the lower reaches around the Kruger National Park
receive the lowest rainfall (400 mm/a) during the wet season. The catchment’s mean annual rainfall is
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608 mm, and produces a mean annual run-off of 520× 106m3 [10]. The distribution of rainfall through
the year exhibits highly seasonal characteristics, with 95% of the rainfall occurring during the summer
months (October and March) [31]. The lower-rainfall area in the catchment tends to experience greater
variability than the higher-rainfall areas. Temperature generally increases from the mountains in
the west to the lower reaches in the east of the catchment, with local towns, such as Thohoyandou,
experiencing daily average temperatures of 33 ◦C in summer and 24 ◦C in winter [32]. The study
area is predominantly rural, with a community that is highly dependent on rain-fed commercial and
subsistence agriculture.
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Figure 1. The study area in northeastern South Africa.

The regional climate within which the LRC is located ranges from tropical rain in the coastal
plains of Mozambique to tropical dry savannah and tropical dry desert further inland, south of
Zimbabwe [33]. The mean spatial pattern of summer rainfall over southern Africa depicts a strong
gradient that increases from west to east [34], with local maxima due to orographic effects. The LRC is
a sub-basin of the Limpopo River Basin, in which annual precipitation varies between 250 to 1050 mm
in the hot, dry western and central areas in the high-rainfall eastern escarpment areas, respectively [33].
The region experiences a high variability between extreme wet and dry seasons, which makes it
vulnerable to frequent droughts and floods [35].

The nature and pattern of inter-annual variability of precipitation is crucial, as it exerts long-term
control on water resources and affects plant growth and the bio-geochemical cycle while moderating
extreme events such as droughts and floods [36]. The Limpopo valley (20–25 ◦S) is characterized by
the highest variability in southern Africa [34], in agreement with [37,38]. Figures 2 and 3 show the
inter-annual variability of rainfall and streamflow in the LRC for over 57 and 53 years, respectively.
The inter-annual variability plots depict a strong seasonal variation in the study area. The rainy season
of the region is characterized by alternating wet and dry spells [39], with wet spells recently becoming
shorter. Both rainfall and streamflow exhibit positive trends over the sampling periods considered



Sustainability 2020, 12, 4006 4 of 20

although neither was statistically significant; rainfall showed an R2 of 0.0011, while streamflow reported
0.0043. These trend results agree with those obtained by [34] over southern Africa. Statistical trends
in this region are affected by extremes, such as the significant flood due to tropical Eline in February
2000 (Figures 2 and 3). From both Figures 2 and 3, the trend equations are y = 0.0005x + 86.734 and
y = 0.0005x + 53.446, respectively. This means that both rainfall and streamflow increase at the rate
of 0.0005 mm and 0.0005 cumesc per year. This intercept is made using the trendline gradient of the
two variables.
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Rainfall and temperature data from eight weather stations were obtained from the South African
Weather Service, while evaporation data for one station were obtained from the Department of Water
and Sanitation within the Luvuvhu River Catchment. The location of all the stations is shown in
Figure 1 and additional details are shown in Table 1. These datasets were obtained from 1986 to 2016,
covering 31 years. The missing data in this study were imputed using the Self-Organizing Maps (SOM)
based on the Kohonen Neural Networks [40].
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Table 1. Weather stations in the study area.

Station Name Station Code Station Number Data Span Data Length

1 Mukumbani Muk 0766715 1956–2016 60

2 Klein Australie KA 0723363 X 1959–2016 57

3 Matiwa Mat 0766509 9 1959–2016 57

4 Nooitgedatch Nooit 0723334 X 1959–2016 57

5 Levubu Lev 0723485A 1964–2016 54

6 Vondo Bos VB 0766596 9 1963–2016 53

7 Shefera Shef 0723182 6 1948–2016 68

8 Tshivhase Tshi 0766628 W 1986–2016 30

2.2. Formulation of the SPEI for the Study Area

The SPEI is based on the computation procedure of the original SPI (Standardized Precipitation
Index). The index makes use of either monthly or weekly differences between precipitation and
Potential Evapotranspiration (PET) [41]. Due to the complex computation of PET, which involves
several variables, including surface temperature, air humidity, soil, incoming radiation, water vapor
pressure, and ground–atmosphere latent and sensible heat fluxes [42], this study made use of Hagreaves’
and Samani’s temperature-based method for PET estimation. This approach has the advantage of only
requiring data on monthly mean temperature. The SPI methodology was modified by replacing the
two-parameter distribution with a three-parameter distribution (i.e., SPEI requirement) [41]. The latter
suggested getting the best fit three-parameter distribution from the L-moment, and the detailed
methodology for achieving this can be obtained in [43]. Following the classical approximation of [44],
the SPEI for this study was formulated at 1, 6, and 12 month timescales using Equation (1).

SPEI = W −C0 + C1W + C2W21 + d1W + d2W2 + d3W3 (1)

where W =
√
−2 ln(P) for P ≤ 0.5, and P is the probability of exceeding a threshold value denoted

by D value, P = 1− F(x). If P > 0.5, then P is replaced by 1− P and the sign of the resultant SPEI is
reversed. The constants C0, C1, C2, d1, d2, and d3, are 2.515517, 0.802853, 0.010328, 1.432788, 0.189269,
and 0.001308 as defined by [45], respectively. For this study, the SPEI was computed using the R Package
“spei” developed by Begueria [46].

2.3. Drought Trends over North-Eastern South Africa

The Breaks for Additive Seasonal and Trend (BFAST) method in Equation (2) is applied to
decompose the drought index time series to obtain the trend variations in the study area.

yt = m + Tt + St + Rt (2)

where m is the mean, Tt is the trend component value, St is the seasonal component, and Rt is the
random component at time t. The monotonic trends in the SPEI time series were obtained through the
Mann–Kendall (MK) non-parametric trend test. Based on studies by [47–51], among others, the MK
test statistic is calculated from the following formula:

S =
n−1∑
k=1

n∑
j=k+1

sign(X j −Xk) (3)
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sign(x) =


1
0
−1

x j > xi
x j = xi
x j < xi

(4)

The average value of S is E[S] = 0 and the variance σ2 is given by the following equation:

σ2 =
{n((n− 1)(2n− 5) −

∑p
i=1 t j(t j − 1)(2t j + 5)}

18
(5)

where t j is the number of data points in the jth tied group, and p is the number of the tied group in the
time series. It is important to mention that the summation operator in Equation (5) is applied only in
the case of tied groups in the time series to reduce the influence of individual values in tied groups
in the ranked statistics. On the assumption of random and independent time series, the statistic S is
approximately normally distributed if the following z-transformation equation is used. The value of
the S statistic is associated with the Kendall tau, as shown in Equation (7).

Z =


S−1
σ
0

S+1
σ

S > 0
S = 0
S < 0

(6)

τ =
S
D

(7)

where

D = [
1
2

n′(n− 1) −
1
2

p∑
j−1

t j(t j − 1)]
1
2 [

1
2

n(n− 1)]
1
2

(8)

With regards to the z-transformation equation in Equation (6), this study considered a 5%
confidence level, where the null hypothesis of no trend was rejected if |z| > 1.96. The Mann–Kendall
statistic is the Kendall τ term, which is a measure of correlation that indicates the strength of the
relationship between any two independent variables, and was also considered important in this study.
The MK test system summarized above was applied to the SPEI time series data by writing a code in R
and following the instructions given by [52].

2.4. SPEI Time Series Forecasting

The forecasting procedure followed in this study started with selecting important variables,
formulation of training and testing sets, and determination of model performance. The training data
consisted of 70%, while the testing sets were 30% of the total data. The developed models’ test sets
were based on the correlation coefficient (R), Root Mean Square Error (RMSE), Mean Error (ME),
Mean Absolute Error (MAE), Mean Percentage Error (MPE), and the Mean Absolute Percentage Error
(MAPE). The forecasting of SPEI at 1, 6, and 12 month timescales using GAM is discussed below.

2.4.1. The Generalized Additive Model without Auto-Correlated Errors

Let yt be the SPEI on month t, where t = 1, . . . , n with the corresponding covariates xt1, xt2, . . . , xtp,
where p represents the number of variables. The generalized additive model is then written as follows:

yt = β0 +

p∑
j=1

s j(Xtβ j) + εt (9)

where yt is the response variable, Xt is a matric of covariates, β0 is the intercept, β j are parameters, s j is
a smoothing parameter, and εt is the error term. It should be noted that, although yt denotes the SPEI
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at month t, it was used to for all the timescales considered in this study. Equation (9) is estimated using
penalized cubic splines [53,54], which is expressed in terms of Equation (10). This should be:

minsj[
n∑

t=1

(yt − β0 −

p∑
j=1

s j(Xt j))
2 +

p∑
j=1

λ j(

∫
( f ′′ (x))2dx)] (10)

The degree of smoothness is controlled by the penalty parameter Λ = (λ j, j = 1, . . . , p), which
determines the roughness of the function estimate to the data. It is optimized using the generalized
cross-validation criterion (GCV) and is easily implemented in the package ‘mgcv’ [53,55]. For small
values of λ j, the smoothness is rough. The smooth function, s j, is given by Equation (11), which can be
explained as the sum of the basis functions bi(x) and their regression coefficients βi.

s j(x) =
q∑

i=1

βibi(x) (11)

where q denotes the basis dimension.

2.4.2. The Generalized Additive Model with Auto-Correlated Errors

Let yt be the SPEI as defined in Section 2.4.1, which gives the generalized additive model in
Equations (12), where the error terms εt are assumed to be autocorrelated.

yt = β0 +

p∑
j=1

s j(Xtβ j) + εt (12)

where variables and parameters are as defined above. Time series observations are normally
autocorrelated. To correct for autocorrelation, it is normally advised to use time series regression
models. This study, therefore, assumes that the error terms εt are auto-correlated and follow the
SARIMA model given in Equation (13).

θ(B)Φ(B)εt = θ(B)Θ(B)vt (13)

whereθ(B) is the non-seasonal moving average operator, and the corresponding seasonal autoregressive
and seasonal moving operators are Φ(B) and Θ(B), respectively; vt denotes a white noise series. By
expressing Equation (12) in terms of εt and substituting in Equation (13), we get Equation (14).

θ(B)Φ(B)[yt − {β0 +

p∑
i=1

s j(Xtβ j)
}
] = θ(B)Θ(B)vt (14)

3. Results

3.1. Spatial Variability of Drought in the Study Area

Table 2 shows the different drought categories in terms of percentages of occurrence of historical
drought for all the stations at different timescales. Mild, moderate, severe, and extreme droughts
conditions ranged between 61.15–71.88%, 12.65–27.59%, 2.24–21.69%, and 0–6.65%, respectively, across
all stations and considering the respective timescales considered in the study. This shows that mild
drought is more prevalent in the LRC compared to other drought categories. Stations Muk and Mat
showed the highest percentages of extreme droughts (i.e., 6.14%) at one- and six-month timescales,
while the Vondo Bos (VB) station showed the same with 6.65% at the 12 month timescale. However, this
is still lower than the percentage of extreme events shown by the SPI at the same timescale. The spatial
variability of the SPEI at 1, 6, and 12 month timescales is presented in Figure 4. The variability shows
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that SPEI 12 was found to be of greater severity compared to the one- and six-month timescales in the
middle reaches, while, in the upper reaches, the 12 month timescale showed the least drought severity
compared to the SPEI for one and six months.

Table 2. Analysis of Standardized Precipitation Evaporation Index (SPEI) historical drought categories.

Station Timescale Mild (%) Moderate (%) Severe (%) Extreme (%)

KA

1 68.28 23.66 5.91 0.02

6 63.79 27.59 8.05 0.575

12 65.68 17.16 15.98 1.18

Lev

1 65.91 22.35 2.24 0.56

6 66.67 16.67 16.67 0

12 65.66 12.65 21.69 0

Mat

1 67.9 26.84 5.26 0

6 65.35 25.57 8.52 0.57

12 69.14 14.2 10.49 6.14

Muk

1 68.42 23.68 7.37 0.53

6 65.36 25.7 6.7 2.23

12 69.33 14.11 10.42 6.14

Nooit

1 66.86 24 7.43 1.14

6 63.28 25.42 10.72 0.57

12 61.15 23.08 14.2 1.18

Shef

1 68.51 21.55 7.74 2.21

6 68.36 23.72 6.21 1.7

12 70.88 21.43 6.05 1.65

Tshi

1 70.97 23.12 4.2 1.61

6 68.11 21.08 10.27 0.54

12 65.06 19.88 15.06 0

VB

1 71.73 19.9 6.81 1.57

6 71.51 18.99 6.7 2.79

12 71.88 15.63 6.65 6.65
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3.2. Exploratory Data Analysis

Figure 5 shows the SPEI time series plot of density, normal quantile to quantile (QQ), and the
box plots at the 1, 6, and 12 month timescales before decomposition. To determine the normality of
the SPEI data, the Anderson–Darling test was carried out. The initial visual interpretation of the QQ
plot suggested departure from the normality of SPEI data, while the detailed Anderson–Darling test
Probability–Probability Plot (PP) showed that the data are approximately normally distributed at all
the timescales. The authors of [56,57] reported that although visual inspection of normality is used,
it is often unreliable, with no guarantees of the results. Johnson SB, Error, and Dagun (4P) distributions
were the best fit for the SPEI 1, 6, and 12 month timescales, respectively. From this, the study concluded
that the distributions of the SPEI data at 6 and 12 month timescales are bimodal, while the one-month
timescale exhibited a unimodal distribution.
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3.3. Variable Selection

Variable selection was achieved using gradient boosting. The main objective of a variable selection
procedure is to identify the correct predictor variables, which have important influence on the response
variable and could provide robust model prediction [58]. Variable selection was conducted for each
SPEI time series. The relative importance values are the means of 50 model runs, each based on
a randomly selected subset of 90% of the data [59]. Rain showed to be the most important variable
for predicting the SPEI at the one-month timescale, while the non-linear trend is the most important
predictor for predicting the SPEI at the six-month timescale. Time series components (i.e., trend,
seasonality, remainder, etc.) have been successfully used as model inputs in forecasting exercises.
For example, the authors of [60] used time series components in forecasting airline passengers using
ANN. The authors of [61] reported three significant consecutive lags (i.e., Lags 1, 2, and 3) as input
while predicting daily PM10 data. The lagged variable of importance was successfully determined by
Principal Component Analysis (PCA). The findings of this study regarding the importance of Lags 1
and 2 are therefore comparable with those reported by [61]. Temperature, which plays a significant role
in the development of drought through influence on evaporation, was found to be important in the
SPEI at the one- and six-month timescales. The authors of [62] reported that sea surface temperature
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variability contributed to increased land temperature variability and autocorrelation, which ultimately
contributed to persistent droughts in North America and the Mediterranean. Mean temperatures were
noted to be more dominant compared to the minimum and maximum temperatures in forecasting the
SPEI. All predictor variables are significantly different from one another in their relative importance [59];
therefore, all features that appeared to have some relative importance (i.e., ranging from 0 to 100) were
selected as input variables in forecasting drought over the LRC and are presented in Table 3.

Table 3. Features used as input variables for model development.

Variable 1-Month Timescale 6-Month Timescale 12-Month Timescale

SPEI
Rain, non-linear trend,
SPEIt−1 and SPEIt−2,
Tmax, Tmin, Tmean

Rain, non-linear trend,
SPEIt−1 and SPEIt−2,
Tmax, Tmin, Tmean

Non-linear trend, SPEIt−1

IMF 1

SPEI, rain, non-linear
trend, SPEIt−1 and

SPEIt−2, Tmax, Tmin,
Tmean

SPEI, rain, non-linear
trend, SPEIt−1 and

SPEIt−2, Tmax, Tmin,
Tmean

SPEI, rain, non-linear
trend, SPEIt−1 and

SPEIt−2, Tmax, Tmin,
Tmean

IMF 2

SPEI, rain, non-linear
trend, SPEIt−1 and

SPEIt−2, Tmax, Tmin,
Tmean

SPEI, rain, non-linear
trend, SPEIt−1 and

SPEIt−2, Tmax, Tmin,
Tmean

SPEI, rain, non-linear
trend, SPEIt−1 and

SPEIt−2, Tmax, Tmin,
Tmean

IMF 3 Non-linear trend Non-linear trend Non-linear trend

IMF 4 Non-linear trend Non-linear trend Non-linear trend

IMF 5 Non-linear trend Non-linear trend, SPEIt−1 Non-linear trend, SPEIt−1

IMF 6 Non-linear trend, SPEIt−1 Non-linear trend, SPEIt−1 Non-linear trend, SPEIt−1

IMF 7 Non-linear trend, SPEIt−1
and SPEIt−2

Non-linear trend, SPEIt−1
and SPEIt−2

Non-linear trend, SPEIt−1

Residual Non-linear trend, SPEIt−1
and SPEIt−2

Non-linear trend, SPEIt−1
and SPEIt−2

Non-linear trend, SPEIt−1
and SPEIt−2, SPEI

3.4. Short- and Medium-Term Forecasting

To understand the forecasting performance of statistical models, a comparative study was
conducted between the four developed models. Figure 6 shows the models’ drought forecasting
results at all timescales considered in this study. The smoothing effect of the GAM models is evident
in the forecasting results. The GAM provides a flexible specification of response by defining the
model in terms of smooth functions as a replacement for the detailed parametric relationships on the
covariates [63]. The decomposition of environmental time series is expected to improve the forecasting
accuracy of models, and it is evident at all timescales that the decomposed GAM performed better
than an undecomposed GAM. Although an Ensemble Empirical Mode Decomposition (EEMD)-GAM
forecasted the SPEI better than the GAM, from Figure 6, the EEMD-GAM is seen to overestimate drought
conditions, especially between 2011 and 2016, with the GAM greatly underestimating the target values,
while the EEMD-ARIMA-GAM (i.e., the GAM after correcting residual autocorrelation) improved the
forecast. This was noted clearly in the one-month timescale, while for the 6 and 12 month timescales,
all models showed some level of improvements. The results of this study agree with those of [64],
which found that incorporating corrected residual autocorrelation increased model performance and
improved the out-of-sample forecasts. Since forecasting models are imperfect abstracts of reality [65],
such behaviors in model outputs are therefore expected, as the forecasts are often not perfect.
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3.5. Model Performance

Figure 7 is the scatterplot of the different models’ outputs at all the timescales considered in this
study. All the models’ results show that a positive correlation exists between the modeled output
and the actual data. The GAM, EEMD-GAM, and EEMD-ARIMA-GAM forecast results showed the
lowest correlation at the 1, 6, and 12 month timescales, respectively. The fQRA showed the highest
correlations at the one- and six-month timescales, while, for the 12 month timescale, the GAM showed
the highest correlation. The high correlation showed by fQRA may be because fQRA is made up
of a weighted combination of all the models; therefore, all the models’ strength results in fQRA are
superior compared to the other models developed in this study. In addition to the correlation between
the forecasted and target values, this study employed further statistical measures to determine the
model performance, and these are shown in Table 4. The best RMSE was shown by fQRA at the
one- and six-month timescales, with the 12 month timescale showing that the GAM performed better
compared to the other models. The incorporation of autocorrelation errors as reported by [64] is noted
in the model performance at the one- and six-month timescales. These models were seen to have
performed better than the GAM and decomposed GAM at the one- and six-month timescales, therefore
showing that decomposition coupled with autocorrelation errors improves forecasting accuracy.
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The density plots from all the developed models (i.e., GAM, EEMD-GAM, EEMD-ARIMA-GAM,
and fQRA) at the three timescales superimposed with actual SPEI time series are given in Figure 8a–c.
Similar to the results shown by the different model performance measures, at the one- (Figure 8a) and
six-month (Figure 8b) timescales, the fQRA models showed fairly good density fits compared to the
other models. At the 12 month timescale, both the GAM and fQRA showed good density fits, and the
same was noted by the different performance measures.
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Table 4. Performance evaluation of the developed models.

Timescale Model ME RMSE MAE MPE MAPE

1

GAM 0.0177 0.7676 0.6127 −3.8647 231.728

EEMD-GAM 0.6805 0.8829 0.7410 −47.4685 275.233

EEMD-ARIMA-GAM 0.4718 0.481 0.4718 −135.946 280.609

fQRA −0.0116 0.0599 0.03369 11.971 17.099

6

GAM −0.0016 0.3644 0.2694 19.774 57.438

EEMD-GAM −0.0563 0.3818 0.2833 13.330 57.293

EEMD-ARIMA-GAM −0.0599 0.3449 0.2595 10.227 51.763

fQRA 0.0030 0.2609 0.2057 8.053 37.699

12

GAM 0.0021 0.1809 0.1199 −63.013 123.075

EEMD-GAM 0.0067 0.1978 0.1373 −128.169 181.563

EEMD-ARIMA-GAM 0.0851 0.2221 0.162 −77.719 183.636

fQRA 0.0032 0.1811 0.1194 −67.49 127.262

Note: ARIMA = Autoregressive Integrated Moving Average, EEMD = Ensemble Empirical Mode Decomposition,
GAM = Generalized Additive Models, fQRA = Forecast Quantile Regression Averaging.
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3.6. Evaluation of Model Uncertainity

Uncertainty analysis in this study was carried out only for the best performing statistical
GAM-based models. This was achieved by constructing empirical prediction intervals (PIs) at all
timescales. Figure 9 shows the 95% prediction limits of the GAM-based models. The skewness at the
one- and six-month timescales was positive, while the 12 month timescale showed a negative skewness.
At the 12 month timescale, the model showed the smallest standard deviation, which is indicative of
a narrower prediction interval.



Sustainability 2020, 12, 4006 16 of 20

Sustainability 2020, 12, x FOR PEER REVIEW 16 of 20 

possible to forecast El Niño events approximately one year ahead, as well as the highest peak based 
on the characteristics of a previous event. Uncertainty of climatic variables in the future due to 
climate change is a reality, which ultimately influences drought patterns. Although the models in 
this study were developed based on historical data, with the availability of downscaled future 
rainfall and temperature, the developed models can be tested for the uncertainty of future drought 
patterns. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. 95% prediction limits—(a) SPEI 1, (b) SPEI 6 and (c) SPEI 12 month at all timescales 
considered in the study; LL and UL denote lower limit and upper limit, respectively. 
Figure 9. 95% prediction limits—(a) SPEI 1, (b) SPEI 6 and (c) SPEI 12 month at all timescales considered
in the study; LL and UL denote lower limit and upper limit, respectively.

El Niño conditions alter moisture flux circulation over southern Africa, thereby influencing the
spatial pattern and intensity of drought over the region [66]. The authors of [67] found that it was
possible to forecast El Niño events approximately one year ahead, as well as the highest peak based on
the characteristics of a previous event. Uncertainty of climatic variables in the future due to climate
change is a reality, which ultimately influences drought patterns. Although the models in this study
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were developed based on historical data, with the availability of downscaled future rainfall and
temperature, the developed models can be tested for the uncertainty of future drought patterns.

4. Discussion

With the increasing frequency and magnitude of extreme hydrological events over the Limpopo
River Basin, studies that seek to evaluate the likelihood of these events occurring in the future
are important. Since water resources are the core of human existence and environmental health,
reliable early warning systems have become important. This study used SPEI time series as
a drought-quantifying parameter to describe drought conditions at short- and medium-term timescales
(one- and six-month timescales are short-term, while a 12 month timescale is medium-term in this
study). To reduce the inherent complexities of hydrological data, time series decomposition was
conducted and correction of autocorrelated errors was done as well as forecast combination to improve
the forecasting accuracy of the developed models. Mild droughts were found to be the most dominant
in the study area compared to severe and extreme drought conditions.

The variability shows that SPEI 12 has greater severity compared to the one- and six-month
timescales in the middle reaches, while, in the upper reaches, the 12 month timescale showed the
least drought severity compared to SPEI one- and six-months. Four models (GAM, EEMD-GAM,
EEMD-ARIMA-GAM, and fQRA) were developed to forecast drought in the LRC at short- and
medium-term timescales. The study found that correction of autocorrelated errors and decomposition
improved model performance. At the one- and six-month timescales, the fQRA performed better,
followed by EEMD-ARIMA-GAM, while the 12 month timescale behaved differently. This timescale
showed that the GAM was better than the decomposition with and without corrected autocorrelated
errors. An RMSE difference of 0.002% was noted between the GAM and fQRA at this timescale, making
these two models the best at this timescale.

5. Conclusions

This study aimed to characterise drought and evaluate the performance of GAM-based models in
drought forecasting in a semi-arid catchment at short and medium terms. Although earth systems
models are available for such exercises, these models often provide forecasts gridded over large areas
without providing details for small catchments, such as the LRC. This makes studies of this nature
important, as they focus on smaller scales where impacts on communities are measurable. The study
showed the forecasting strength of GAM-based models for drought at short-term scales and further
proved the hypothesis that decomposition and correction of autocorrelation errors together with time
series decomposition improved model performance. For medium-term forecasting, this study found
that the treatment of a time series did slightly improve the forecast, but an undecomposed GAM
showed better performance at this timescale. These models showed their strength for short- and
medium-term forecasting and can, therefore, be used for timely water resource decision-making in
semi-arid regions. Thus, the forecast would serve as a decision support tool that would ensure advance
knowledge of water resource availability and facilitate realistic planning and allocation to meet the
minimum water requirements during drought periods, thereby reducing communities’ vulnerability
to drought impacts. These models can, therefore, be incorporated into early warning systems in these
regions to aid in better planning and management of water resources and drought risk reduction in the
short and medium terms.
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