An Evaluation of Air Transport Sector Operational Efficiency in China based on a Three-Stage DEA Analysis
Abstract
:1. Introduction
2. Methods
3. Data
3.1. Input and Output Indicators
3.1.1. Capital Stock
3.1.2. Labor Input
3.1.3. Infrastructure Level
3.2. Output Indicators
3.3. Environmental Indicators
4. Results
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Tanzi, V.; Schuknecht, L. Reconsidering the Fiscal Role of Government: The International Perspective. Am. Econ. Rev. 1997, 87, 164–168. Available online: www.jstor.org/stable/2950906 (accessed on 23 April 2020).
- Afonso, A.; Schuknecht, L.; Tanzi, V. Public sector efficiency: Evidence for new EU member states and emerging markets. Appl. Econ. 2010, 42, 2147–2164. [Google Scholar] [CrossRef] [Green Version]
- Catalano, G.; Daraio, C.; Diana, M.; Gregori, M.; Matteucci, G. Efficiency, effectiveness, and impacts assessment in the rail transport sector: A state-of-the-art critical analysis of current research. Int. Trans. Oper. Res. 2019, 26, 5–40. [Google Scholar] [CrossRef] [Green Version]
- Örkcü, H.H.; Balıkçı, C.; Dogan, M.I.; Genç, A. An evaluation of the operational efficiency of turkish airports using data envelopment analysis and the Malmquist productivity index: 2009–2014 case. Transp. Policy 2016, 48, 92–104. [Google Scholar] [CrossRef]
- Lozano, S.; Gutiérrez, E.; Moreno, P. Network DEA approach to airports performance assessment considering undesirable outputs. Appl. Math. Model. 2013, 37, 1665–1676. [Google Scholar] [CrossRef]
- Liu, D. Measuring aeronautical service efficiency and commercial service efficiency of East Asia airport companies: An application of Network Data Envelopment Analysis. J. Air Transp. Manag. 2016, 52, 2–14. [Google Scholar] [CrossRef]
- Duygun, M.; Prior, D.; Shaban, M.; Tortosa-Ausina, E. Disentangling the European airlines efficiency puzzle: A network data envelopment analysis approach. Omega-Int. J. Manag. Sci. 2016, 60, 2–14. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Y. Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model. Transp. Res. Part A Policy Pract. 2017, 106, 130–143. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Wang, J.W.; Huang, G.Q. Efficiency and robustness of weighted air transport networks. Transp. Res. Part E Logist. Transp. Rev. 2019, 122, 14–26. [Google Scholar] [CrossRef]
- Cardillo, A.; Zanin, M.; Gómez-Gardeñes, J.; Romance, M.; García del Amo, A.J.; Boccaletti, S. Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 2013, 215, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Huang, E.; Liu, I.; Lin, J.T. Robust model for the assignment of outgoing flights on airport baggage unloading areas. Transp. Res. Part E Logist. Transp. Rev. 2018, 115, 110–125. [Google Scholar] [CrossRef]
- Bilotkach, V.; Gitto, S.; Mancuso, P. Introduction to special issue “Efficiency and productivity in the air transport industry”. Res. Transp. Econ. 2016, 56, 1–2. [Google Scholar] [CrossRef]
- Miyoshi, C.; Mason, K.; Martini, G. Enhancing the network efficiency: Air transport and sustainability. J. Air Transp. Manag. 2018, 69, 213–214. [Google Scholar] [CrossRef]
- Abbott, M.; Wu, S. Total factor productivity and efficiency of Australian airports. Aust. Econ. Rev. 2002, 35, 244–260. [Google Scholar] [CrossRef]
- Barros, C.P.; Dieke, P.U.C. Measuring the economic efficiency of airports: A Simar–Wilson methodology analysis. Transp. Res. Part E Logist. Transp. Rev. 2008, 44, 1039–1051. [Google Scholar] [CrossRef]
- Chaouk, M.; Pagliari, D.R.; Moxon, R. The impact of national macro-environment exogenous variables on airport efficiency. J. Air Transp. Manag. 2020, 82, 101740. [Google Scholar] [CrossRef]
- Ülkü, T. A comparative efficiency analysis of Spanish and Turkish airports. J. Air Transp. Manag. 2015, 46, 56–68. [Google Scholar] [CrossRef]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis. J. Prod. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Shang, J.-K.; Hung, W.-T.; Lo, C.-F.; Wang, F.-C. Ecommerce and hotel performance: Three-stage DEA analysis. Serv. Ind. J. 2008, 28, 529–540. [Google Scholar] [CrossRef]
- Shang, J.-K.; Hung, W.-T.; Wang, F.-C. Service outsourcing and hotel performance: Three-stage DEA analysis. Appl. Econ. Lett. 2008, 15, 1053–1057. [Google Scholar] [CrossRef]
- Shyu, J.; Chiang, T. Measuring the true managerial efficiency of bank branches in Taiwan: A three-stage DEA analysis. Expert Syst. Appl. 2012, 39, 11494–11502. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, M.; Su, B. Research on Investment Efficiency and Policy Recommendations for the Culture Industry of China Based on a Three-Stage DEA. Sustainability 2016, 8, 324. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhao, H.; Guo, S. Operational Efficiency of Chinese Provincial Electricity Grid Enterprises: An Evaluation Employing a Three-Stage Data Envelopment Analysis (DEA) Model. Sustainability 2018, 10, 3168. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Lin, B. Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model. Appl. Energy 2016, 168, 351–363. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Shen, Y.; Wang, X. The energy efficiency of China’s regional construction industry based on the three-stage DEA model and the DEA-DA model. Ksce J. Civ. Eng. 2016, 20, 34–47. [Google Scholar] [CrossRef]
- Cui, Q.; Li, Y. The evaluation of transportation energy efficiency: An application of three-stage virtual frontier DEA. Transp. Res. Part D Transp. Environ. 2014, 29, 1–11. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Zeng, Y.; Li, F.; Liu, Y.; Qin, C.; Yuan, J. Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model. Sustainability 2018, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Fried, H.O.; Schmidt, S.S.; Yaisawarng, S. Incorporating the Operating Environment into a Nonparametric Measure of Technical Efficiency. J. Prod. Anal. 1999, 12, 249–267. [Google Scholar] [CrossRef]
- Fang, C.Y.; Hu, J.L.; Lou, T.K. Environment-adjusted total-factor energy efficiency of Taiwan’s service sectors. Energy Policy 2013, 63, 1160–1168. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Thrall, R.M. Estimation of returns to scale using data envelopment analysis. Eur. J. Oper. Res. 1992, 62, 74–84. [Google Scholar] [CrossRef]
- Jondrow, J.; Knox Lovell, C.A.; Materov, I.S.; Schmidt, P. On the estimation of technical inefficiency in the stochastic frontier production function model. J. Econom. 1982, 19, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Irmen, A.; Kuehnel, J. Productive Government Expenditure and Economic Growth. J. Econ. Surv. 2009, 23, 692–733. [Google Scholar] [CrossRef] [Green Version]
- Maparu, T.S.; Mazumder, T.N. Transport infrastructure, economic development and urbanization in India (1990-2011): Is there any causal relationship? Transp. Res. Part A Policy Pract. 2017, 100, 319–336. [Google Scholar] [CrossRef]
- Crescenzi, R.; Di Cataldo, M.; Rodriguez-Pose, A. Government Quality and The Economic Returns of Transport Infrastructure Investment in European Regions. J. Reg. Sci. 2016, 56, 555–582. [Google Scholar] [CrossRef] [Green Version]
- Young, A. Gold into base metals: Productivity growth in the People’s Republic of China during the reform period. J. Polit. Econ. 2003, 111, 1220–1261. [Google Scholar] [CrossRef] [Green Version]
- Kamps, C. New estimates of government net capital stocks for 22 OECD countries, 1960-2001. IMF Staff Pap. 2006, 53, 120–150. [Google Scholar]
- Zhang, J. Estimation of China’s provincial capital stock (1952–2004) with applications. J. Chin. Econ. Bus. Stud. 2008, 6, 177–196. [Google Scholar] [CrossRef]
- Jin, G. The Estimation of China’s Infrastructure Capital Stock. Econ. Res. J. 2012, 47, 12. [Google Scholar]
- Jin, G. Infrastructure and Non-infrastructure Capital Stocksin China and Their Productivity: A New Estimate. Econ. Res. J. 2016, 51, 16. [Google Scholar]
- De Barros, A.G.; Wirasinghe, S.C. Designing the airport airside for the new large aircraft. J. Air Transp. Manag. 2002, 8, 121–127. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Liu, X.H.; Wu, J. Energy and environmental efficiency analysis of China’s regional transportation sectors: A slack-based DEA approach. Energy Syst. 2017, 8, 747–759. [Google Scholar] [CrossRef]
- Park, Y.S.; Lim, S.H.; Egilmez, G.; Szmerekovsky, J. Environmental efficiency assessment of US transport sector: A slack-based data envelopment analysis approach. Transp. Res. Part D Transp. Environ. 2018, 61, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Baek, J. Price and income elasticities of demand for air transportation: Empirical evidence from US airfreight industry. J. Air Transp. Manag. 2012, 20, 18–19. [Google Scholar] [CrossRef]
- Schuckmann, S.W.; Gnatzy, T.; Darkow, I.-L.; von der Gracht, H.A. Analysis of factors influencing the development of transport infrastructure until the year 2030—A Delphi based scenario study. Technol. Forecast. Soc. Chang. 2012, 79, 1373–1387. [Google Scholar] [CrossRef]
- Xiao, Y.; Fu, X.; Zhang, A. Demand uncertainty and airport capacity choice. Transp. Res. Part B Methodol. 2013, 57, 91–104. [Google Scholar] [CrossRef]
- Yao, S.J.; Yang, X.Y. Air transport and regional economic growth in China. Asia Pac. J. Acc. Econ. 2012, 19, 318–329. [Google Scholar] [CrossRef]
- Debbage, K.G. Air transportation and urban-economic restructuring: Competitive advantage in the US Carolinas. J. Air Transp. Manag. 1999, 5, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.; Merkert, R.; Kamruzzaman, M. Regional aviation and economic growth: Cointegration and causality analysis in Australia. J. Transp. Geogr. 2015, 43, 140–150. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Driha, O.M.; Bekun, F.V.; Adedoyin, F.F. The asymmetric impact of air transport on economic growth in Spain: Fresh evidence from the tourism-led growth hypothesis. Curr. Issues Tour. 2019, 24, 36–53. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Dong, Q.L.; Wei, S.B.; Zaman, K.; Zhang, Y. Travel and tourism competitiveness index: The impact of air transportation, railways transportation, travel and transport services on international inbound and outbound tourism. J. Air Transp. Manag. 2017, 58, 125–144. [Google Scholar] [CrossRef]
- Halpern, N.; Bråthen, S. Impact of airports on regional accessibility and social development. J. Transp. Geogr. 2011, 19, 1145–1154. [Google Scholar] [CrossRef]
- Bråthen, S.; Halpern, N. Air transport service provision and management strategies to improve the economic benefits for remote regions. Res. Transp. Bus. Manag. 2012, 4, 3–12. [Google Scholar] [CrossRef]
- Butler, T.W.; Li, L. The utility of returns to scale in DEA programming: An analysis of Michigan rural hospitals. Eur. J. Oper. Res. 2005, 161, 469–477. [Google Scholar] [CrossRef]
Input Indicators | Output Indicators | Environmental Variables |
---|---|---|
Capital Stock | Volume of Passenger | Gross Domestic Product per Capita |
Number of Employees | Volume of Freight | Actual Utilization of Foreign Direct Investment |
Infrastructure Construction Level | Aircraft Movements | Transaction Value in Technical Markets |
Three Kinds of patents Granted per 10,000 People | ||
Household Consumption Expenditure |
Aerodrome Code Number | Reference Field Length (m) | Aerodrome Code Letter | Wingspan (m) | Outer Main Gearwheel Span (m) |
---|---|---|---|---|
1 | 0–800 | A | 0–15 | 0–4.5 |
2 | 800–1200 | B | 15–24 | 4.5–6 |
3 | 1200–1800 | C | 24–36 | 6–9 |
4 | ≥1800 | D | 36–52 | 9–14 |
E | 52–65 | 9–14 | ||
F | 65–80 | 14–16 |
Region | The First Stage | The Third Stage | |||||
---|---|---|---|---|---|---|---|
PTE | SE | Return to Scale | PTE | SE | Return to Scale | ||
North China | Beijing | 1 | 1 | CRS | 1 | 0.955 | IRS |
Tianjin | 1 | 0.838 | IRS | 1 | 0.682 | IRS | |
Hebei | 0.733 | 0.787 | IRS | 0.828 | 0.678 | IRS | |
Shanxi | 1 | 1 | CRS | 1 | 0.859 | IRS | |
Inner Mongolia | 1 | 1 | CRS | 1 | 1 | CRS | |
Northeast China | Liaoning | 0.678 | 0.975 | IRS | 0.787 | 0.957 | IRS |
Jilin | 0.687 | 0.791 | IRS | 0.751 | 0.718 | IRS | |
Heilongjiang | 0.784 | 0.961 | IRS | 0.863 | 0.871 | IRS | |
East China | Shanghai | 1 | 1 | CRS | 1 | 1 | CRS |
Jiangsu | 1 | 1 | CRS | 1 | 1 | CRS | |
Zhejiang | 1 | 1 | CRS | 1 | 1 | CRS | |
Anhui | 0.821 | 0.838 | IRS | 0.817 | 0.69 | IRS | |
Fujian | 0.751 | 0.995 | IRS | 0.754 | 0.999 | DRS | |
Jiangxi | 1 | 1 | CRS | 1 | 0.829 | IRS | |
Shandong | 0.959 | 0.721 | DRS | 1 | 0.735 | DRS | |
Central and Southern China | Henan | 1 | 1 | CRS | 1 | 1 | CRS |
Hubei | 0.754 | 0.995 | IRS | 0.799 | 1 | CRS | |
Hunan | 0.825 | 0.999 | IRS | 0.897 | 0.956 | IRS | |
Guangdong | 1 | 0.766 | DRS | 1 | 0.777 | DRS | |
Guangxi | 0.827 | 0.995 | DRS | 0.839 | 0.963 | IRS | |
Hainan | 0.688 | 0.977 | DRS | 0.743 | 0.99 | DRS | |
Southwest China | Chongqing | 1 | 1 | CRS | 1 | 1 | CRS |
Sichuan | 1 | 0.791 | DRS | 1 | 0.882 | DRS | |
Guizhou | 0.619 | 0.967 | IRS | 0.651 | 0.947 | IRS | |
Yunnan | 0.952 | 0.689 | DRS | 1 | 0.695 | DRS | |
Northwest China | Shannxi | 1 | 1 | CRS | 1 | 1 | CRS |
Gansu | 1 | 1 | CRS | 1 | 1 | CRS | |
Qinghai | 1 | 0.52 | IRS | 1 | 0.496 | IRS | |
Ningxia | 1 | 1 | CRS | 1 | 0.733 | IRS | |
Xinjiang | 0.772 | 0.901 | DRS | 0.737 | 0.983 | IRS | |
Mean | 0.894 | 0.915 | 0.916 | 0.880 |
Independent Variable | Dependent Variable | ||
---|---|---|---|
CS Slack | NoE Slack | ICL Slack | |
Constant term | −33.31 (−11.07) * | −0.42 (−3.70) * | −2.79 (−1.65) |
GDP per capita | 47.26 (34.60) * | −0.40 (−0.59) | 8.07 (6.47) * |
Actual utilization of FDI | −44.38 (−40.88) * | 2.61 (12.49) * | −6.57 (−4.39) * |
Transaction Value in Technical Markets (TVTM) | −42.91 (−40.60) * | 2.33 (3.63) * | 8.55 (5.88) * |
Three Kinds of patents Granted (TKPG) per 10,000 people | 111.69 (92.33) * | 0.41 (0.61) | 7.07 (5.89) * |
Household Consumption Expenditure (HCE) | −117.64 (−97.72) * | −3.49 (−14.24) * | −27.29 (−12.07) * |
20546.49 | 10.17 | 258.27 | |
0.99999 | 0.99999 | 0.99999 | |
LR test of the one-sided error | 24.29 | 19.52 | 13.23 |
Rank | PTE | SE | ||
---|---|---|---|---|
1 | North China | 0.9656 | Central and Southern China | 0.9477 |
2 | Northwest China | 0.9474 | East China | 0.8933 |
3 | East China | 0.9387 | Southwest China | 0.8810 |
4 | Southwest China | 0.9128 | Northeast China | 0.8487 |
5 | Central and Southern China | 0.8797 | Northwest China | 0.8424 |
6 | Northeast China | 0.8003 | North China | 0.8348 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Jia, G.; Zhang, P. An Evaluation of Air Transport Sector Operational Efficiency in China based on a Three-Stage DEA Analysis. Sustainability 2020, 12, 4220. https://doi.org/10.3390/su12104220
Song M, Jia G, Zhang P. An Evaluation of Air Transport Sector Operational Efficiency in China based on a Three-Stage DEA Analysis. Sustainability. 2020; 12(10):4220. https://doi.org/10.3390/su12104220
Chicago/Turabian StyleSong, Mingli, Guangshe Jia, and Puwei Zhang. 2020. "An Evaluation of Air Transport Sector Operational Efficiency in China based on a Three-Stage DEA Analysis" Sustainability 12, no. 10: 4220. https://doi.org/10.3390/su12104220
APA StyleSong, M., Jia, G., & Zhang, P. (2020). An Evaluation of Air Transport Sector Operational Efficiency in China based on a Three-Stage DEA Analysis. Sustainability, 12(10), 4220. https://doi.org/10.3390/su12104220