Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection and Spectral Determination
2.2. Field Spectral Conversion
2.3. Spectra Pretreatment
2.4. Inversion Factor Selection
2.4.1. Strong Correlation Factor (SC)
2.4.2. Principal Component Factor (PC)
2.5. Model Building
2.5.1. Stepwise Regression (SR)
2.5.2. Support Vector Regression (SVR)
3. Results
3.1. Descriptive Statistics of Soil Cr Concentrations
3.2. Spectral Characteristics of the Soil Samples
3.3. Correlation Analysis
3.4. Inversion Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Visser, S.M.; Keesstra, S.; Maas, G.; De Cleen, M.; Molenaar, C. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability 2019, 11, 6792. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerda, A.; Montanarella, L.; Quinton, J.; Pachepsky, Y.; Van Der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, Z.; Van Der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.A.; Parvez, L.; Islam, M.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Ruiz, E.; Alonso-Azcárate, J.; Rincon, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J. Environ. Manag. 2009, 90, 1106–1116. [Google Scholar] [CrossRef]
- Shen, Q.; Xia, K.; Zhang, S.; Kong, C.; Hu, Q.; Yang, S. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117191. [Google Scholar] [CrossRef]
- Tao, C.; Cui, W.; Wang, Y.; Zou, B.; Zou, Z. Soil heavy metal qualitative classification model based on hyperspectral measurements and transfer learning. Spectrosc. Spectr. Anal. 2019, 39, 2602–2607. [Google Scholar]
- Tan, K.; Ma, W.; Wu, F.; Du, Q. Random forest–based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Environ. Monit. Assess. 2019, 191, 446. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Peng, Y.; Zhao, L.; Wang, G.; Hu, Y. Estimation of soil heavy metal content using hyperspectral data. Remote Sens. 2019, 11, 1464. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Zhang, S.; Ge, C.; Liu, H.; Zhou, Y.; Chen, Y.; Hu, Q.; Ye, H.; Huang, Y. Hyperspectral inversion of heavy metal content in soils reconstituted by mining wasteland. Spectrosc. Spectr. Anal. 2019, 39, 1214–1221. [Google Scholar]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Sidhu, G.P.S.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2018, 216, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Jiang, X.; Feng, H.; Tu, Y.; Tao, C. Multisource spectral-integrated estimation of cadmium concentrations in soil using a direct standardization and Spiking algorithm. Sci. Total Environ. 2019, 701, 134890. [Google Scholar] [CrossRef]
- Liu, C.; Li, T.; Wei, L.; Xu, Y.; Wu, J. Research on application of direct standardization algorithm in near-infrared spectrum calibration transfer of acid value and peroxide value of edible oil. Spectrosc. Spectr. Anal. 2017, 37, 3042–3050. [Google Scholar]
- Xi, C.; Feng, Y.; Hu, C. Evaluation of piecewise direct standardization algorithm for near infrared quantitative model updating. Chin. J. Anal. Chem. 2014, 42, 1307–1313. [Google Scholar]
- Zou, B.; Tu, Y.; Jiang, X.; Tao, C.; Zhou, M.; Xiong, L. Estimation of Cd content in soil using combined laboratory and field DS spectroscopy. Spectrosc. Spectr. Anal. 2019, 39, 3223–3231. [Google Scholar]
- Wang, S.; Han, P.; Song, H.; Liang, G.; Cheng, X. Application of slope/bias and direct standardization algorithms to correct the effect of soil moisture for the prediction of soil organic matter content based on the near infrared spectroscopy. Spectrosc. Spectr. Anal. 2019, 39, 1986–1992. [Google Scholar]
- Fan, P.; Li, X.; Lu, M.; Wu, N.; Liu, Y. Vis-NIR model transfer of total nitrogen between different soils. Spectrosc. Spectr. Anal. 2018, 38, 3210–3214. [Google Scholar]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images. Int. J. Remote Sens. 2019, 41, 2263–2276. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Wang, H.; Chen, L.; Du, Q.; Du, P.; Pan, C. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 2019, 382, 120987. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, S.; Bai, X.; Zhou, D.; Luo, G.; Wang, J.; Wang, M.; Lu, Q.; Yang, Y.; Hu, Z.; et al. Hyperspectral prediction model of metal content in soil based on the genetic ant colony algorithm. Sustainability 2019, 11, 3197. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Liu, Z.; Hu, Y.; Shi, Z.; Pan, Y.; Wang, L.; Wang, G. Integrating a hybrid back propagation neural network and particle swarm optimization for estimating soil heavy metal contents using hyperspectral data. Sustainability 2019, 11, 419. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Wang, K.; Long, W.; Wang, K.; Hu, W.; Amable, G.S. A comparative assessment of the influences of human impacts on soil cd concentrations based on stepwise linear regression, classification and regression tree, and random forest models. PLoS ONE 2016, 11, e0151131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, F.; Andrade, M.L.; Covelo, E. Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses. J. Hazard. Mater. 2010, 174, 522–533. [Google Scholar] [CrossRef]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Hosseini, F.S.; Mosavi, A. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef]
- Liu, S.; Feng, Z.-K.; Feng, B.-F.; Min, Y.-W.; Cheng, C.; Zhou, J. Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir. Water 2019, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bull. Eng. Geol. Environ. 2017, 77, 647–664. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Prakash, I. Bagging based support vector machines for spatial prediction of landslides. Environ. Earth Sci. 2018, 77, 146. [Google Scholar] [CrossRef]
- Li, X.-Y.; Liu, Y.; Lv, M.-R.; Zou, Y.; Fan, P.-P. Calibration transfer of soil total carbon and total nitrogen between two different types of soils based on visible-near-infrared reflectance spectroscopy. J. Spectrosc. 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Rossel, R.A.V.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Tillage Res. 2016, 155, 492–500. [Google Scholar] [CrossRef]
- Chen, Y.; Qi, K.; Liu, Y.; He, J.-H.; Jiang, Q. Transferability of hyperspectral model for estimating soil organic matter concerned with soil moisture. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2015, 35, 1705–1708. (In Chinese) [Google Scholar] [PubMed]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S.M. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Yang, Y.; Sha, J. Application of GWR model in hyperspectral prediction of soil heavy metals. Acta Geogr. Sin. 2017, 72, 533–544. [Google Scholar]
- Xin, Z.; Sun, J.; Yan, T.; Quansheng, C.; Xiaohong, W.; Yingying, H. A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves. Chemometr. Intell. Lab. Syst. 2020, 200, 103996. [Google Scholar] [CrossRef]
Minimum Value | Maximum Value | Mean | Standard Deviation | Skewness |
---|---|---|---|---|
25.47 | 92.08 | 60.93 | 12.70 | −0.04 |
Spectral Type | Number of Strong Correlation Factors | Number of Strong Correlation Factors with a Correlation Coefficient Greater than 0.5 |
---|---|---|
Field spectrum | 65 | 8 |
Lab spectrum | 132 | 44 |
DS spectrum | 108 | 30 |
Spectral Type | Inversion Method | Factor | Model Abbreviation | R2 | RMSE | RMSEp | RPD |
---|---|---|---|---|---|---|---|
field | SR | SC | field_SR_SC | 0.48 | 11.67 | 21.09 | 1.58 |
PC | field_SR_PC | 0.41 | 15.13 | 21.57 | 1.57 | ||
SVR | SC | field_SVR_SC | 0.86 | 7.64 | 17.95 | 1.15 | |
PC | field_SVR_PC | 0.55 | 19.62 | 15.54 | 21.95 | ||
lab | SR | SC | lab_SR_SC | 0.56 | 14.27 | 13.07 | 1.25 |
PC | lab_SR_PC | 0.49 | 13.16 | 19.89 | 1.71 | ||
SVR | SC | lab_SVR_SC | 0.94 | 5.49 | 16.11 | 1.11 | |
PC | lab_SVR_PC | 0.29 | 15.47 | 22.18 | 6.24 | ||
DS | SR | SC | DS_SR_SC | 0.55 | 14.59 | 13.97 | 1.32 |
PC | DS_SR_PC | 0.59 | 12.41 | 25.65 | 1.57 | ||
SVR | SC | DS_SVR_SC | 0.98 | 3.21 | 11.91 | 1.06 | |
PC | DS_SVR_PC | 0.49 | 12.94 | 18.29 | 1.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Zou, B.; Wen, Y.; Tu, Y.; Xiong, L. Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra. Sustainability 2020, 12, 4441. https://doi.org/10.3390/su12114441
Xue Y, Zou B, Wen Y, Tu Y, Xiong L. Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra. Sustainability. 2020; 12(11):4441. https://doi.org/10.3390/su12114441
Chicago/Turabian StyleXue, Yun, Bin Zou, Yimin Wen, Yulong Tu, and Liwei Xiong. 2020. "Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra" Sustainability 12, no. 11: 4441. https://doi.org/10.3390/su12114441
APA StyleXue, Y., Zou, B., Wen, Y., Tu, Y., & Xiong, L. (2020). Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra. Sustainability, 12(11), 4441. https://doi.org/10.3390/su12114441