
sustainability

Article

Riding Comfort Evaluation Based on Longitudinal
Acceleration for Urban Rail Transit—Mathematical
Models and Experiments in Beijing Subway

Huiru Ma 1, Dewang Chen 2,∗ and Jiateng Yin 1,∗

1 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China;
hrma@bjtu.edu.cn

2 College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
* Correspondence: dwchen@fzu.edu.cn (D.C.); jtyin@bjtu.edu.cn (J.Y.)

Received: 12 May 2020; Accepted: 28 May 2020; Published: 3 June 2020
����������
�������

Abstract: Riding comfort is an important index to measure the quality of service for railways,
especially for congested urban rail transit systems where the majority of passengers cannot find a
seat. Existing studies usually employ the value of longitudinal acceleration as the key indicator to
evaluate the riding comfort of vehicles, while there is no validated mathematical models to evaluate
the riding comfort of urban rail trains from the perspective of passengers. This paper aims to
employ the collected longitudinal acceleration data and passengers’ feedback data in Beijing subway
to qualitatively measure and validate the riding comfort of transit trains. First, we develop four
regular fuzzy sets based comfort measurement models, where the parameters of the fuzzy sets are
determined by experiences of domain experts and the field data. Then a combinational model is
given by averaging the four regular fuzzy set models to elaborate a comprehensive measurement for
the riding comfort. In order to verify the developed models, we conducted a questionnaire survey in
Beijing subway. The surveyed riding comfort data from passengers and the measured acceleration
data are used to validate and optimize the proposed models. Two key parameters are deduced to
describe all parameters in the fuzzy set models and a meta-heuristic algorithm is applied to optimize
the parameters and weight coefficients of the combinational model. Comparing the collected comfort
data with the comfort levels and values calculated by different models shows that the averaging
model is better than any regular fuzzy set model. Furthermore, the optimized model is better than
the averaging model and provides the best accuracy and robustness for riding comfort measurement.
The models provided in this paper offer an optional way to measure the riding comfort for further
assessment and more comprehensively tuning of train control systems.

Keywords: riding comfort; quality of service; urban railway; fuzzy sets; questionnaire survey

1. Introduction

With the development of rail transit and the improvement of people’s living condition, high-speed,
on-time and safety are no longer the only goals of modern railway systems [1]. Passengers’ requirement
on good riding experiences has driven the riding comfort as one important index of train control
systems. In particular, the majority of passengers in congested urban rail systems cannot find a seat
and have to stand through the whole trip (as shown in Figure 1). In these situations, train riding
comfort is especially significant, since any sudden accelerating or braking may tumble the standing
passengers and cause potential safety risks.

Currently, there are many measurement methods for riding comfort, including Sperling fitted
index, Diekeeman index, Janeway comfort factor and so forth [2]. These methods consider that the
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improvement of riding comfort is one key to improve railway passengers’ amenity [3] and the concept
of riding comfort is related to two categories of measurement: the measurement of physical quantities
that affect riding comfort and the measurement of the corresponding feeling of human beings [4],
which is however too complex for computing in practice. In some other researches, the riding comfort
for railway is determined by vibration, noise, temperature, humidity and many other factors, of which
vibration has been most extensively studied in quantitative manner [5]. More specific research like
the seat measurement method that emphasizes the interactions between the human body and seats
has also been developed for the purpose of studying the passengers’ comfort level [6]. However,
the riding comfort basically is a subjective feeling of passengers and there are too many influence
factors that cannot be well measured [7]. For example, the vehicle-track interaction [8], overhead
system [9], ground-borne vibration [10] and the environment [11] may affect the feeling of passengers,
and there is no universal standard measurement method for riding comfort till now.

Figure 1. Standing passengers in congested subway trains.

In urban railway systems, there are many different subsystems (for example, air conditioning,
train control systems, etc). Each of them has its own focus on riding comfort improvement. In our
study, we concentrate on the riding comfort arising from train control systems, which not only can
provide real-time information on train speeds and positions for riding comfort measurement, but also
can change the acceleration to further enhance the riding comfort. In order to evaluate the riding
comfort from train control systems, we collected a huge amount of train running data in Beijing
subway, which involve the train position, velocity, acceleration (and braking) rate [12,13]. We use these
field data to derive some qualitative methods and construct mathematical models for evaluating riding
comfort of trains.

Theoretically, riding comfort is some type of perception which varies for different persons; this
leads some uncertainties to its measurement. As a suitable tool for measuring subjective feeling
and tacking uncertainties in measurements, the fuzzy sets are employed in this paper and the fuzzy
membership functions (MFs) are used to calculate the riding comfort of passengers qualitatively.
By using MFs, the acceleration rate can be transformed into a unified comfort measurement number in
the range of [0 1], which is a suitable index for the purpose of optimizing the train control systems.
Four regular fuzzy sets are first employed. The parameters of MFs are initially set by domain
experts’ experience and then optimized through a meta-heuristic optimization algorithm. In this
study, the acceleration rate data of trains and riding comfort survey data of passengers are collected
in Beijing subway Yizhuang line, and they are used to tune and test the riding comfort measurement
models. In a short summary, our approach has following three advantages compared with other
ones: (1) we only use acceleration rate data to partially measure riding comfort, which make the data
collection easier and such kind of index is more suitable for the design of train control algorithms
because the most controllable factor in the train operation system is the acceleration. (2) Four fuzzy
sets and their ensemble are used to increase the robustness of riding comfort measurement. (3) We
use the acceleration data from the field, the surveyed comfort data, and an optimization algorithm
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to adjust the parameters in the fuzzy set based models and further improved the accuracy of riding
comfort measurement.

The rest of the paper is organized as follows. In Section 2, four models for riding comfort
computing are developed based on four regular fuzzy sets. The expert experience based determination
of the parameters of fuzzy sets is introduced as well. In Section 3, the four models are applied on
collected data in Beijing subway, and the results are compared with the surveyed riding comfort
data from passengers. Then one combinational model is suggested by linearly combining the four
regular fuzzy set models. In Section 4, the parameters of the combinational model are optimized by a
meta-heuristic algorithm with measured riding comfort data, and the best riding comfort measurement
model is obtained. Finally, conclusions and future work are outlined in Section 5.

2. Comfort Measurement Models Based on Fuzzy Sets

In an inertial reference system like a train, the passengers will move backward when the train
starts; on the other hand, the passengers will lean forward when the train suddenly stops. In those
cases, passengers may be caught unprepared and lose their balance because the acceleration rate
is too large [14]. In short, if the acceleration rate is greater than the scale that the human body can
tolerate, passengers feel uncomfortable. In some research [15–17], the riding comfort is evaluated by
the average acceleration rate. However, the degree of riding comfort is not perceived in the same way
by different people. The average acceleration rate sometimes cannot properly indicate the level of
riding comfort for the majority of passengers.

In 1965, Zadeh initiated “fuzzy set” theory and the “incompatibility principle”: the traditional
system analysis technology cannot handle humanities system in essence, which is greatly related
to the human behavior, perception and emotional impacts [18]. Obviously, passengers’ feeling on
riding comfort follows “fuzzy set” theory characterized by membership functions (MFs) [19]. In this
section, we try to establish four simple models for computing instantaneous riding comfort value by
using four commonly used fuzzy sets. By treating the riding comfort value as the degree of fuzzy
sets defined in the domain of acceleration rate, we transform the problem for computing the riding
comfort value into computing membership degree. As the degree of MFs is within [0 1], we can
define that 1 represents the highest riding comfort, and 0 stands for the worst one. We firstly test four
regular fuzzy set models, and then we conduct further research on the comparisons among them and
combining them to improve the robustness of riding comfort measurement.

2.1. Triangular Fuzzy Set Model

The first fuzzy set model is the simple and wide-used triangular fuzzy set. The model of the
triangular fuzzy set has a MF in the shape of a triangle [20,21] (as shown in Figure 2), and the MF is
expressed as follows:

f (x; atri, btri, ctri) =


0, x ≤ atri,

x−atri
btri−atri

, atri ≤ x ≤ btri
ctri−x

ctri−btri
, btri ≤ x ≤ ctri,

0, ctri ≤ x

, (1)

where the parameters atri and ctri set the left and right base points of the triangle and the parameter btri
sets the location of the triangle peak. When acceleration rate is 0, passengers cannot feel the impulse;
apparently the corresponding riding comfort value is 1. Hence, we set btri = 0. The previous study has
found that when the acceleration rate is more than 3 m/s3, passengers would suffer a great vertical
impulse [22]. In this case, the riding comfort value is set to 0. Hence, we can use the maximum
acceleration rate, Amax, to represent the other two parameters in the fuzzy model. Obviously, we have
atri = −Amax and ctri = Amax . This means when the acceleration rate is larger than the maximum one,
the riding comfort value will be 0. The field acceleration rate data shown in Figure 2 also reflect that
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the maximal accelerating rate is very close to 3 m/s3 in the train control systems. Hence, in this model,
we set atri = −3, btri = 0, ctri = 3.

Figure 2. Triangle comfort model.

2.2. Gaussian Fuzzy Set Model

The second fuzzy set model used in this paper is the Gaussian model. Gaussian fuzzy set is
symmetric with good smoothness, which is widely used in adaptive fuzzy inference systems [23,24].
The Gaussian MF is expressed as follows:

f (x; agau, bgau) = e
−(x−bgau)2

2a2
gau . (2)

As shown in Figure 3, the Gaussian model is completely determined by agau and bgau, where bgau

represents the center of the model and agau determines the width of the model. As we mentioned
before, the center of the model is also equal to 0, that is, bgau = 0. We can also use Amax to calculate
agau, with the assumptions that f (x; agau, bgau) = 0.01 when x = Amax (this means the riding comfort
value is almost 0 when the maximum acceleration rate is taken). By deduction, we get agau = Amax

3.04 by
Equation (2). As Amax takes the same value in the triangular model, we have agau = 0.98.

Figure 3. Gaussian comfort model.

2.3. Bell-Shaped Fuzzy Set Model

The previous two MFs are symmetric and can describe the human beings’ perception about the
relationships between the acceleration rate and the riding comfort value. According to the common
sense about human perception, people cannot feel impact when acceleration rate is within a very
small range (−0.5 m/s3 0.5 m/s3). Hence, we may need to use a MF that is not sensitive in some
range around 0 (as illustrated in Figure 4). In order to reflect the physiological sense better, we use
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Bell-shaped fuzzy set model as the third MF to measure riding comfort value. The model is expressed
as follows [25,26]:

f (x; abel , bbel , cbel) =
1

1 + | x−cbel
abel
|2bbel

. (3)

Here abel , cbel represent the width and center of the model, bbel is a positive value (if bbel is negative,
the model will be an inverted bell-shaped) and is used to adjust the steep of the curve. Again, the center
of the model is 0, that is cbel = 0. We use two parameters, the minimum and the maximal acceleration
rates Amin and Amax, to calculate abel , bbel , cbel with the following two assumptions:

(1) when cbel = 0 and x = Amax, then f (x; abel , bbel , cbel) = 0.01 (when the acceleration rate is large
enough, the riding comfort value will close to 0);

(2) when cbel = 0 and x = Amin, then f (x; abel , bbel , cbel) = 0.99 (when the acceleration rate is small
enough, the comfort level will be close to 1).

According to Equation (3), we can obtain the following equalities:
0.01 = 1

1+| Amax
abel
|2bbel

0.99 = 1
1+| Amin

abel
|2bbel

.
(4)

After rewriting Equation (4), we obtain:{
| Amax

abel
|2bbel = 99

| Amin
abel
|2bbel ≈ 0.01.

(5)

Then, according to the above mentioned assumptions, abel and bbel can be approximately solved
from Equation (5) in the closed-form as:

abel ≈
√

Amax ∗ Amin (6)

bbel ≈
2

lg Amax
Amin

. (7)

As we know that Amin = 0.5 and Amax = 3, we obtain that abel = 1.22 and bbel = 2.57.

Figure 4. Bell-shaped comfort model.

2.4. Trapezoidal Fuzzy Set Model

Similar to the bell-shaped fuzzy model, the trapezoidal fuzzy set can also be used to measure
the riding comfort with the similar characteristics: when acceleration rate is within a very small
range (−0.5 m/s3 0.5 m/s3), the riding comfort value is equal or very close to 1. Compared with
the bell-shaped fuzzy set model, the trapezoidal MF has the advantage of easy computation and the
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disadvantage of discontinuous gradient, as shown in Figure 5. The trapezoidal MF Model is expressed
as follows [27,28]:

f (x; atra, btra, ctra, dtra) =



0, x ≤ atra
x−atra

btra−atra
, atra ≤ x ≤ btra

1, btra ≤ x ≤ ctra
dtra−x

dtra−ctra
, ctra ≤ x ≤ dtra

0, dtra ≤ x

. (8)

Or, more compactly, the model can be rewritten as:

f (x; atra, btra, ctra, dtra) = max(min(
x− atra

btra − atra
, 1,

dtra − x
dtra − ctra

), 0), (9)

where atra, btra, ctra, dtra represent the four important points of a trapezoid MF as illustrated in
Figure 5. We can also use Amin and Amax to calculate atra, btra, ctra, dtra by atra = −Amax, btra = −Amin,
ctra = Amin, and dtra = Amax, respectively. With the following two assumptions: (1) when the absolute
of acceleration rate is less than 0.5 m/s3, the riding comfort value is set to 1; (2) when the absolute of
acceleration rate is more than 3 m/s3, the riding comfort value is set as 0. Then, we obtain atra = −3,
btra = −0.5, ctra = 0.5 and dtra = 3.

Figure 5. Trapezoid comfort model.

3. Model Evaluation Based on Field Data

3.1. Field Data Description

Beijing subway Yizhuang line connects the center of Beijing and Yizhuang Economic Development
Zone, and the length of the line is 23.23 km. Figure 6 illustrates the route map of Yizhuang Line. It was
officially in operation on 30 December 2010 and the entire operation time is 33 min [15].

In Yizhuang subway line, ATO (automatic train operation) systems are adopted to control the
train instead of human drivers. Through the connection between the onboard computer and the serial
output interface of ATO, large amounts of online train operation data are obtained for riding comfort
measurement. In particular, a set of accelerometers are installed on the head and tail of trains in order
to record and collect the accelerating rate of trains at each time unit. Here, the accelerating rate actually
represents the variations of train acceleration between two time units (or jerk). For example, consider
that the train acceleration values are ut and ut+1 at time units t and t + 1. Then, the acceleration rate is
calculated by |ut+1 − ut|/∆t, where ∆t is the sampling cycle (0.2 s in Beijing subway) A set of field
acceleration rate data, from Xiaocun station to Songjiazhuang station of the Yizhuang subway line,
is shown in Figure 7. About 1000 data samples are obtained with the sampling cycle of 0.2 s.
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Figure 6. The run route map of Subway Yizhuang Line.

Figure 7. Acceleration rate.

3.2. Model Evaluation Based on Train Acceleration Data

In previous section, we developed four regular fuzzy set models to compute the instantaneous
riding comfort value according to acceleration rate from train control systems and more importantly,
the parameters in fuzzy models are determined by domain experience and field data. Now we use the
four models to compute riding comfort value for the field acceleration rate data collected in Yizhuang
Line. In this section, four sets of acceleration rate data are selected to computing riding comfort value:
(1) data set 1 from station Yizhuang Bridge to station Yizhuang Cultural Park, (2) data set 2 from station
South Ciqu to station Ciqu, (3) data set 3 from station Jinghai Road to station Tongji South Road and
(4) data set 4 from station Jiugong to station Xiaohongmen.

Then, four fuzzy models are used to compute the riding comfort value for the four data sets.
Due to page limitation, we only show the following derived comfort values: (1) derived by applying
the triangle model on the data set 1, (2) derived by applying the Gaussian model on the data set 2,
(3) derived by applying the bell-shaped model on the data set 3, and (4) derived by applying the
trapezoid model on the data set 4. In each sampling cycle, the acceleration rate data is converted into a
degree of the MF, which is the instantaneous riding comfort value in that cycle. Figure 8 illustrates the
process of transforming the acceleration rate data into degree of MFs for the four field data sets.

To gain a summarized riding comfort value for the entire riding from one station to the next
station, all riding comfort values in the block between two stations are averaged. In other words,
the definition of the riding comfort value (V) for a block between two continuous stations is as follow.

V =
1
n

n

∑
i=1

f (Ji), (10)
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where f is one of the fuzzy membership functions mentioned in Section 3, J is the acceleration rate
data set, n is the total number of sampling cycles and Cv represents the riding comfort value.

Figure 8. Riding comfort values of four cases.

As we know, human beings usually describe the riding comfort in a fuzzy way using
expressions like very comfortable, quite comfortable, slightly uncomfortable, less comfortable and
very uncomfortable. To facilitate the assessment of the riding comfort, we divide the computed riding
comfort value into 5 levels with L = 1, 2, 3, 4, 5, respectively, as shown in Table 1. Hence, there are two
kinds of the riding comfort measurement in this paper: riding comfort value and riding comfort level.

Table 1. Relationship between Riding Comfort Value and riding comfort Level.

Value >0.8 0.6–0.8 0.4–0.6 0.2–0.4 <0.2
Level 1 2 3 4 5

Comfort
description

Very
comfortable

Quite
comfortable

Slightly
uncomfortable

Less
comfortable

Very
uncomfortable

By the Equation (10) and Table 1, we can measure the riding comfort levels for all intervals
or blocks between two continuous stations. As we mentioned in Section 2, there are 13 stations in
Yizhuang subway line. And the line is a Bi-directional subway, and then we have 12 uplink blocks
and 12 downlink blocks. For the purpose of convenience, we define the 12 blocks of uplink (from
Songjiazhuang to Ciqu) as U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12; the 12 blocks of
downlink (from Ciqu to Songjiazhuang) as D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1.

We take the four blocks Yizhuang Brigde-Yizhuang Cultural Park (U5), South Ciqu-Ciqu (U12),
Jinghai Road-Tongji South Road (D10) and Jiugong- Xiaohongmen (D3) as our study cases. For the
purpose of comparison, we also include the average of the four regular fuzzy set models to obtain
a comprehensive measurement. The riding comfort value of the four blocks calculated by the four
regular fuzzy set models, the average value (termed as V in Table 2) of the four models and its
corresponding comfort level are listed in Table 2.
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Table 2. The riding comfort value and its level of the four blocks by the four fuzzy models.

Block U5 U12 D10 D3

V

Triangular 0.547 0.836 0.745 0.77
Gaussian 0.535 0.845 0.713 0.75

Bell-shaped 0.568 0.931 0.651 0.702
Trapezoidal 0.609 0.941 0.806 0.833

Average 0.565 0.888 0.746 0.779
Comfort Level 3 1 2 2

From Table 2, it is clear that the outputs of all fuzzy models are close to each other. By averaging,
we can obtain the value in the middle of them to increase the robustness of computing riding comfort
value and judging its level, similar to the methods used in ensemble learning [29]. This will be
validated by the surveyed riding comfort data later.

3.3. Model Validation Based on Passenger Feedback Data

In order to verify the effectiveness of the proposed models, we conduct a field experiment to
collect the feeling of riding comfort by on-board passengers on the subway Yizhuang line. The field
experiment is conducted as follows: we select a group of volunteers to participate in the experiments on
the weekday of October 2018, each one with a questionnaire; after taking the train in Yizhuang subway
line, they measured the riding comfort of each block of the line by their personal feelings and filled their
feeling on riding comfort level in the questionnaire. Similarly, we divided comfort level into 5 levels
from 1 to 5, as shown in Table 1. To avoid other factors’ influence, we ask the experimenters to fill the
riding comfort level just according to their feeling about the train’s accelerations and decelerations.
In addition, we picked the results of only eight volunteers, who have a seat on the train, in order to
reduce the effects of other factors (e.g., congestion) as much as possible.

Since the physical conditions of human are not the same in a day, the feeling for riding comfort is
also not the same for the same person in all day long. The experimenters have ridden the train for
6 round trips in a whole day that is from the first station to last station and back forth. Two round
trips in the morning (8 a.m.–11 a.m.), two round trips in the afternoon (2 p.m.–5 p.m.) and another
two round trips in the evening (7p.m.–10 p.m.). As we mentioned before, there are 13 stations and 12
blocks in the Yizhuang Subway Line. So, we collect 24× 6 groups of data (each group include the 8
estimated comfort level by 8 experimenters), and we can take half of the data (72 groups: each round
trip in the morning, in the afternoon and in the evening) as training data set, the remaining as the
testing data set.

Some of the training data set are listed in Table 3, where the values in the brackets are the
number of experimenters. The Mor, Aft and Eve in Table 3 represent Morning, Afternoon and Evening
respectively. To make the computation efficient, we set the middle value of each riding comfort level
(Le) as the representative comfort value in that level, that is, the value 0.1, 0.3, 0.5, 0.7 and 0.9 are used
to represent the comfort level 1, 2, 3, 4 and 5. Then, we obtain the comprehensive riding comfort value
in experiments (Ve) in the Table 3, which is a referenced or investigated value to test the performance
of the proposed models.

Table 3. The statistics of training data set.

Block U5 U12 D10 D3
Time Mor Aft Eve Mor Aft Eve Mor Aft Eve Mor Aft Eve

Le

1 (1)
2 (5)
3 (2)

2 (6)
3 (2)

2( 7)
3 (1)

1 (6)
2 (1)
3 (1)

1 (7)
2 (1)

1 (6)
2 (2)

1 (2)
2 (5)
3 (1)

1 (3)
2 (5)

1 (3)
2 (4)
3 (1)

1 (5)
2 (3)

1 (4)
2 (4)

1 (5)
2 (3)

Ve 0.675 0.65 0.675 0.825 0.875 0.85 0.75 0.75 0.8 0.825 0.8 0.825
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In Table 2, we obtain the riding comfort values by four single fuzzy models and the average of
them. By Table 1, we can get the riding comfort level for the above models. For the training data
set, the difference between the riding comfort obtained by experimenters and that by four fuzzy set
models, are listed in Table 4. The comfort level and the absolute errors (|eV |) between the surveyed
and the computed comfort values are all listed in that Table.

|eV | = |Ve(i)−V(i)| (11)

where Ve is the value of experience, Vc is the value of each one of the proposed fuzzy model.

Table 4. Comparisons of four models on the training data set.

Block U5 U12 D10 D3
Time Mor Aft Eve Mor Aft Eve Mor Aft Eve Mor Aft Eve

L

Experiment 2 2 2 1 1 1 2 2 2 1 2 1
Triangle 3 3 3 1 1 1 2 2 2 2 2 2
Gaussian 3 3 3 1 1 1 2 2 2 2 2 2

Bell-shaped 3 3 3 1 1 1 2 2 2 2 2 2
Trapezoid 2 2 2 1 1 1 1 1 1 1 1 1

|eV |
Triangle 0.128 0.103 0.128 0.011 0.039 0.014 0.005 0.005 0.055 0.048 0.023 0.048
Gaussian 0.141 0.116 0.141 0.02 0.03 0.005 0.037 0.037 0.087 0.075 0.05 0.075

Bell-shaped 0.107 0.082 0.107 0.106 0.056 0.081 0.099 0.099 0.149 0.123 0.098 0.123
Trapezoid 0.066 0.041 0.066 0.116 0.066 0.091 0.056 0.056 0.006 0.008 0.033 0.008

As shown in the Table 4, although the four models output different values, the overall trend is
similar: they are close to the judgements by experimenters. Each fuzzy model has its strength and
weakness in different time or blocks. Hence, there is still some room to combine them or optimize the
parameters in the fuzzy models to get better results.

To compute riding comfort value and measure riding comfort level better, four fuzzy models can
be used together to increase the accuracy and robustness like the bagging technique of the ensemble
learning [29]. Hence, we define a combinational or ensemble model that calculates the riding comfort
values by weighted averaging the four regular fuzzy models:

Vc = wtri ∗Vtri + wgau ∗Vgau + wbel ∗Vbel + wtra ∗Vtra, (12)

where Vc is the riding comfort value by the combinational model, Vtri, Vgau, Vbel and Vtra are the four
riding comfort value by the four models, and wtri, wgau, wbel and wtra are the weights of four models.

Firstly, we set wtri = 0.25, wgau = 0.25, wbel = 0.25, wtra = 0.25 as we are not sure which model is
more important. Clearly, this is a simple average model. Based on the computed riding comfort value,
we can then determine the riding comfort level by Table 1. For the training data set, the riding comfort
level by experimenters, calculated riding comfort level by the simple average model and the absolute
errors between the combinational model(the average model) and the experimenters are shown in
Table 5. Compared with data by the single fuzzy models in Table 4, we found that the absolute error of
the simple average is only better than other models in some blocks.

Table 5. Comparisons between the combinational model and experiments.

Block U5 U12 D10 D3
Time Mor Aft Eve Mor Aft Eve Mor Aft Eve Mor Aft Eve

L Experiment 2 2 2 1 1 1 2 2 2 1 2 1
Combination 3 3 3 1 1 1 2 2 2 2 2 2
|eV | 0.11 0.085 0.11 0.063 0.013 0.038 0.004 0.004 0.054 0.046 0.021 0.046

We have studied all the data collected in all blocks of the subway line. Taking the data by
experimenters as the standard reference data, the level consistence percentage (PL) and mean absolute
error (|eV |) of four models and the combinational model are shown in Table 6. (PL) is defined as the
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ration of the number of model comfort levels being consistent with that of experimenters and the
number of all comfort levels.

PL =
∑n

i=1 ti

n
× 100%, (13)

where if the computing comfort level is consistent with the one by experimenters for the ith test, ti = 0;
otherwise, ti = 1, and n is the total number of tests. |eV | of the combinational model is defined as:

|eV | =
∑n

i=1 |eV(i)|
n

=
∑n

i=1 |Ve(i)−Vc(i)|
n

. (14)

For the four simple fuzzy models, the definition of |eV | is similar.
As it is shown in Table 6, the four models have different PL and |eV |. The combinational model is

the best model among the five models. The advantages of the combinational model lay in not only the
PL and |eV |, but also in the robustness according to the ensemble learning theory. Considering the still
relative low PL of the models with fixed parameters, we will optimize the adjustable parameters of the
proposed models in next section to achieve better PL and |eV |.

Table 6. The PL and |eV | of models.

Training Set Testing Set
PL |eV | PL |eV |

Triangle 76.4% 0.0535 79.2% 0.0553
Gaussian 76.4% 0.0626 75% 0.0659

Bell-shaped 77.8% 0.0598 73.6% 0.0633
Trapezoid 72.5% 0.0686 75.3% 0.0619

Combination 78.2% 0.0515 79.8% 0.0527

4. Optimizing Parameters Based on a Meta-Heuristic Algorithm

From the results in the above section, we see that the combinational model is better than each
of the composed model. However, four weights in the combinational model are evenly distributed
and some parameters in the fuzzy models are determined by experiences: (1) The minimal accelerate
rate, Amin, is 0.5 m/s3; (2) if the acceleration rate is less than Amin, then the riding comfort value is 1;
(3) The maximal acceleration rate, Amax, is 3 m/s3, and (4) if the acceleration rate is greater than Amax,
then the riding comfort value is 0.

As these parameters are set based on experiences, the models using them cannot achieve the best
performance. In this section, we will optimize six parameters (two parameters in four regular fuzzy set
models and four weight coefficients of the combinational model) by using the obtained experimental
riding comfort data in Yizhuang Line to measure the riding comfort more accurately.

4.1. Genetic Algorithm and Fitness Function for Riding Comfort

Genetic algorithm (GA) [30–32] is a global search technique used to find exact or approximate
solutions to optimization and search problems that was first presented by J. Holland inspired by
biological evolutionism in 1975. GA has been applied successfully to engineering problems in many
fields such as automated design, control engineering, neural networks, expert systems, scheduling
applications, and many others [33,34]. Genetic algorithm is a parallel random adaptive algorithm that
is based on “survival of the fittest”.

Genetic algorithm starts with an initial set of random candidate solutions called population and
each individual in the population is called a chromosome [35]. In GA, variables of a problem are
represented as genes in the chromosome, and the chromosomes are measured according to their fitness
values using some measurements of the profit or the utility that we want to optimize. The chromosomes
evolve through successive iterations called generation. Two genetic operators, crossover and mutation,
alter the composition of genes to create new chromosomes called offspring. The selection operator
is an artificial version of natural selection, a Darwinian survival of the fittest among populations.
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During each generation, the fitness of chromosomes is measured by a function called fitness function,
and chromosomes with better fitness values have higher probabilities of being selected to the next
generation. After several generations, GA can converge to the best solution.

As we are trying to optimize the parameters in the combinational model to make its output as
close to the output of field experiments as possible, the fitness function to be optimized is defined
as follows:

Fit = min(
m

∑
i=1
|Vc(i)−Ve(i)|)

= min(
m

∑
i=1
|(wtri ∗Vtri(i, Amax) + wbel ∗Vbel(i, Amin, Amax)

+ wgau ∗Vgau(i, Amax) + wtra ∗Vtra(i, Amin, Amax))−Ve|),

(15)

where m is the number of the training data set, Vc is the riding comfort value by the combinational
model and Ve is the riding comfort value from experiments. Specifically, using absolute error to
measure the fitness will bring better solution than the squared error which will increase a lot in
big errors.

4.2. Optimization Results

In this paper, the parameters of GA are set as follows: Population size (n) = 100, Generation
number (k) = 100, Probability of crossover (pc) = 0.8, Probability of mutation (pm) = 0.05. The sum of
all the weight coefficients is limited to be 1. The search ranges of the minimal acceleration rate and the
maximum acceleration rate are set from 50% to 150% of the experiential value determined by experts.

After optimizing the fitness function by GA for 10 times, the six parameters fluctuate within a
little range and the optimization errors show little difference every time. The convergence of fitness
function in the optimization process is shown in Figure 9. Then, the best optimization parameters in
10 times are listed in Table 7.

Figure 9. Evolution of generations for optimization.

Table 7. Optimization results based on genetic algorithm (GA).

wtri wgau wbel wtra Amin Amax Error

Experience 0.25 0.25 0.25 0.25 0.5 3 3.708
GA 0.331 0.229 0.253 0.187 0.263 4.108 2.778

Now we use the parameters of the best optimization result instead of the default parameters,
where parameters are wtri = 0.331, wgau = 0.229, wbel = 0.253, wtra = 0.187, Amin = 0.263,
Amax = 4.108 to calculate the riding comfort levels. We call the model with optimized parameters as
the optimized model. From the four optimized weighted coefficients, the first model and the third model
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are more important than the second and the fourth one. The four fuzzy set models before and after
optimizations are shown in Figure 10, where apparent changes after optimization can be identified.

From the optimized two key parameters in fuzzy models, we can find that Amin is dwindled and
Amax is expanded. It means that human’s feeling in small accelerate rate is more sensitive than that in
large acceleration rate. The maximal acceleration by experience is not accurate and bigger acceleration
is possible in train control systems even though this situation does not happen in the training data set.

Here we use 7 performance indexes PL, eL, |eL| σL and eV , |eV |, σV to describe the comfort level
and value respectively. PL and |eV | use the same definition in Table 6. eL is the mean error of level, |eL|
is the mean absolute error of level, σL is the mean square error of level, eV is the mean error of value,
and σV is the mean square error of value.

eL =
∑n

i=1 eL(i)
n

=
∑n

i=1(Le(i)− Lc(i))
n

(16)

|eL| =
∑n

i=1 |eL(i)|
n

=
∑n

i=1 |Le(i)− Lc(i)|
n

(17)

σL =

√
1
n

n

∑
i=1

(eL(i)− eL)2 (18)

eV =
∑n

i=1 eV(i)
n

=
∑n

i=1(Ve(i)−Vc(i))
n

(19)

σV =

√
1
n

n

∑
i=1

(eV(i)− eV)2, (20)

where n is the number of data, Le is the comfort level by experimenters, Lc is the comfort level by the
combined model. Ve is the comfort value obtained from experimenters and Vc is the comfort value
computed by the combined model. If the combined model is changed into the optimized model in the
above equations, we use Lo and Vo instead of Lc and Vc.

Figure 10. Comfort model diagrams of experience and GA.

In Figure 11 and Table 8, the comfort level of the optimized model in training data set has
improved a lot compared with the combinational model. The main performance index PL changes
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from 77.8% to 88.8% and increases by 14.1%. We also use the testing set to test the generalization
capability of the optimized model. And the PL of testing data set changes from 79.2% to 87.5% and
increases by 10.4%. The other parameters are also improved a lot. The improvement in training data
set is a little better than that in testing data set.

In Figure 12 and Table 9, we can see that the comforting value of the optimized model in training
data set has been improved a lot compared with the combinational model. As the parameters eL and
eV reflect the unbiasedness of a model and the parameters σL and σV reflect the fluctuation of a model,
the unbiasedness and fluctuation of optimized model have been improved.

Figure 11. The comforting level of combinational model and optimized model.

Table 8. The PL, eL, |eL| and σL of comforting level in combinational model and optimized model.

Training Set Testing Set
PL eL |eL| σL PL eL |eL| σL

Combination 77.8% 0.125 0.2083 0.4390 79.2% 0.0833 0.1944 0.4330
Optimization 88.8% 0.0478 0.1111 0.3322 87.5% -0.04 0.125 0.3511
Improvement 14.1% 61.8% 46.7% 24.4% 10.4% 51.9% 35.7% 18.9%

Figure 12. The comforting value of combinational model and optimized model.
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Table 9. The eV , |eV | and σV of comforting value in combinational model and optimized model.

Training Set Testing Set
eV |eV | σV eV |eV | σV

Combination −0.086 0.0515 0.0546 −0.0094 0.0527 0.0603
Optimization 0.079 0.0406 0.0472 0.0091 0.0447 0.0530
Improvement 8.1% 21.2% 13.6% 3.2% 15.2% 12.2%

Although the improvement in testing data set is a little worse than that in training data set,
the comfort measurement of the optimized model in testing data set has also been improved according
to both comfort levels and comfort values. From all the analysis above, it is safe to conclude that the
optimized model has a very good applicability in evaluating riding comfort from acceleration rate
data both in levels and in values. The optimized model is the linear combination of the four regular
fuzzy models, whose parameters are optimized by GA. The optimized model over field collected data
is illustrated in Figure 13, which reflects our complex cognition on the riding comfort in taking railway
for travel.

Figure 13. Optimized model for computing riding comfort.

5. Conclusions

Riding comfort is attracting more attention from industry and academia as the passengers focus
more and more on the service quality of railways. Although there are many factors which can affect
the riding comfort, acceleration rate data is one of the most important ones and the most easily
controllable one for the train control systems. This paper uses the acceleration rate data from on-board
accelerometer to measure the riding comfort level and riding comfort value. By using the fuzzy set
theory, four comfort measurement models are developed and the parameters of membership functions
are determined by the domain experience and the distribution of collected field data in Beijing subway
Yizhuang line. Furthermore, we deduced two key parameters Amax and Amin, which can represent all
the parameters in the four fuzzy models. Then, a combinational model, which is a linear combination
of the four regular fuzzy set models, is proposed as a more comprehensive measurement for the
riding comfort. Finally, by using the surveyed riding comfort data, an integrated model is obtained by
optimizing the parameters in the combinational model via genetic algorithm.

The results show that the four regular fuzzy set models can describe riding comfort in a certain
degree. But the combinational model is better than any of the single regular model. Furthermore,
GA can effectively optimize the parameters of the combinational model to achieve the best performance.
In one word, the proposed models and the optimization method can be used to measure the riding
comfort better. Based on outputs of this paper, more complex models and optimization techniques
are worth to be further investigated to achieve better performance in riding comfort measurement.
Currently, the proposed riding comfort calculation models have been employed as one of the
performance indexes in the design of train control systems in Beijing subway.
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Currently, improving the quality of service has become a key objective in the management and
control of urban rail systems [36,37]. In this paper, we only address one aspect of service quality in
urban rail transit systems, that is, the riding comfort of passengers. Nevertheless, some other issues
with respect to the service quality of passengers still deserve further investigations. For example,
it is well-known that unexpected disruptions could delay the trains and thus impose negative effects
on service quality of passengers. However, there is few research that answer “how much do these
disruptions affect service quality from the passengers’ perspective?” Second, a lot of researchers
recently have began to address the quality of service from the level of multi-modal transportation
systems and delivers the passengers with seamless and convenient trips [37]. Thus, our further research
will also focus on the quantitive evaluation of service quality through the whole trip of passengers.
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