Effect of KOH Pretreatment on Lignocellulosic Waste for the Reduction of Nitrobenzene to Aniline without Metal
Abstract
:1. Introduction
2. Experimental Section
2.1. Material and Methods
2.2. Catalyst Preparation
2.3. Catalyst Characterization
2.4. General Procedure for the Reduction of Nitrobenzene in Subcritical Methanol
2.5. Product Analysis
3. Results and Discussion
3.1. Effect of Substrate Loading
3.2. Effect of Sawdust + KOH Loading
3.3. Effect of KOH Loading
3.4. Effect of Reaction Temperature
3.5. Effect of Reaction Time
3.6. Effect of the Nature of the Solvent
3.7. Plausible Mechanism Pathway for the Generation of H2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mestoni, G.; Camus, A.; Zassinovich, G. Homogeneous catalytic reduction of carbonyl-, azomethine- and nitro-groups. In Aspects of Homogeneous Catalysis; Ugo, R., Ed.; Springer: Dordrecht, The Netherlands, 1981; Volume 4, pp. 71–98. [Google Scholar] [CrossRef]
- Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.P.; Boutevin, B. Biobased amines: From synthesis to polymers; present and future. Chem. Rev. 2016, 116, 14181–14224. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, Z.; Nie, R.; Hou, Z.; Zheng, X. Hydrogenation of nitrobenzene to aniline over silica gel supported nickel ctalysts. Ind. Eng. Chem. Res. 2010, 49, 4664–4669. [Google Scholar] [CrossRef]
- Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem. Int. Ed. 2007, 46, 7266–7269. [Google Scholar] [CrossRef] [PubMed]
- Sauve, G.; Rao, V.S. Comprehensive Organic Functional Group Transformations; Katritzky, A.R., Meth-Cohn, O., Rees, C.W., Eds.; Pergamon Press: Oxford, UK, 1995; Volume 2, pp. 737–817. [Google Scholar]
- Adger, B.M.; Young, R.G. Selective reduction of nitroarylalkylnitriles with hydrazine and a metal catalyst. Tetrahedron Lett. 1984, 25, 5219–5222. [Google Scholar] [CrossRef]
- Suzuki, H.; Hanazaki, Y. Titanium-mediated reduction of nitrobenzenes and benzil with dialkyl telluride. Chem. Lett. 1986, 15, 549–550. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Sheihet, L. Diethyl chlorophosphite: A mild reagent for efficient reduction of nitro compounds to amines. J. Org. Chem. 1998, 63, 393–395. [Google Scholar] [CrossRef]
- Alper, H.; Amaratunga, S. The ruthenium carbonyl catalyzed reduction of nitro compounds by phase transfer catalysis. Tetrahedron Lett. 1980, 21, 2603–2604. [Google Scholar] [CrossRef]
- Coleman, G.H.; Mc Closky, S.M.; Suart, F.A. Organic Syntheses, Collective; Wiley: New York, NY, USA, 1955; Volume 3, pp. 668–670. [Google Scholar]
- Hartman, W.W.; Dickey, J.B.; Stampfli, J.G. Organic Syntheses, Collective; Wiley: New York, NY, USA, 1943; Volume 2, pp. 175–178. [Google Scholar]
- Junge, K.; Wendt, B.; Shaikl, N.; Beller, M. Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes. Chem. Commun. 2010, 46, 1769–1771. [Google Scholar] [CrossRef]
- Rahaim, R.J.; Malczka, R.E. Pd-Catalyzed silicon hydride reductions of aromatic and aliphatic nitro groups. Org. Lett. 2005, 7, 5087–5090. [Google Scholar] [CrossRef]
- Li, F.; Frett, B.; Li, H.Y. Selective reduction of halogenated nitroarenes with hydrazine hydrate in the presence of Pd/C. Synlett 2014, 25, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
- Lara, P.; Philippot, K. The hydrogenation of nitroarenes mediated by platinium nanoparticles: An overview. Catal. Sci. Technol. 2014, 4, 2445–2465. [Google Scholar] [CrossRef]
- Kasparian, A.J.; Savarin, C.; Allgeier, A.M.; Walker, S.D. Selective catalytic hydrogenation of nitro groups in the presence of activated heteroaryl halides. J. Org. Chem. 2011, 76, 9841–9844. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. Gold complexes as catalysts: Chemoselective hydrogenation of nitroarenes. Appl. Catal. A Gen. 2009, 356, 99–102. [Google Scholar] [CrossRef]
- Wu, H.; Zhuo, L.; He, Q.; Liao, X.; Shi, B. Heterogeneous hydrogenation of nitrobenzenes over recyclable Pd(0) nanoparticle catalysts stabilized by polyphenol-grafted collagen fibers. Appl. Catal. A Gen. 2009, 366, 44–56. [Google Scholar] [CrossRef]
- Takasaki, M.; Motoyama, Y.; Higashi, K.; Yoon, S.H.; Mochida, I.; Nagashima, H. Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinium and palladium nanoparticles. Org. Lett. 2008, 10, 1601–1604. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Serna, P.; Concepción, P.; Calvino, J.J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748–8753. [Google Scholar] [CrossRef]
- Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, C.; Liu, H.; Qiu, J.; Bao, X. Ag/SiO2: A novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes. Chem. Commun. 2005, 42, 5298–5300. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Kumar, P.; Kumar, N.; Kumar, V.; Singh, B. Highly chemo- and regioselective reduction of aromatic nitro compounds catalyzed by recyclable copper(II) as well as cobalt(II) phthalocyanines. Adv. Synth. Catal. 2010, 354, 1834–1840. [Google Scholar] [CrossRef]
- Sharma, U.; Kumar, N.; Verma, P.K.; Kumar, V.; Singh, B. Zinc phthalocyanine with PEG-400 as a recyclable catalytic system for selective reduction of aromatic nitro compounds. Green Chem. 2012, 14, 2289–2293. [Google Scholar] [CrossRef]
- Sharma, U.; Verma, P.K.; Kumar, N.; Kumar, V.; Bala, M.; Singh, N. Phosphane-free green protocol for selective nitro reduction with an iron-based catalyst. Chem. Eur. J. 2011, 17, 5903–5907. [Google Scholar] [CrossRef] [PubMed]
- Taleb, A.B.; Jenner, G. Catalytic reduction of nitrobenzene to aniline with aqueous methyl formate. J. Organomet. Chem. 1993, 456, 263–269. [Google Scholar] [CrossRef]
- Imai, H.; Nishiguchi, T.; Fukuzumi, K. Homogeneous catalytic reduction of aromatic nitro-compounds by hydrogen transfer. Chem. Lett. 1976, 5, 655–656. [Google Scholar] [CrossRef]
- Berthold, H.; Schotten, T.; Honig, H. Transfer hydrogenation in ionic liquids under microwave irradiation. Synthesis 2002, 11, 1607–1610. [Google Scholar] [CrossRef]
- Gowda, S.; Abiraj, K.; Gowda, D.C. Reductive cleavage of azo compounds catalyzed by commercial zinc dust using ammonium formate or formic acid. Tetrahedron Lett. 2002, 43, 1329–1331. [Google Scholar] [CrossRef]
- Abiraj, K.; Srinivasa, G.R.; Gowda, D.C. Palladium-catalyzed simple and efficient hydrogenative cleavage of azo compounds using recyclable polymer-supported formate. Can. J. Chem. 2005, 83, 517–520. [Google Scholar] [CrossRef]
- Bae, J.W.; Cho, Y.J.; Lee, S.H.; Yoon, C.M. Chemoselective reduction of nitroaromatics to anilines using decaborane in methanol. Tetrahedron Lett. 2000, 41, 175–177. [Google Scholar] [CrossRef]
- Bae, J.W.; Cho, Y.J.; Lee, S.H.; Yoon, C.O.M.; Yoon, C.M. A one-pot synthesis of N-alkylaminobenzenes from nitroaromatics: Reduction followed by reductive amination using B10H14. Chem. Commun. 2000, 19, 1857–1858. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, U.; Sharma, S.; Kumar, V.; Sing, B.; Kumar, N. Catalyst-free water mediated reduction of nitroarenes using glucose as a hydrogen source. RSC Adv. 2013, 3, 4894–4898. [Google Scholar] [CrossRef]
- Sasaki, M.; Kabyemela, B.; Malaluan, R.; Hirose, S.; Takeda, N.; Adschiri, T.; Arai, K. Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluid 1998, 13, 261–268. [Google Scholar] [CrossRef]
- Tadrent, S.; Luart, D.; Bals, O.; Khelfa, A.; Luque, R.; Len, C. Metal-free reduction of nitrobenzene to aniline in subcritial water. J. Org. Chem. 2018, 83, 7431–7437. [Google Scholar] [CrossRef] [PubMed]
- Galy, N.; Nguyen, R.; Yalgin, H.; Thiebault, N.; Luard, D.; Len, C. Glycerol in sub- and supercritical solvents. J. Chem. Technol. Biotechnol. 2017, 92, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Bruniaux, S.; Varma, R.S.; Len, C. A novel strategy for selective O-methylation of glycerol in subcritical methanol. Front. Chem. 2019, 7, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Barta, K.; Matson, T.D.; Fettig, M.L.; Scott, S.L.; Iretskii, A.V.; Ford, P.C. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem. 2010, 12, 1640–1647. [Google Scholar] [CrossRef] [Green Version]
- Warner, G.; Hansen, T.S.; Riisager, A.; Beach, E.S.; Barta, K.; Anastas, P.T. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol. Bioresour. Technol. 2014, 161, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Cortright, R.D.; Davda, R.R.; Dumesic, J.A. Hydrogene from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964–967. [Google Scholar] [CrossRef] [PubMed]
Critical Temperature (°C) | Critical Pressure (bar) | |
---|---|---|
methanol (CH4O) | 239 | 80 |
ethanol (C2H6O) | 240 | 61 |
propan-1-ol (C3H8O) | 263.6 | 51 |
butan-1-ol (C4H10O) | 289.8 | 44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadrent, S.; Khelfa, A.; Len, C. Effect of KOH Pretreatment on Lignocellulosic Waste for the Reduction of Nitrobenzene to Aniline without Metal. Sustainability 2020, 12, 4665. https://doi.org/10.3390/su12114665
Tadrent S, Khelfa A, Len C. Effect of KOH Pretreatment on Lignocellulosic Waste for the Reduction of Nitrobenzene to Aniline without Metal. Sustainability. 2020; 12(11):4665. https://doi.org/10.3390/su12114665
Chicago/Turabian StyleTadrent, Sarra, Anissa Khelfa, and Christophe Len. 2020. "Effect of KOH Pretreatment on Lignocellulosic Waste for the Reduction of Nitrobenzene to Aniline without Metal" Sustainability 12, no. 11: 4665. https://doi.org/10.3390/su12114665
APA StyleTadrent, S., Khelfa, A., & Len, C. (2020). Effect of KOH Pretreatment on Lignocellulosic Waste for the Reduction of Nitrobenzene to Aniline without Metal. Sustainability, 12(11), 4665. https://doi.org/10.3390/su12114665