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Abstract: This study explores big data gathered from motor production lines to gain a better
understanding of production line issues. Motor products from Solen Electric Company’s motor
production lines were used to predict failure points based on big data analytics, where 3606 datapoints
from the company’s testing equipment were statistically analyzed. The current study focused on
secondary data and expert interview results to further define the relevant statistical dimensions.
Only 14 of the original 88 detection parameters were required for monitoring the production line.
The relationships between these parameters and the relevant motor components were established to
indicate how an abnormal reading may be interpreted to quickly resolve an issue. Thus, a theoretical
model for the monitoring of the motor production line was proposed. Further implications and
practical suggestions are also offered to improve the production lines. This study explores big data
analysis and smart manufacturing and demonstrates the promise of these technologies in improving
production line efficiency and reducing waste to promote sustainable production goals. Big data
thus constitute the core technology for advancing production lines into Industry 4.0 and promoting
industry sustainability.

Keywords: motor production line; manufacturing; big data; Industry 4.0; life cycle prediction;
process monitoring

1. Introduction

The Fourth Industrial Revolution, also referred to as Industry 4.0, has caused dramatic global
changes. Automation and associated revolutionary technologies, including robotics, machine learning,
and artificial intelligence, have affected almost every industry [1]. The advent of the Internet and
e-commerce has led to rapid inter-connected development between our real and virtual worlds [2].
These advances have led to shifts in modern consumer patterns, and traditional industrial manufacturing
models have gradually become unable to cope with this changing market environment. The concepts
of Industry 4.0 and intelligent networking have thus become necessary.

A business that wishes to take advantage of Industry 4.0 must investigate horizontally integrated,
vertically integrated, and networked manufacturing systems, which can be achieved using value-added
networks combined with end-to-end digital integration across the entire value chain [3]. One of the
largest components required to make Industry 4.0 implementations successful is the collection of large
amounts of data for analysis. To address big data analytics for manufacturing, IBM presented five major
application models according to the various problems and product lifecycles typically encountered
in the manufacturing industry [4]. These models include material quality monitoring, equipment
abnormality monitoring and prediction, life cycle prediction, process monitoring for early warning,
and good rate warranty analysis. The application potential of big data in traditional manufacturing is
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vast [5]. Big data applications may be used to sense and predict market demand, improve product and
service design, improve product quality and output, optimize workshop logistics, and control and
reduce energy consumption. Furthermore, one may develop predictive maintenance and spare-part
services to accurately predict the remaining life of equipment and optimize recovery decisions, which
can reduce the environmental impact of the manufacturing industry [6,7]. Furthermore, safety
information technology can be applied to the intelligent security management in various industries [8].

Overall, previous studies have demonstrated that many internal and external issues in the
manufacturing processes of factories can be solved using big data analysis. Taiwanese companies are
seeking to improve the application of big data analysis in their manufacturing of motors. However, there
is no perfect template for this implementation. A small number of manufacturers have adopted advanced
technologies; however, they are still operating these technologies manually. These shortcomings may
be addressed by the solutions presented in foreign research studies. The present study aims to explore
the potential big data solutions for Taiwanese enterprises, with a focus on the manufacturing of motors.
Specifically, this study aims to assist the Solen Electric Company’s introduction of big data analysis
technology into their motor manufacturing process. Sensor data generated by the machinery and motor
products can be monitored at any point in the manufacturing process, which allows a production line
manager to evaluate and address problems as soon as they arise. The occurrence and accumulation of
secondary products should be prevented to avoid unnecessary costs and increase smooth production
operations; this can be achieved using big data analysis technology. Once successfully implemented,
this technology can be extended to other intelligent manufacturing equipment applications in smart
factories of varying natures and scales. The preliminary research results presented in a draft research
report from the Taiwan Ministry of Science and Technology were also considered (published in Processes
2020, 8 (5), 537). The use of big data technology can help directly track each product, facilitate
real-time monitoring, increase customer satisfaction, and ultimately improve a company’s competitive
advantage. These are the ideal results of applying big data to Industry 4.0.

The first research goal was to identify the test parameters that will be assessed and monitored using
motor testing equipment, and establish a meaningful way to analyze and interpret these parameters.
Motor testing equipment was used to test the status of motor products, and the results were stored in a
database, including the test date, motor batch number, and 88 test motor performance parameters.
The second research goal was to establish a statistical analysis approach for predicting which process
in the motor production line is causing a problem. Linear regression was chosen for the statistical
analysis, where the relationship between the number of rotations or current and many other factors was
investigated and confirmed. If successful, these statistical models can be used to predict problems in
the motor production process. Finally, the above research results are discussed with the UN Sustainable
Development Indicators to explore the contribution of big data analysis and intelligent manufacturing
to sustainable development.

Data were collected using motor test equipment at the factory under investigation, interviews
with practical experts were conducted, and secondary data, provided by the company, were collected.
To identify the parameters that could lead to useful information, hypotheses for the relationship
between the parameters and various negative outcomes were evaluated. Finally, the corresponding
production line process was evaluated to recommend improvements. Recommendations for future
research and the application of data analysis in production lines were also proposed. The research
process is shown in Figure 1.
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2. Literature Review

2.1. Smart Manufacturing and Motor Production Lines

Smart manufacturing is a strategy mainly based on the digitization of manufacturing-related
activities and the rapid conversion of data into information [9]. Innovations in big data analysis can
be used to support the fast data drive that facilitates today’s turbulent decision-making processes.
Combining business, resources, and functional objectives with industrial big data analytics in a smart
factory allows for automated mining, tracking, optimization, and prediction [3].

The concept of Industry 4.0 utilizes technologies to support big data, extended real applications, and
develop robotics and cyber physical systems [10]. Smart factories are an ideal that many manufacturers
are striving to achieve in the near future [11]. Smart factories comprise integrated technologies,
equipment, and processes for self-sufficient production models, and allow for decentralized
decision-making with minimal human intervention [12]. These data may be transmitted and combined
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between the real and virtual worlds via a cyberspace physical system and the Internet of Things
(IoT) [11]. This cyberspace physical system is a virtual simulation of the physical robots, process
control systems, and other items that are integrated with the operations, physical processes, and
environment [13]. IoT systems serve as sensors for automated equipment to connect to the network
and expand the equipment’s capabilities [14].

There are a few ways that smart factories can increase their productivity. These systems
can gather and store a wide range of information from raw automation data. An earlier study
investigated the manufacturing of power equipment circuit breakers [3]. The equipment operation
status monitoring system monitored the energy consumption between water, electricity, and gas in a
physical manufacturing space, and transmitted that information to virtual space. This method can be
used to develop a production plan for energy management and scheduling.

Product quality may also be improved in a smart factory [15]. The plastic ball grid array printed
circuit board manufacturing process is based on an association rule for the detection of a single
accumulation factor, analyzing the process, equipment, and manufacturing yield to identify ways
in which the production line yield may be improved. These advances will gradually improve the
competitiveness of enterprises and reduce costs [16]. An Indian automotive manufacturing company
implemented supervisory control and data collection and a commercial SAP recording system to
identify alternative measures to reduce manufacturing costs, raw material usage, labor expenses, and
manufacturing conversion costs.

The demand for saving energy has driven more intelligent motor production. In 2019,
the parameters monitored during motor production were collected and analyzed by various devices
with web browsers. The big data system’s front end requires various sensors to obtain basic data.
The sensor network formed between numerous sensors is based on continuously improving data
transmission, where security is a priority to ensure a safe operating mode [17]. A previous study
developed a data acquisition system based on a Hall effect sensor placed in the center of a coil to
monitor and record the coil voltage and central magnetic field [18]. The raw data were transmitted
wirelessly to monitor the aging of the equipment and to detect any uneven air gaps that could lead
to decreased efficiency if not manually maintained by factory personnel. All data comparisons can
be analyzed in the back end to verify and improve the structure and motor materials. An earlier
study performed in situ monitoring, where the motor winding temperatures were verified to ensure
that a short-circuit fault in the initial stator could be detected [19]. Fixed parameter standards were
determined and used to ensure the efficient manufacturing of the motors.

2.2. Big Data

The big data used in the current study comprise test data collected from a motor production line,
including 50,000 to 80,000 datapoints per month from actual observations. The company’s motor
production line has an average daily output of 1500–2000 pieces, and each motor has 14 important
key parameters that are fully recorded. The latest information provided by Solen Electric Company
on 30 April 2020 indicates that nearly 8 hundred thousand records are generated every month.
When extrapolated, this number indicates that over 10 million records can be accumulated in one
year, and hundreds of thousands of datapoints are accumulated over time. Big data analysis is
extremely important in the basic operating of all technologies, particularly in the integration between
technologies [20]. These systems can facilitate the improvement of manufacturing service quality or
the execution of business decisions. The data eco-system of manufacturing services may be divided
into the amount of internal and external data available to the enterprise [21]. Intelligent maintenance
relies on the acquisition of high-quality data, which are analyzed internally and externally to drive
efficient maintenance decisions [22]. Internal data are generated by sources within the manufacturing
enterprise, for example, from manufacturing equipment, automation systems, artifacts, and enterprise
information management. A data-driven culture can provide companies with information generated by
environmental scans to develop more meaningful new products [23]. External data are environmental
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data accumulated from the external sources of a company, such as supply networks, governments (e.g.,
legislation and incentive programs), strategic partners, distribution channels, and customers. Managers
should be proficient in using big data technology to analyze market trends, customer preferences, and
product characteristics to support the system’s decision-making, and to ensure service quality [24].
These optimized systems may aid managers through systematic analyses of data for yield management,
product re-engineering, and predictive maintenance [9]. Big data analytics can also be used to optimize
knowledge extraction and decision sharing for inventory and supply management [10].

The electrical and mechanical parameters of a motor (e.g., the current, power, and torque speed)
can thus be modelled [25,26]. Time evolution is an important factor for maintaining fast and accurate
models to monitor the status of induction motors. These models are used in expert systems to
self-train, monitor, and identify system faults. Big data analysis and prediction have been applied to
the production of electric motors. Table 1 summarizes these motor production studies and practical
implementation cases for 48 test parameters. These parameters have upper and lower limits defined
by their prescribed standard ranges. The values were recorded during testing and summarized.
For example, No1 is the upper limit of no-load rotations and No2 is the upper limit of no-load rotations,
while the no-load rotation merged into No1 counts as one item.
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Table 1. Summary of 48 motor testing parameters investigated in earlier studies.

48 Tests

Literature Project Housing and Rotor
Cage Production

Laminated Core
Production

Insulation and
Impregnation Winding Contacting Shaft

Production
Permanent Magnet
Rotor Production

Final Assembly
and Testing

No1 No-load rotation • • • • • •

No3 No load current • • • • • •

No5 Numbers of fixed-load rotations • • • • • •

No7 Rated load current • • • • • •

No9 Starting current • • • • • •

No11 Starting torque • • • • • •

No13 Torque constant • • • • • •

No15 Torque loss • • • • • • •

No17 TouchR • •

No31 Ripple • • • •

No32 IoUnst • • • •

No33 SurgeV • • • •

No34 Deat P • • • •

No35 Vibration • • • •

No36 StartV • • • • •

No37 Io Wave • • • • •

No38 CoilR • • •

No40 LoV Ripple • • • • •

No81 Mg N/S • •

No82 InsuV • • •

No83 Cut • • • •

No84 Open • • • •

No85 Short • • • •

No86 Lock • • • • •

No87 No Mg • •

No88 HandR • • • • •
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3. Methodology

A statistical analysis was conducted on motor production line data generated using motor testing
equipment (DMT55S) between 30 August 2018 and 3 June 2019. A total of 3606 motor test datapoints
were collected.

3.1. Research Framework

Increased motor rotations per minute led to a faster rotation speed, causing increased chatter
vibrations that can lead to higher current fluctuations. Therefore, the number of no-load and fixed-load
rotations was positively correlated to vibrations and, in turn, current fluctuation.

James Watt defined the rate of energy conversion and use, where the amount of electrical energy
converted to heat and light energy can be expressed as power (power = n × torque × speed, speed
and torque). There is a negative correlation between power and torque, while the speed and number
of rotations are directly proportional. Therefore, the number of no-load and fixed-load rotations is
inversely related to torque loss. Ohm’s law defines the relationship between current (I), voltage (V),
and resistance (R) as V = I × R, where current is proportional to voltage and inversely proportional to
resistance. Therefore, the no load, fixed load, and start-up currents are proportional to surge voltage
and inversely proportional to coil resistance.

3.2. Hypotheses

The architecture of this study was divided into two cases—the number of rotations and current
(Figure 2)—and several hypotheses were proposed based on theoretical relationships.
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H1. The effect of the number of no-load rotations on vibration, current fluctuation, and torque loss.

H1–1. The number of no-load rotations is positively correlated with vibration.

H1–2. The number of no-load rotations is positively correlated with the current fluctuation.

H1–3. The number of no-load rotations is inversely correlated to torque loss.

H2. The effect of the number of fixed-load rotations on vibration, current fluctuation, and torque loss.

H2–1. The number of fixed-load rotations is positively related to vibration.

H2–2. The number of fixed-load rotations is positively correlated to the current fluctuation.

H2–3. The number of fixed-load rotations is inversely correlated to torque loss.

Case 2: The effect of current on surge voltage and coil resistance.

H3. The no-load current affects surge voltage and coil resistance.

H3–1. The no-load current is positively correlated to surge voltage.

H3–2. The no-load current is inversely correlated to coil resistance.

H4. The fixed-load current affects surge voltage and coil resistance.

H4–1. The fixed-load current is positively correlated to surge voltage.

H4–2. The fixed-load current is inversely correlated with coil resistance.

H5. The starting current affects surge voltage and coil resistance.

H5–1. The starting current is positively correlated to surge voltage.

H5–2. The starting current is inversely correlated to coil resistance.

3.3. Instrumentation and Data Analysis

Linear regression has been rigorously studied and widely used in practical applications because
it makes models that are linearly dependent on their unknown parameters easier to deduce; it also
makes the statistical properties of the estimates produced easier to determine. Linear regression was
applied in this study, to determine and verify the relationships between the number of rotations or
current and the independent and dependent variables of the other parameters. The SPSS 20.0 software
package (IBM) was used to analyze 3606 motor test datapoints that were acquired using motor testing
equipment (DMT55S). Hypothetical independent and dependent variables were analyzed during the
data analysis to facilitate a more robust discussion of the results. The previously established (Table 1)
data items from the 48 parameters were also measured and discussed (see Tables 2 and 3).
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Table 2. The original 48 measurement parameters.

No. Abbreviation Short Description

1 No Max No-load rotation Max
2 No Min No-load rotation Min
3 IO Max No load current Max
4 IO Min No load current Min
5 Nr Max Rated load rotation Max
6 Nr Min Rated load rotations Min
7 RI Max Rated load current Max
8 RI Min Rated load current Min
9 Is Max Starting current Max
10 Is Min Starting current Min
11 Ts Max Starting torque Max
12 Ts Min Starting torque Min
13 Kt Max Torque constant Max
14 Kt Min Torque constant Min
15 To Max Torque loss Max
16 To Min Torque loss Min
17 TouchR Max Brush contact resistance Max
18 TouchR Min Brush contact resistance Min
31 Ripple Torque ripple
32 IoUnst Wave motion
33 SurgeV Surge voltage
34 Deat P Deat P
35 Vibration Flutter
36 StartV Starting voltage
37 IoWave Current waveform
38 CoilR Max CoilR Max
39 CoilR Min CoilR Min
40 LoV Ripple Max Low-voltage ripple Max
81 Mg N/S Magnet N pole/S pole
82 InsuV Insulation voltage
83 Cut Disconnected
84 Open Open Circuit Continuity
85 Short Short Circuit
86 Lock Lock
87 No Mg No Magnet
88 HandR Manual rotation direction

Table 3. The fourteen test parameters selected for review.

New No. Abbreviation Short Description

1 No No-load rotation
2 IO No load current
3 Nr Rated load rotations
4 RI Rated load current
5 Is Starting current
6 Ts Starting torque
7 Kt Torque constant
8 To Torque loss
9 TouchR Brush contact resistance
10 IoUnst wave motion
11 SurgeV Surge voltage
12 Vibration Flutter
13 StartV Starting voltage
14 InsuV Insulation voltage
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A descriptive analysis of the samples (Table 4) revealed that the average value of each parameter
was within the standard values stipulated by the company (Table 5). For example, the average no-load
rotation value is 5059.94, which is within the stipulated range of 4335 to 5865, thus indicating that
the average motor was considered to be normal during production. However, this assumes that the
human operator set the values correctly at the beginning of production. The original measurement
parameters 1–15 were manually entered by the human operator before production of the motor, while
parameters 17–82 were assessed after production was complete. However, the brush contact resistance
(Touch R; parameter 17) was blank in most data, and the starting voltage (StartV; parameter 36) and
insulation resistance (InsuV; parameter 82) were simply marked as “OK” for every sample, to indicate
that the test result was normal with no failures. Therefore, these three variables were not included in
the analysis.

Table 4. Statistical analysis of the 14 key parameters measured using the test equipment.

Number of Test
Data Points

Minimum
Value

Maximum
Value

Average
Value

Standard
Deviation Value

No-load rotation (r/min) 3606 4891 5435 5059.94 66.642
No-load current (mA) 3606 93 165 114.46 11.814

Number of fixed-load rotations (r/min) 3606 3876 4422 4144.91 102.712
Rated-load current (mA) 3606 453 535 480.26 14.156

Starting current (mA) 3606 1800 2689 2150.23 168.588
Starting torque (mNm) 3606 36 56 43.68 3.498

Torque constant (mNm/A) 3606 2 4 2.27 0.445
Torque loss (mNm) 3606 20 22 21.58 0.500

Ripple (Ω) 3606 173 332 209.14 13.049
IoUnst (mA) 3606 0 36 1.71 2.824
SurgeV (V) 3606 22 64 24.87 1.560

Vibration (usce) 3606 0 1296 236.82 374.083
CoilR (ms/1) 3606 4 7 5.55 0.580

Effective N (excluded completely) 3606

Table 5. Prescribed upper and lower limits of the 14 key parameters.

New No. Motor Test Machine Items Normal Production Range

1 No-load rotation 4335–5865 r/min
2 No-load current 77.0–150.0 mA
3 Number of fixed-load rotations 3870–4730 r/min
4 Fixed-load current 329–611 mA
5 Starting current 1800–2880 mA
6 Starting torque 35.7–60.0 mNm
7 Torque constant 20.0–22.0 mNm/A
8 Torque loss 0.0–5.0 mNm
9 Brush contact resistance 0.0–1.0 Ω

10 Current fluctuation Max: 3 mA
11 Surge voltage Max: 45.0 V
12 Vibration Max: 1300 usce
13 Starting voltage 3.00 V 100 ms/1
14 Insulation resistance DC 100 V 1 MΩ/%up

The data exploration tool used in this research was Waikato Environment for Knowledge Analysis
(WEKA), which is a software application developed by the University of Waikato in New Zealand
that provides many different types of machine learning algorithms. For each problem to be solved,
we chose the most appropriate algorithm. We confirmed that 66% of the training data was consistent
for each variable [27] and suitable for deep learning using linear regression.

The results using WEKA’s M5P algorithm and scheme (weka.classifiers.functions.LinearRegression-S
0-R 1.0E-8-num-decimal-places 4, in Test mode: split 66.0% train, remainder test, after machine learning) are
shown in Table 6.
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Table 6. WEKA linear regression results.

No. Item Value

1 No-load revolution speed 0.8231
2 No load current 0.9963
3 Fixed load rotation speed 0.9981
4 Rated load current 0.9969
5 Starting current 0.9984
6 Starting torque 0.9964
7 Torque constant 0.8036
8 Torque loss 0.8243
9 Ripple failed 0.6237
10 Current fluctuation 0.5768
11 Surge voltage volts 0.1962
12 Vibration seconds 0.693
13 Coil resistance 0.8794

In summary, the values from 0.7 to 0.99 are highly correlated, the values from 0.4 to 0.69 are
moderately correlated, and the values from 0.1 to 0.39 are modestly correlated. Therefore, while many
of the study variables were highly correlated, current fluctuation and chatter vibration seconds were
only moderately correlated, and surge voltage volts were modestly correlated.

4. Results

The preliminary research results identified the parts contributing to the abnormal key parameter
values. Some of the more specialized motor components (e.g., the rotor core) were related to torque
loss and could be used to determine an affected part. The surge voltage, vibration, and start-up voltage
values were also used to identify affected parts. The parameters that were monitored, as well as their
related motor components, are listed in Table 7.
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Table 7. Motor components associated with each of the 15 key parameters.

Items Parts That Can Be Affected

New No. Abbreviation Name Coil Iron
Frame

Iron
Frame Lid Magnet Brush

Assembly Bearing Rotor
Core

Terminal
Assembly Brush Copper

Wire

1 No No-load rotation • • • • • •

2 IO No load current • • • • • •

3 Nr Number of fixed load rotations • • • • • •

4 RI Rated load current • • • • • •

5 Is Starting current • • • • • •

6 Ts Starting torque • • • • • •

7 Kt Torque constant • • • • • •

8 To Torque loss • • • •

9 TouchR TouchR • •

10 IoUnst wave motion • • •

11 SurgeV Surge voltage • • •

12 Vibration Flutter • • •

13 StartV Starting voltage • • • •

14 InsuV Insulation voltage •

38 OldNo CoilR Coil Resistance • •
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4.1. Statistical Analysis of the Case Results

Case 1: The effect of the number of rotations on vibration, current fluctuation, and torque loss.

A complex regression analysis was used to evaluate the chatter vibration. Chatter vibration was
found to increase with a higher number of no-load and fixed-load rotations per second. To establish
whether the effects of the no-load or fixed-frame load rotation variables were statistically significant
and whether one had more influence than the other, the p-values (i.e., significance) of their combined
9.7% variation were evaluated (Table 8). The combined p-value of the two variables was 0.000
(Table 9), indicating that at least one of the two variables had an effect on the vibration. Furthermore,
the individual p-values of both variables were 0.000, indicating that both variables had a significant
and equivalent effect. The positive t-values were 6.679 for no-load rotation and 8.547 for fixed-load
rotation, indicating that an increased number of no-load and fixed-load rotations led to increased
chatter vibration.

Table 8. ANOVA a—Multiple regression mutation of the number of rotations and vibrations.

Model Sum of Squares Degrees of Freedom Mean Square Sum F p

Regression 49,108,206.088 2 24,554,103.044 194.279 0.000 b

Residual 455,367,902.256 3603 126,385.762
Total 504,476,108.344 3605

a Dependent variable: Vibration. b Predictive variable: (constant), Number of fixed-load rotation, No-load rotation.

Table 9. Coefficient a—Complex regression coefficients for the number of rotations and vibrations.

Model

Unstandardized
Coefficient

Normalization
Coefficient t-Value p-Value Collinearity Statistics

Estimated
Value of B

Standard
Error

Beta
Distribution Tolerance Variance

Inflation Factor

(constant) −6836.050 462.102 −14.793 0.000
No load rotation 0.832 0.125 0.148 6.679 0.000 0.509 1.965
Number of fixed

load rotations 0.691 0.081 0.190 8.547 0.000 0.509 1.965

a Dependent variable: Vibration.

The relationship between the 3.1% variation in current fluctuation and the number of no-load and
fixed-load rotations was investigated using a complex regression analysis. The combined P-value of
the two variables was 0.000 (Table 10), while the individual P-values were 0.041 for no-load rotation
and 0.000 for fixed-load rotation (Table 11). This result shows that, although both variables were
significant, the number of fixed-load rotations was more influential. The t-values were −2.049 for
no-load rotation and 8.994 for fixed-load rotation. Therefore, an increased number of no-load rotations
led to a decrease in current fluctuation, but an increased number of fixed-load rotations led to an
increase in current fluctuation.

Table 10. ANOVA a—Multiple regression mutation of rotation count and current fluctuation.

Model Sum of Squares Degrees of Freedom Mean Square Sum F p

Regression 900.137 2 450.068 58.241 0.000 b

Residual 27,843.071 3603 7.728
Total 28,743.208 3605

a Dependent variable: Current fluctuation. b Predictive variable: (constant), Number of fixed load rotations,
No load rotation.
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Table 11. Coefficient a—Complex regression coefficients for rotation number and current fluctuation.

Model

Unstandardized
Coefficient

Normalization
Coefficient

t-Value p-Value
Collinearity Statistics

Estimated
Value of B

Standard
Error

Beta
Distribution Tolerance Variance

Inflation Factor

(constant) −11.750 3.613 −3.252 0.001
No load rotation −0.002 0.001 −0.047 −2.049 0.041 0.509 1.965
Number of fixed

load rotations 0.006 0.001 0.207 8.994 0.000 0.509 1.965

a Dependent variable: Current fluctuation.

The relationship between the 3.4% variation in torque loss and the number of no-load and
fixed-load rotations was considered. The combined P-value of the two variables was 0.000 (Table 12),
and the individual P-values of both variables were also 0.000 (Table 13), indicating that both variables
had a significant and equivalent effect. The t-values were 10.678 for no-load rotation and 10.329 for
fixed-load rotation. Therefore, an increased number of no-load rotations led to a decrease in torque
loss, whereas an increased number of fixed-load rotations led to an increase in torque loss.

Table 12. ANOVA a—Multiple regression mutation of rotation number and torque loss.

Model Sum of Squares Degrees of Freedom Mean Square Sum F p

Regression 24.866 2 12.433 64.962 0.000 b

Residual 689.560 3603 0.191
Total 714.426 3605

a Dependent variable: Torque loss. b Predictive variable:(constant), Number of fixed load rotations, No load rotation.

Table 13. Coefficient a—Multiple regression coefficients for rotation number and torque loss.

Model

Unstandardized
Coefficient

Normalization
Coefficient

t-Value p-Value
Collinearity Statistics

Estimated
Value of B

Standard
Error

Beta
Distribution Tolerance Variance

Inflation Factor

(constant) 6.290 0.569 11.062 0.000
No load rotation −0.002 0.000 −0.245 −10.678 0.000 0.509 1.965
Number of fixed

load rotations 0.001 0.000 0.237 10.329 0.000 0.509 1.965

a Dependent variable: Torque loss.

Case 2: The effect of current on surge voltage and coil resistance.

The relationship between the 1.6% variation in surge voltage and the no-load, fixed-load, and
starting currents was investigated using a complex regression analysis. The combined p-value of the
three variables was 0.000; thus, one or more variables had a significant effect on the surge voltage
(Table 14). The individual p-values were 0.085, 0.002, and 0.000 for no-load current, fixed-load current,
and starting current, respectively (Table 15). Thus, only the fixed-load and starting currents were
considered significant, although the starting current was more influential. The t-values were 3.074 for
the fixed-load current and −7.238 for the starting current. Therefore, an increase in fixed-load current
led to an increase in surge voltage, but an increase in starting current led to a decrease in surge voltage.
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Table 14. ANOVA a—Multiple regression mutation of current and surge voltage.

Model Sum of Squares Degrees of Freedom Mean Square Sum F p

Regression 146.777 3 48.926 20.440 0.000 b

Residual 8621.816 3602 2.394
Total 8768.594 3605

a Dependent variable: SurgeV. b Predictive variable:(constant), Starting current, No load current, Rated load current.

Table 15. Coefficient a—Complex regression coefficients for current and surge voltage.

Model

Unstandardized
Coefficient

Normalization
Coefficient t-Value p-Value Collinearity Statistics

Estimated
Value of B

Standard
Error

Beta
Distribution Tolerance Variance

Inflation Factor

(constant) 19.649 2.161 9.094 0.000
No load current −0.013 0.007 −0.096 −1.721 0.085 0.087 11.434

Rated load current 0.019 0.006 0.173 3.074 0.002 0.086 11.650
Starting current −0.001 0.000 −0.125 −7.238 0.000 0.910 1.099

a Dependent variable: SurgeV.

The relationship between the 76.5% variation in coil resistance and the no-load, fixed-load, and
starting currents was considered. The combined p-value was 0.000 (Table 16), while the individual
p-values were 0.011, 0.007, and 0.000 for no-load current, fixed-load current, and starting current,
respectively (Table 17). Thus, all three variables were significant, although the starting current was the
most influential. The t-values were 2.546, −2.698, and −102.806 for no-load current, fixed-load current,
and starting current, respectively. Therefore, an increase in the no-load current led to increased coil
resistance, but increased fixed-load and starting currents led to decreased coil resistance.

Table 16. ANOVA a—Multiple regression mutation of current and coil resistance.

Model Sum of Squares Degrees of Freedom Mean Square Sum F p

Regression 928.209 3 309.403 3905.135 0.000 b

Residual 285.386 3602 0.079
Total 1213.594 3605

a Dependent variable: CoilR. b Predictive variable: (constant), Starting current, No load current, Rated load current.

Table 17. Coefficient a—Complex regression coefficients for current and coil resistance.

Model

Unstandardized
Coefficient

Normalization
Coefficient t-Value p-Value Collinearity Statistics

Estimated
Value of B

Standard
Error

Beta
Distribution Tolerance Variance

Inflation Factor

(constant) 13.070 0.393 33.247 0.000
No load current 0.003 0.001 0.070 2.546 0.011 0.087 11.434

Rated load current −0.003 0.001 −0.074 −2.698 0.007 0.086 11.650
Starting current −0.003 0.000 −0.871 −102.806 0.000 0.910 1.099

a Dependent variable: CoilR.

4.2. Research Hypotheses

Case 1: The effect of the number of rotations on vibration, current fluctuation, and torque loss.

The hypothesis that the number of no-load rotations affected the vibration, current fluctuation,
and torque loss (H1) was confirmed. Furthermore, the no-load rotation was positively correlated
with chatter vibration (H1–1) and inversely correlated with torque loss (H1–3), but was not positively
correlated with current fluctuation (H1–2).
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The hypothesis that the number of fixed-load rotations affected the vibration, current fluctuation,
and torque loss (H2) was confirmed. Furthermore, fixed-load rotation was positively correlated with
vibration (H2–1) and current fluctuation (H2–2), but it was not inversely correlated with torque loss
(H2–3).

Case 2: The effect of current on surge voltage and coil resistance.

The hypothesis that the no-load current affected the surge voltage and coil resistance was partially
confirmed (H3), because no-load current affected the coil resistance but did not significantly affect the
surge voltage. The no-load current was not positively correlated with the surge voltage (H3–1) and
was also not inversely correlated with coil resistance (H3–2).

The hypothesis that the fixed-load current affected surge voltage and coil resistance (H4) was
confirmed. Furthermore, the fixed-load current was positively correlated with surge voltage (H4–1)
and inversely correlated to coil resistance (H4–2).

The hypothesis that the starting current affected surge voltage and coil resistance (H5) was
confirmed. Furthermore, the starting current was inversely correlated to coil resistance (H5–1), but was
not positively correlated to surge voltage (H5–2).

See Table 18 for the research hypothesis test results.

Table 18. Validation of the hypotheses.

Case 1 Outcome

H1: The number of no-load rotations affects vibration, current fluctuation, and torque loss. Confirmed
H1–1: The number of no-load rotations is positively correlated with vibration. Confirmed
H1–2: The number of no-load rotations is positively correlated with the current fluctuation. Rejected
H1–3: The number of no-load rotations is inversely correlated to torque loss. Confirmed
H2: The number of fixed-load rotations affects vibration, current fluctuation, and torque loss. Confirmed
H2–1: The number of fixed-load rotations is positively related to vibration. Confirmed
H2–2: The number of fixed-load rotations is positively correlated to the current fluctuation. Confirmed
H2–3: The number of fixed-load rotations is inversely correlated to torque loss. Rejected

Case 2 Outcome

H3: The no-load current affects surge voltage and coil resistance. Partially confirmed
H3–1: The no-load current is positively correlated to surge voltage. Rejected
H3–2: The no-load current is inversely correlated to coil resistance. Rejected
H4: The fixed-load current affects surge voltage and coil resistance. Confirmed
H4–1: The fixed-load current is positively correlated to surge voltage. Confirmed
H4–2: The fixed-load current is inversely correlated with coil resistance. Confirmed
H5: The starting current affects surge voltage and coil resistance. Confirmed
H5–1: The starting current is positively correlated to surge voltage. Rejected
H5–2: The starting current is inversely correlated to coil resistance. Confirmed

Based on the validation results, there were five rejected hypotheses and several items in the
manufacturing process that could indicate manufacturing errors. Through analysis, we could determine
which parts lead to problems during assembly.

Flowcharts to support decision-making for problem identification are presented in
Appendices A–D.

Based on the regression results, we established the following 5 relationships: (1) the no-load
slewing number was positively correlated with vibration and negatively correlated with current
fluctuation and torque loss; (2) the fixed-load rotation speed was positively correlated with vibration,
current fluctuation, and torque loss; (3) the no-load current was positively correlated with coil
resistance; (4) the fixed-load current was positively correlated with surge voltage and negatively
correlated with coil resistance; and (5) the starting current was negatively correlated with the surge
voltage and coil resistance. These relationships can be used to guide the investigations of manufacturing
production staff.
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When the no-load slewing number is not within a standard range, the value of chatter vibration,
current fluctuation, and torque loss should be evaluated (Appendix A). If the chatter vibration or
current fluctuation value is outside the standard range, there is at least one error in the production
process involving one of the following components: the coil, the terminal assembly, or the brush
(Table 7). If the torque loss value is outside the standard range, the manufacturing of at least one
of the following parts has failed: the iron frame, the iron frame lid, or the magnet. If the chatter
vibration, current fluctuation, and torque loss are all normal, then the manufacturing of the bearing
parts was faulty.

When the number of fixed-load rotations is outside the standard range, the value of vibration,
current fluctuation, and torque loss should be evaluated (Appendix B). If there is an abnormality
in the vibration or current fluctuation, there was at least one error in the production process of the
components of the coil, terminal assembly, or brush (Table 7). If the torque loss value is abnormal, the
manufacturing of at least one of the following parts failed: the iron frame, the iron frame lid, or the
magnet. If the chatter vibration, current fluctuation, and torque loss are all normal, then the bearing
parts are at fault.

An abnormal no-load current indicates that the coil resistance should be evaluated. If the coil
resistance is abnormal, then the production of either the copper wire or brush parts was defective.
If the coil resistance is normal, then the iron frame, iron frame lid, magnet, or bearing are faulty.

When the value of the rated load current is abnormal, the value of the surge voltage and the coil
resistance should be evaluated. If the surge voltage is abnormal, at least one of the components in
the coil, terminal assembly, or brush production process failed. If the coil resistance is abnormal, the
copper wire or brush production process failed. If neither is abnormal, one of the following parts
failed: the iron frame, the iron frame lid, the magnet, or the bearing.

According to the research results, when the starting current value is outside the standard range,
the surge voltage and the coil resistance values should be evaluated. If the surge voltage is abnormal,
at least one of the components in the coil, terminal assembly, or brush production process failed. If the
coil resistance is abnormal, the copper wire or brush failed, and at least one part of the production
process went wrong. If neither is abnormal, the production process for the iron frame, iron frame lid,
magnet, or bearing failed.

5. Discussion and Conclusions

5.1. Discussion

This study explored motor production data to improve the efficiency of motor manufacturing
processes. Data were analyzed and organized to effectively interpret the measurements of important
motor performance indicators, including no-load rotations, fixed-load rotations, no-load current,
fixed-load current, and starting current. These values can be used to evaluate the condition of a motor’s
operation, which encompasses the principles of mechanics, metal magnets, and electrical circuits.
Furthermore, the interpretation of these parameters relies on fundamental wave propagation, power,
voltage, and current theories.

The information on rotation and current parameters provided insight into vibrations, current
fluctuations, torque loss, surge voltage, and coil resistance. This interpretation relied on linear
regression with multiple independent variables. Dependent variables were also considered for a more
robust discussion. Although some of the test hypotheses were not valid, the relationships between
many of the parameters were demonstrated. Practical experts determined that the first-level data
improved the production line’s operational model.

The detected data were closely related to the condition of the products and thus provided an
accurate representation of the production process. Since big data technology is based on data content,
the association and impact of the data parameters were evaluated. In the production line, an abnormal
no-load or fixed-load rotation reading is indicative of a change in vibration, current fluctuation,
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or torque loss. Similarly, an abnormal starting current is indicative of a change in coil resistance or
surge voltage. If a parameter is not within a typical standard range, an error may occur throughout
several production steps. A decision-making model may be developed based on the findings of this
study, to avoid unnecessary costs and ensure smooth production operations. Human operators will
be alerted to take corrective measures as soon as the first error occurs. For example, if the fixed-load
current is abnormal, one should assess the surge voltage and the coil electric group (coil resistance).
An abnormality in the coil electric unit shows that there is a problem with the brush components, thus
narrowing the scope of the inspection. A swift response to address this brush assembly issue can ensure
a quick return to an efficient and smooth motor production process. This targeted corrective process
can save manpower and time, thereby allowing the Solen Electric Company to invest in production
beyond motors.

The findings of this study echo the basic principles outlined by Mayr et al. [25], which detail how
big data analysis and forecasting can be used to complement motor production line management.
A wide variety of new technologies have been gradually adopted by the manufacturing industry.
However, there is a large gap between the less sophisticated technologies currently used in Taiwan and
the fully intelligent technologies available for production line automation. Furthermore, one should
consider whether gold fees are allowed. A fundamental analysis of the data and related analytical
techniques must be conducted, as these new technologies rely on a back-end database created via
the continuous calculation of multiple data streams. Big data are a fundamental operating resource
for many technologies [24], and this study investigated their application using production data to
ultimately improve the motor production line. A decision-making model was also added to analyze
the production process.

5.2. Theoretical and Practical Implications

The theoretical model was condensed from the original 88 detection parameters, which included
40 clockwise/counter-clockwise pairs, by only considering a counter-clockwise direction, thereby
eliminating 40 parameters (Figure 3). The interviews with practical experts revealed that only 14 of
the 48 remaining parameters should be considered. To determine the relationships between these
parameters, the hypotheses were assessed using SPSS data analysis. These relationships highlighted
which motor components affected the values of each parameter, thus revealing the failure points in the
production process. These findings were important for the development of the decision-making model.

Big data are used as an important auxiliary tool in production, sales, investments, and many other
fields. Regardless of the industry, these data can be used as a powerful decision-making and trend
prediction tool. This study demonstrated that individual companies could benefit from using big data
methods in motor production lines to integrate their production processes. Motor product testing
data were used to map the production process and identify the points at which errors have previously
occurred within specific components. While these mistakes can be corrected relatively easily, big data
methods can also suggest production improvements to increase the company’s competitiveness in the
market, and encourage customers and other manufacturers to buy the company’s products.

The analyzed company could not provide data for all of its production lines and has not fully
automated its production, which is a characteristic of Industry 4.0. If funding allows, it is recommended
that the company replace its manual operations and production processes (with the exception of
skilled production processes) with machine-assisted or fully computerized automated production.
The generated digital information will enable various successive departments to communicate along
the production line. The findings of this study show that no impediments are expected between the
initial stages and final assembly of the parts and components. This reduces the number of meetings,
documents, and handwritten records associated with the production process, thus reducing space, time,
and personnel requirements. The scope of this data method can also be widened to other processes.

Although some machines only allow unilateral automation, experts in the information field can
supervise the development of a suitable information system for the output of production data. Big data
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can be complemented with other technologies, such as artificial intelligence, blockchain, and cloud
applications, if the company establishes a foundation for implementing these technologies. The future
development of more production line operation models shows great promise.
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5.3. Conclusions and Further Recommendations

This study implemented a big data analysis of intelligent manufacturing into traditional
manufacturing motor production lines. Using tools such as SPSS and WEKA, 3606 records of the
previous pilot production of Solen Electric Company’s motor production lines were analyzed. Experts
were interviewed to determine the three key points for improving the efficiency of the production
line and the company’s sustainable development. First, this study found that the key detection
indicators in the motor production line are the no-load slewing number, fixed load slewing number,
no-load current, fixed load current, starting current, starting torque, torque constant, torque loss,
and brush contact. The 74 (of the 88) detection parameters from the original design were reduced to
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14 items (resulting in an 84.1% reduction). This reduction created a significant simplification of the
quality control process and increased production line capacity. The final 14 key parameters, including
resistance, current fluctuation, surge voltage, starting voltage, vibration, and insulation resistance,
were measured. Second, this study analyzed a large amount of data through linear regression and the
WEKA deep learning linear regression method, and found that when the value of the no-load current,
fixed load current, or starting current is abnormal, the value will indirectly affect the data performance
of coil resistance or surge voltage. The number of load revolutions or fixed-load revolutions will
affect the vibration, current fluctuation, or torque loss value changes. In the future, if production line
operators find that the aforementioned parameters deviate from the normal standard range, they can
immediately determine or predict which production step is wrong and quickly correct it, thus making
the motor production process more efficient. Finally, in the field of smart manufacturing, the big data
ecosystem has six key driving forces: “data, forecasting, system integration, sustainability, resource
sharing, and hardware.” In addition, it also includes nine elements of the big data ecosystem: data
extraction, storage, computing, analysis, visualization, management, workflow, infrastructure, and
security enhancement. However, no big data solution was found for enterprises in the recent literature
review [28]. A previous study observed that the correct use of real-time information will lead to the
next industrial revolution, so the modern manufacturing industry must regard the modernization
(digitalization) of the production process as the most important factor to achieve the goal of sustainable
development [29]. This study is a practical study, proving that, after digitizing part of the production
process and collecting complete records and storing data, the management mechanisms, such as expert
experience and the use of analytical tools, will be enhanced. Future developments can help small
and medium-sized traditional industries save manpower and increase profits. These results also
indirectly prove that in the future of Industry 4.0, big data will become the key to the sustainable
development of enterprises. Presently, Solen Electric Company’s production lines in Taiwan and
Vietnam are continuing to expand. The intelligent production of this motor production line was
successfully affirmed by the OEM partner company, and a Shanghai factory (China) was contacted to
inquire about new orders. It is expected that the amount of future data will increase exponentially.
The academic definition of big data has become a model for small and medium-sized enterprises in
developing countries, to develop smart manufacturing and industrial transformations.

According to the theoretical basis in [28], the research into big data solutions focuses on monitoring,
forecasting, data analysis, and proposing solutions, which is consistent with the basic hypothesis of
this study. The latest research [30] shows that the object of this study has gradually moved towards
intelligent system processes. The results of this study determine that the intelligent process is correct
and predictable. In terms of research implications, linear regression and machine learning, most results
of the tests supported the research hypothesis. This research is focused on customer driven sustainable
development, because big data requires that customers request their data to be collected, and every
shipment must include data for all products, because a customer needs to confirm and track the quality
of such products, to ensure the reliability of the end products that they manufacture [30]. This study
found a link between Industry 4.0 and sustainability. The UN Sustainable Development Indicators
related to this study are: Goal 9, Build resilient infrastructure, promote inclusive and sustainable
industrialization, and foster innovation and Goal 12, Ensure sustainable consumption and production
patterns. Goal 9.2 in this study, to promote inclusive and sustainable industrialization, refers to the
impact of upgrading manufacturing to big data. Goal 9.4, upgrade infrastructure and retrofit industries
to make them sustainable, refers to the combination of manufacturing process changes and the use
of big data analysis to enhance production line automation. Finally, goal 12.A, support developing
countries to strengthen their scientific and technological capacity, is related to the production line
in this study, which is located in the developing country of Ho Chi Minh City, Vietnam. This study
attempts to introduce the latest production technology into the combination of big data and Industry
4.0, to assist the manufacturing capacity of developing countries.
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This study recommends several topics to guide future research in this field. Data and information
related to other production processes are recommended to develop an improved understanding of the
correlation between the data related to specific motor components and the finished motor products.
Analytical software can be used to calculate the models for research, as a computer can automatically
monitor the motor production data. This will allow for a more accurate prediction of the processes most
commonly associated with problems. Big data analysis extends beyond the production of motors and
can be used to improve the efficiency of various production lines, with notable application potential in
medical equipment, sanitary equipment, and water valves.

5.4. Study Limitations

This study has several limitations that should be noted when interpreting the results. Product test
data were used without considering the production line data of other related components. Most of the
company’s production processes were based on manual operation. As machines were operated by
human operators, it was not possible to determine the precise values of these production processes,
thereby affecting the integrity of the study’s results. SPSS was used for data analysis because
self-organizing algorithms and other sophisticated modeling approaches were not suitable for this
application. If the nature of the dataset allowed for predictions on the production line or for the
accurate identification of key production factors, the findings of this study would have been even more
valuable and robust. Despite these limitations, this study is an important reference for future industry
implementation and improvement.
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