Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Extraction of Winter Wheat Planting Area
2.3.2. Determination of the Months of Sowing and Maturity
2.3.3. Estimation of NPP during the Growing Season
2.3.4. Yield Spatialization Model
2.3.5. Methods of Accuracy Verification
2.3.6. Trend Analysis
3. Results
3.1. Spatial Distribution of NPP during the Growing Season of Winter Wheat from 2000 to 2015
3.2. Relationship between NPP and Yield
3.3. Comparison of Regression Parameters from 2000 to 2015
3.4. Accuracy Verification
3.5. Spatio-Temporal Patterns of Winter Wheat Yields from 2000 to 2015
4. Discussion
4.1. Comparisons with Other Studies
4.2. Limitations
4.3. Potential Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liao, S.; Guangxing, J.I.; Hou, P.; Yue, Y.; Yang, X. Discussion on Two Key Problems of Multivariable Linear Regression Models for Spatialization of Grain Yield. J. Nat. Resour. 2015, 30, 1922–1932. [Google Scholar]
- Liu, Z.; Li, B. Spatial distribution of China grain output based on land use and population density. Trans. Chin. Soc. Agric. Eng. 2012, 28, 8–15. [Google Scholar]
- Wang, P.J.; Zhou, Y.Y.; Huo, Z.G.; Han, L.J.; Qiu, J.X.; Tan, Y.; Liu, D. Monitoring growth condition of spring maize in Northeast China using a process-based model. Int. J. Appl. Earth Obs. 2018, 66, 27–36. [Google Scholar] [CrossRef]
- Wang, Y.L.; Xu, X.G.; Huang, L.S.; Yang, G.J.; Fan, L.L.; Wei, P.F.; Chen, G. An Improved CASA Model for Estimating Winter Wheat Yield from Remote Sensing Images. Remote Sens. 2019, 11, 1088. [Google Scholar] [CrossRef] [Green Version]
- Kowalik, W.; Dabrowska-Zielinska, K.; Meroni, M.; Raczka, T.U.; De Wit, A. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 228–239. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. Forest Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Yao, F.M.; Tang, Y.J.; Wang, P.J.; Zhang, J.H. Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Phys. Chem. Earth 2015, 87–88, 142–152. [Google Scholar] [CrossRef]
- Feng, C.; Guo, J.N.; Min, X.J.; Xing-Chao, L.I.; Qiao-Yan, F.U. New Progress in Land Use/Land Cover Change Detection by Remote Sensing. Remote Sens. Inf. 2006, 3, 81–85. [Google Scholar]
- Geoghegan, J.L., Jr.; Ogneva-Himmelberger, Y.; Roy Chowdhury, R.; Sanderson, S.; Turner Ii, B.L. Socializing the Pixel and Pixelizing the Social in Land-Use and Land-Cover Change; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- CIESIN. Gridded Population of the World, Version 3 (GPWv3); Columbia University: New York, NY, USA, 2005. [Google Scholar]
- Fu, J.; Jiang, D.; Huang, Y. 1 km grid population dataset of China (2005, 2010). Glob. Chang. Res. Data Publ. Repos. 2014. [CrossRef]
- Huang, Y.; Jiang, D.; Fu, J. 1 km grid GDP dataset of China (2005, 2010). Glob. Chang. Res. Data Publ. Repos. 2014. [CrossRef]
- Tenerelli, P.; Gallego Pinilla, F.J.; Ehrlich, D. Population density modelling in support of disaster risk assessment. Int. J. Disaster Risk Reduct. 2015, 13. [Google Scholar] [CrossRef]
- Qizhi, M.; Long, Y.; Wu, K. Spatio-Temporal Changes of Population Density and Urbanization Pattern in China (2000–2010). China City Plan. Rev. 2016, 24. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.n.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607–608, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Ji, G. Research on Spatialization of Grain Yield and Error Analysis; Henan University: Kaifeng, China, 2016. [Google Scholar]
- He, P.; Lin, Z.; Jing, X.; Li, X. Spatial distribution of grain yield of Sichuan based on different sample scales and partitioning schemes. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 23–31. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Chen, Y.; Li, Z.; Tao, F. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products. Earth Syst. Sci. Data 2020, 12, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Field, C.; Behrenfeld, M.; Randerson, J.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.; Klooster, S.; Myneni, R.; Genovese, V.; Tan, P.-N.; Kumar, V. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998. Glob. Planet. Chang. 2003, 39, 201–213. [Google Scholar] [CrossRef]
- Shang, E.; Xu, E.; Zhang, H.; Liu, F. Analysis of Spatiotemporal Dynamics of the Chinese Vegetation Net Primary Productivity from the 1960s to the 2000s. Remote Sens. 2018, 10, 860. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Yokozawa, M.; Zhang, Z.; Xu, Y.; Hayashi, Y. Remote sensing of crop production in China by production efficiency models: Models comparisons, estimates and uncertainties. Ecol. Model 2005, 183, 385–396. [Google Scholar] [CrossRef]
- Jin, X.L.; Xu, X.G. Estimation of Cotton Yield Based on Net Primary Production Model in Xinjiang, China. In Proceedings of the 2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2 August 2012; pp. 416–419. [Google Scholar]
- Wang, P.J.; Sun, R.; Zhang, J.H.; Zhou, Y.Y.; Xie, D.H.; Zhu, Q.J. Yield estimation of winter wheat in the North China Plain using the remote-sensing-photosynthesis-yield estimation for crops (RS-P-YEC) model. Int. J. Remote Sens. 2011, 32, 6335–6348. [Google Scholar] [CrossRef]
- Jiang, Q.; Yue, Y.; Gao, L. The spatial-temporal patterns of heatwave hazard impacts on wheat in northern China under extreme climate scenarios. Geomat. Nat. Hazards Risk 2019, 10, 2346–2367. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Pin, W.; Yi, C.; Shuai, Z.; Fulu, T.; Xiaofei, L. Spatio-temporal changes of agrometrorological disasters for wheat production across China since 1990. J. Geogr. Sci. 2013, 068, 1453–1460. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2019.
- Luo, Y.; Zhang, Z.; Chen, Y.; Li, Z.; Tao, F. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on LAI products. Figshare 2019. [Google Scholar] [CrossRef]
- Chen, P. Monthly NPP 1 km Raster Dataset of China’s Terrestrial Ecosystems (1985–2015). Glob. Chang. Res. Data Publ. Repos. 2019. [CrossRef]
- Chen, P.; Shang, J.; Qian, B.; Jing, Q.; Liu, J. A New Regionalization Scheme for Effective Ecological Restoration on the Loess Plateau in China. Remote Sens. 2017, 9, 1323. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, J.-H.; Yun, B.; Zhang, S.; Yang, S.; Yao, F. Integrating remote sensing-based process model with environmental onation scheme to estimate rice yield gap in Northeast China. Field Crop Res. 2019, 246. [Google Scholar] [CrossRef]
- Qader, S.H.; Dash, J.; Atkinson, P.M. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Sci. Total Environ. 2018, 613, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Xiao, D.; Zhang, S.; Zhang, Z.; Rötter, R.P. Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades. Agric. Forest Meteorol. 2017, 239, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Ma, X.; He, H.; Pan, F.; He, Q.; Huang, B.; Pan, X. Warming and Dimming: Interactive Impacts on Potential Summer Maize Yield in North China Plain. Sustainability 2019, 11, 2588. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Yang, X.; Tian, H.; Pan, S.; Liu, Z.; Lu, S. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int. J. Biometeorol. 2016, 60, 21–32. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, Q.; Li, T.; Zhang, F. Spatiotemporal Variation of Winter Wheat Yield and Nitrogen Management in Five Provinces of North China Plain. Scientia Argic. Sin. 2019, 52, 4527–4539. [Google Scholar]
- Ju, W.M.; Gao, P.; Zhou, Y.L.; Chen, J.M.; Chen, S.; Li, X.F. Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of the Jiangsu Province, China. Int. J. Remote Sens. 2010, 31, 1573–1587. [Google Scholar] [CrossRef]
- Yang, B.; Pei, Z.; Zhou, Q.; Liu, H. Key Technologies of Crop Monitoring Using Remote Sensing at a National Scale: Progress and Problems. Trans. Chin. Soc. Agric. Eng. 2002, 18, 191–194. [Google Scholar]
- He, Z.; Du, J.; Zhao, W.; Yang, J.; Chen, L.-F.; Zhu, X.; Chang, X.; Liu, H. Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agric. Forest Meteorol. 2015, 213, 42–52. [Google Scholar] [CrossRef]
- Hu, Q.; Weiss, A.; Feng, S.; Baenziger, P.S. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric. Forest Meteorol. 2005, 135, 284–290. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F.; Liu, Y.; Shi, W. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 2013, 57, 275–285. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Ge, Q.; Dai, J. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010. Sci. China Earth Sci. 2018, 61, 1088–1097. [Google Scholar] [CrossRef]
- Mo, F.; Sun, M.; Liu, X.Y.; Wang, J.Y.; Zhang, X.C.; Ma, B.L.; Xiong, Y.C. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crop Res. 2016, S0378429016302106. [Google Scholar] [CrossRef]
- Eyshi Rezaei, E.; Siebert, S.; Ewert, F. Climate and management interaction cause diverse crop phenology trends. Agric. Forest Meteorol. 2017, 233, 55–70. [Google Scholar] [CrossRef]
- Kumar Jha, S.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar] [CrossRef]
- Soothar, R.K.; Zhang, W.; Liu, B.; Tankari, M.; Wang, Y. Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain. Sustainability 2019, 11, 4564. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dong, W.; Oenema, O.; Tuo, C.; Hu, C.; Yuan, H.; Zhao, L. Irrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensity. Sci. Total Environ. 2018, 646. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, C.; Chen, X.; Hopkins, I.; Zhang, X.; Han, Z.; Jiang, F.; Billy, G. The crucial factors of soil fertility and rapeseed yield - A five year field trial with biochar addition in upland red soil, China. Sci. Total Environ. 2019, 649, 1467–1480. [Google Scholar] [CrossRef]
- Sun, L.; Wang, R.; Li, J.; Wang, Q.; Zhang, X. Reasonable fertilization improves the conservation tillage benefit for soil water use and yield of rain-fed winter wheat: A case study from the Loess Plateau, China. Field Crop Res. 2019, 242, 107589. [Google Scholar] [CrossRef]
- Xu, A.; Li, L.; Xie, J.; Wang, X.; Wang, L. Effect of Long-Term Nitrogen Addition on Wheat Yield, Nitrogen Use Efficiency, and Residual Soil Nitrate in a Semiarid Area of the Loess Plateau of China. Sustainability 2020, 12, 1735. [Google Scholar] [CrossRef] [Green Version]
- Rae, A.; Pardey, P. Global Food Security—Introduction. Aust. J. Agric. Resour. Econ. 2014, 58. [Google Scholar] [CrossRef] [Green Version]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Cabas, J.; Weersink, A.; Olale, E. Crop yield response to economic, site and climatic variables. Clim. Chang. 2010, 101, 599–616. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z.; Xiao, D.; Zhang, S.; Rötter, R.P.; Shi, W.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. Responses of wheat growth and yield to climate change in different climate zones of China, 1981–2009. Agric. Forest Meteorol. 2014, 189–190, 91–104. [Google Scholar] [CrossRef]
- Chu, L.; Huang, C.; Liu, Q.; Cai, C.; Liu, G. Spatial Heterogeneity of Winter Wheat Yield and Its Determinants in the Yellow River Delta, China. Sustainability 2019, 12, 135. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.; Li, Y.; Song, J.; Zhang, T.; Wang, M. Adaptation to Climate Change and its Impacts on Wheat Yield: Perspective of Farmers in Henan of China. Sustainability 2019, 11, 1928. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Balkovič, J.; Azevedo, L.B.; Skalský, R.; Bouwman, A.F.; Xu, G.; Wang, J.; Xu, M.; Yu, C. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China. Sci. Total Environ. 2018, 627, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A Review of Remote Sensing Applications in Agriculture for Food Security: Crop Growth and Yield, Irrigation, and Crop Losses. J. Hydrol. 2020, 124905. [Google Scholar] [CrossRef]
- Tyagi, V.; Nagargade, M.; Singh, R.K.; Jatav, H.S. Sustainable Development for Agriculture and Environment; Anu Books H.O.: New Delhi, India, 2018. [Google Scholar]
- Liu, L.; Zhang, X.; Xu, W.; Liu, X.; Wu, X. Challenges for global sustainable nitrogen management in agricultural systems. J. Agric. Food Chem. 2020, 68, 3354–3361. [Google Scholar] [CrossRef]
- Xin, C.; Chuanmin, S.; Jiali, L.; Jing, W.; Yue, L.; Wenjing, L.; Jing, S. Modelling environment and poverty factors for sustainable agriculture in the Three Gorges Reservoir Regions of China. Land Degrad. Dev. 2018, 29, 3940–3953. [Google Scholar]
- Qi, X.; Wang, R.Y.; Li, J.; Zhang, T.; Liu, L.; He, Y. Ensuring food security with lower environmental costs under intensive agricultural land use patterns: A case study from China. J. Environ. Manag. 2018, 213, 329–340. [Google Scholar] [CrossRef]
Name | Time | Data Type | Scale/Resolution | Data Resources |
---|---|---|---|---|
1 km-grid crop phenological dataset | 2000–2015 | Raster | 1 km × 1 km | figshare |
Phenological observations | 1994–2013 | Table | \ | China Integrated Meteorological Information Service System (CIMISS) |
1 km-grid NPP dataset | 2000–2015 | Raster | 1 km × 1 km | Global Change Research Data Publishing and Repository |
Statistical yields | 2000–2015 | Table | \ | Nation Bureau of Statistics of China |
Administrative data | 2010 | Vector | 1:1,000,000 | Resources and Environmental Scientific Data Center (RESDC), Chinese Academy of Sciences (CAS) |
Year | a | R2 | F | p |
---|---|---|---|---|
2000 | 3.233 | 0.926 | 187.493 | 0.000 |
2001 | 3.353 | 0.976 | 611.230 | 0.000 |
2002 | 2.706 | 0.946 | 263.572 | 0.000 |
2003 | 2.848 | 0.945 | 260.345 | 0.000 |
2004 | 2.718 | 0.962 | 377.466 | 0.000 |
2005 | 2.701 | 0.956 | 325.228 | 0.000 |
2006 | 3.327 | 0.961 | 370.477 | 0.000 |
2007 | 2.610 | 0.955 | 323.049 | 0.000 |
2008 | 2.694 | 0.961 | 374.336 | 0.000 |
2009 | 3.078 | 0.974 | 558.510 | 0.000 |
2010 | 3.429 | 0.971 | 498.378 | 0.000 |
2011 | 3.289 | 0.969 | 474.230 | 0.000 |
2012 | 3.269 | 0.976 | 607.815 | 0.000 |
2013 | 3.286 | 0.965 | 414.918 | 0.000 |
2014 | 3.362 | 0.966 | 429.335 | 0.000 |
2015 | 2.692 | 0.964 | 406.964 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Cai, H.; Yang, X.; Xu, X. Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015. Sustainability 2020, 12, 5436. https://doi.org/10.3390/su12135436
Han D, Cai H, Yang X, Xu X. Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015. Sustainability. 2020; 12(13):5436. https://doi.org/10.3390/su12135436
Chicago/Turabian StyleHan, Dongrui, Hongyan Cai, Xiaohuan Yang, and Xinliang Xu. 2020. "Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015" Sustainability 12, no. 13: 5436. https://doi.org/10.3390/su12135436
APA StyleHan, D., Cai, H., Yang, X., & Xu, X. (2020). Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015. Sustainability, 12(13), 5436. https://doi.org/10.3390/su12135436