Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalysis Test
2.3. Determination of Liquid, Char and Gas Fraction Yields
2.4. Characterization of Liquid Fraction
3. Results and Discussion
3.1. Determination of Liquid, Char and Gas Fraction Yields
- The higher the alumina ratio in a catalyst, the higher the yield of the liquid fraction, because it has a larger BET surface and pore volume [62]. In other words, catalysts with a low BET surface area and microporous structures favor the production of gases [59], while macroporous catalysts favor the production of the liquid fraction [13].
- Catalysts such as zeolites have a large internal crystalline structure, which increases the cracking process and therefore increases the yield of the gaseous fraction with the decrease in the yield of the liquid fraction [13].
- When a zeolite is activated in an acidic rather than a thermal way, it causes a higher production of gases, due to its high acidity [67].
3.2. Characterization of Liquid Fraction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- PlasticsEurope. An analysis of European plastics production, demand and waste data. In Plastics—The Facts 2019; PlasticsEurope: 2019. Available online: https://www.plasticseurope.org/es/resources/publications/1804-plastics-facts-2019 (accessed on 6 July 2020).
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Diputación de Granada. Recogida de residuos municipales en la provincia de Granada. In Granada: Servicio de Tratamiento de Residuos Municipales; Diputación de Granada: Granada, Spain, 2015. [Google Scholar]
- Calero, M.; Martín-Lara, M.A.; Godoy, V.; Quesada, L.; Martínez, D.; Peula, F.; Soto, J.M. Characterization of plastic materials present in municipal solid waste: Preliminary study for their mechanical recycling. Detritus 2018, 2018, 104. [Google Scholar] [CrossRef]
- Soto, J.M.; Blázquez, G.; Calero, M.; Quesada, L.; Godoy, V.; Martín-Lara, M. A real case study of mechanical recycling as an alternative for managing of polyethylene plastic film presented in mixed municipal solid waste. J. Clean. Prod. 2018, 203, 777–787. [Google Scholar] [CrossRef]
- Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci. Total Environ. 2017, 601–602, 1192–1207. [Google Scholar] [CrossRef] [PubMed]
- Solis, M.; Silveira, S. Technologies for chemical recycling of household plastics—A technical review and TRL assessment. Waste Manag. 2020, 105, 128–138. [Google Scholar] [CrossRef]
- López, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 2017, 73, 346–368. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Bhat, S.; Singh Lather, R. Production of Oil from Waste Plastics and Polythene using Pyrolysis and its Utilization in Compression Ignition (C.I.) Engine. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Khan, M.I.; Khan, H.; Ishaq, M.; Tariq, R.; Gul, K.; Ahmad, W. Pyrolysis study of polypropylene and polyethylene into premium oil products. Int. J. Green Energy. 2015, 12, 663–671. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A.S. Catalytic pyrolysis of plastic waste: A review. Process. Saf. Environ. Prot. 2016, 102, 822–838. [Google Scholar] [CrossRef]
- Kunwar, B.; Cheng, H.N.; Chandrashekaran, S.R.; Sharma, B.K. Plastics to fuel: A review. Renew. Sustain. Energy Rev. 2016, 54, 421–428. [Google Scholar] [CrossRef]
- Beltrame, P.L.; Carniti, P. Catalytic degradation of polymers: Part III-Degradation of polystyrene. Polym. Degrad. Stab. 1989, 26, 109–220. [Google Scholar] [CrossRef]
- Park, D.W.; Hwang, E.Y.; Kim, J.R.; Choi, J.K.; Kim, Y.A.; Woo, H.C. Catalytic degradation of polyethylene over solid acid catalysts. Polym. Degrad. Stab. 1999, 65, 193–198. [Google Scholar] [CrossRef]
- Moorthy Rajendran, K.; Chintala, V.; Sharma, A.; Pal, S.; Pandey, J.K.; Ghodke, P. Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW). Mater Today Commun. 2020, 24, 100982. [Google Scholar] [CrossRef]
- Susastriawan, A.A.P.; Purnomo; Sandria, A. Experimental study the influence of zeolite size on low-temperature pyrolysis of low-density polyethylene plastic waste. Therm. Sci. Eng. Prog. 2020, 17, 100497. [Google Scholar] [CrossRef]
- Onwudili, J.A.; Muhammad, C.; Williams, P.T. Influence of catalyst bed temperature and properties of zeolite catalysts on pyrolysis-catalysis of a simulated mixed plastics sample for the production of upgraded fuels and chemicals. J. Energy Inst. 2019, 92, 1337–1347. [Google Scholar] [CrossRef]
- Santos, B.P.S.; Almeida, D.; Marques, M.F.V.; Henriques, C.A. Petrochemical feedstock from pyrolysis of waste polyethylene and polypropylene using different catalysts. Fuel 2018, 215, 515–521. [Google Scholar] [CrossRef]
- Quesada, L.; Calero, M.; Martín-Lara, M.A.; Pérez, A.; Blázquez, G. Characterization of fuel produced by pyrolysis of plastic film obtained of municipal solid waste. Energy 2019, 186, 115874. [Google Scholar] [CrossRef]
- García, R.A.; Serrano, D.P.; Otero, D. Catalytic cracking of HDPE over hybrid zeolitic-mesoporous materials. J. Anal. Appl. Pyrolysis. 2005, 74, 379–386. [Google Scholar] [CrossRef]
- Suhartono; Kusumo, P.; Romli, A.; Aulia, M.I.; Yanuar, E.M. Fuel Oil from Municipal Plastic Waste through Pyrolysis with and without Natural Zeolite as Catalysts. E3S Web Conf. 2018, 73, 01021. [Google Scholar] [CrossRef] [Green Version]
- Akpanudoh, N.S.; Gobin, K.; Manos, G. Catalytic degradation of plastic waste to liquid fuel over commercial cracking catalysts: Effect of polymer to catalyst ratio/acidity content. J. Mol. Catal. A Chem. 2005, 235, 67–73. [Google Scholar] [CrossRef]
- Zeolyst. Available online: Zeolyst.com (accessed on 24 June 2020).
- Elordi, G.; Olazar, M.; Lopez, G.; Amutio, M.; Artetxe, M.; Aguado, R. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. J. Anal. Appl. Pyrolysis. 2009, 85, 345–351. [Google Scholar] [CrossRef]
- Chang, C.C.; Green, S.K.; Williams, L.C.; Dauenhauer, P.J.; Fan, W. Ultra-Selective Cycloaddition of Dimethylfuran for Renewable p-Xylene with H-BEA. Green Chem. 2014, 16, 585–588. [Google Scholar] [CrossRef]
- Ceña-López, C.; Peláez, J.; Márquez-Álvarez, C.; Franco, M.J.; Sastre, E.; Lázaro, J.J. Estudio de Catalizadores Para la Reacción de Alquilación de Benceno; CSIC: Madrid, Spain, 2015. [Google Scholar]
- Ates, F.; Miskolczi, N.; Borsodi, N. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties. Bioresour. Technol. 2013, 133, 443–454. [Google Scholar] [CrossRef]
- Lutz, W.; Zeolite, Y. Synthesis, Modification, and Properties—A Case Revisited. Hindawi Publ. Corp Adv. Mater. Sci. Eng. 2014, 2014, 1–20. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, J.; Johnson, M.; Valla, J.; Li, K.; Ying, J.Y. Mesostructured zeolite y—High hydrothermal stability and superior FCC catalytic performance. Catal. Sci. Technol. 2012, 2, 987–994. [Google Scholar] [CrossRef]
- Rizkiana, J.; Guan, G.; Widayatno, W.B.; Yang, J.; Hao, X.; Matsuoka, K.; Abudula, A. Mg-modified ultra-stable y type zeolite for the rapid catalytic co-pyrolysis of low-rank coal and biomass. RSC Adv. 2016, 6, 2096–2105. [Google Scholar] [CrossRef]
- Yazmín, Y.; Agámez Pertuz, L.; Oviedo Aguiar, L.A.; Navarro, U.; Centeno, M.A.; Odriozola, J.A. Análisis de la microporosidad de catalizadores de FCC. Revista de la Academia Colombiana de Ciencias 2006, 30, 271–278. [Google Scholar]
- Kenvin, J.; Mitchell, S.; Sterling, M.; Warringham, R.; Keller, T.C.; Crivelli, P.; Jagiello, J.; Pérez-Ramírez, J. Quantifying the Complex Pore Architecture of Hierarchical Faujasite Zeolites and the Impact on Diffusion. Adv. Funct. Mater. 2016, 26, 5621–5630. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Wang, X.; Liu, P.; Li, J.; Liu, G. Catalytic conversion of rubber wastes to produce aromatic hydrocarbons over USY zeolites: Effect of SiO2/Al2O3 mole ratio. Energy Convers. Manag. 2019, 197, 111857. [Google Scholar] [CrossRef]
- Simon-Masseron, A.; Marques, J.P.; Lopes, J.M.; Ribeiro, F.R.; Gener, I.; Guisnet, M. Influence of the Si/Al ratio and crystal size on the acidity and activity of HBEA zeolites. Appl. Catal. A Gen. 2007, 316, 75–82. [Google Scholar] [CrossRef]
- Ma, C.; Yu, J.; Wang, B.; Song, Z.; Xiang, J.; Hu, S. Catalytic pyrolysis of flame retarded high impact polystyrene over various solid acid catalysts. Fuel Process. Technol. 2017, 155, 32–41. [Google Scholar] [CrossRef]
- Agullo, J.; Kumar, N.; Berenguer, D.; Kubicka, D.; Marcilla, A.; Gómez, A.; Salmi, T.; Murzin, D.Y. Catalytic pyrolysis of low density polyethylene over H-β, H-Y, H-Mordenite, and H-Ferrierite zeolite catalysts: Influence of acidity and structures. Kinet. Catal. 2007, 48, 535–540. [Google Scholar] [CrossRef]
- Miskolczi, N.; Bartha, L.; Deák, G. Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks. Polym. Degrad. Stab. 2006, 91, 517–526. [Google Scholar] [CrossRef]
- Mansouri, N.; Rikhtegar, N.; Panahi, H.A.; Atabi, F.; Shahraki, B.K. Porosity, characterization and structural properties of natural zeolite—Clinoptilolite—As a sorbent. Environ. Prot. Eng. 2013, 39, 139–152. [Google Scholar]
- Chattopadhyay, J.; Pathak, T.S.; Srivastava, R.; Singh, A.C. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy 2016, 103, 513–521. [Google Scholar] [CrossRef]
- Miteva, K.; Aleksovski, S.; Bogoeva-Gaceva, G. Characterisation of fuel produced from polyolefin waste over Al2O3-SiO2 mixture as catalyst. J. Environ. Prot. Ecol. 2019, 20, 246–253. [Google Scholar]
- Yi, H.; Yang, X.; Tang, X.; Zhao, S.; Wang, J.; Cui, X. Removal of toluene from industrial gas over 13X zeolite supported catalysts by adsorption-plasma catalytic process. J. Chem. Technol. Biotechnol. 2017, 92, 2276–2286. [Google Scholar] [CrossRef]
- Gulab, H.; Hussain, K.; Malik, S.; Hussain, Z.; Shah, Z. Catalytic co-pyrolysis of Eichhornia Crassipes biomaѕѕ and polyethylene using waste Fe and CaCO3 catalysts. Int. J. Energy Res. 2016, 40, 940–951. [Google Scholar] [CrossRef]
- Cortés, F.B.; Chejne, F.; Carrasco-Marín, F.; Moreno-Castilla, C.; Pérez-Cadenas, A.F. Water adsorption on zeolite 13X: Comparison of the two methods based on mass spectrometry and thermogravimetry. Adsorption 2010, 16, 141–146. [Google Scholar] [CrossRef]
- Aguirre, F.; Calafat, A.; Sanchez, N. metales de transición Degradación catalítica de polietileno de baja densidad mediante óxidos de metales de transición Catalytic degradation of low density polyethylene by transition metal oxides. Catalisis 2012, 1, 42–47. [Google Scholar]
- Zhang, H.; Dai, L.; Feng, Y.; Xu, Y.; Liu, Y.; Guo, G. A Resource utilization method for volatile organic compounds emission from the semiconductor industry: Selective catalytic oxidation of isopropanol to acetone Over Au/α-Fe2O3 nanosheets. Appl. Catal. B Environ. 2020, 275, 119011. [Google Scholar] [CrossRef]
- De Oliveira, P.M.; Farias, L.M.; Morón-Villarreyes, J.A.; Montes D’Oca, M.G. Eco-friendly Pretreatment of Oil with High Free Fatty Acid Content Using a Sulfamic Acid/Ethanol System. JAOCS J. Am. Oil. Chem. Soc. 2016, 93, 1393–1397. [Google Scholar] [CrossRef]
- Lugovoy, Y.V.; Chalov, K.V.; Kosivtsov, Y.Y.; Stepacheva, A.A.; Sulman, E.M. Effect of metal chlorides on the pyrolysis of wheat straw. Int. J. Chem. Eng. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Cunping Huang, A.; Gujar, M.; Rodgers, M. Methods of Producing Liquid Hydrocarbon Fuels from Solid Plastic Wastes. US 9,200,207 B2, 1 December 2015. [Google Scholar]
- Hongloi, N.; Prapainainar, P.; Seubsai, A.; Sudsakorn, K.; Prapainainar, C. Nickel catalyst with different supports for green diesel production. Energy 2019, 182, 306–320. [Google Scholar] [CrossRef]
- Quesada, L.; Pérez, A.; Godoy, V.; Peula, F.J.; Calero, M.; Blázquez, G. Optimization of the pyrolysis process of a plastic waste to obtain a liquid fuel using different mathematical models. Energy Convers. Manag. 2019, 188, 19–26. [Google Scholar] [CrossRef]
- López, A.; De Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A.; Aranzabal, A. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl. Catal. B Environ. 2011, 104, 211–219. [Google Scholar] [CrossRef]
- Gobin, K.; Manos, G. Polymer degradation to fuels over microporous catalysts as a novel tertiary plastic recycling method. Polym. Degrad. Stab. 2004, 83, 267–279. [Google Scholar] [CrossRef]
- Manos, G.; Garforth, A.; Dwyer, J. Catalytic degradation of high-density polyethylene on an ultrastable-Y zeolite. Nature of initial polymer reactions, pattern of formation of gas and liquid products, and temperature effects. Ind. Eng. Chem. Res. 2000, 39, 1203–1208. [Google Scholar] [CrossRef]
- Boxiong, S.; Chunfei, W.; Binbin, G.; Rui, W.; Liangcai. Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Appl. Catal. B Environ. 2007, 73, 150–157. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltrán, M.I.; Navarro, R. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Appl. Catal. B Environ. 2009, 86, 78–86. [Google Scholar] [CrossRef]
- López, A.; De Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A.; Torres, A. Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions. Waste Manag. 2011, 31, 1973–1983. [Google Scholar] [CrossRef]
- Kim, J.R.; Yoon, J.H.; Park, D.W. Catalytic recycling of the mixture of polypropylene and polystyrene. Polym. Degrad. Stab. 2002, 76, 61–67. [Google Scholar] [CrossRef]
- Olazar, M.; Lopez, G.; Amutio, M.; Elordi, G.; Aguado, R.; Bilbao, J. Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. J. Anal. Appl. Pyrolysis. 2009, 85, 359–365. [Google Scholar] [CrossRef]
- Kim, J.R.; Van, J.H.; Park, D.W.; Lee, M.H. Catalytic degradation of mixed plastics using natural clinoptilolite catalyst. React. Kinet. Catal. Lett. 2004, 81, 73–81. [Google Scholar] [CrossRef]
- Sangpatch, T.; Supakata, N.; Kanokkantapong, V.; Jongsomjit, B. Fuel oil generated from the cogon grass-derived Al–Si (Imperata cylindrica (L.) Beauv) catalysed pyrolysis of waste plastics. Heliyon 2019, 5, e02324. [Google Scholar] [CrossRef] [Green Version]
- Miskolczi, N.; Ateş, F. Thermo-catalytic co-pyrolysis of recovered heavy oil and municipal plastic wastes. J. Anal. Appl. Pyrolysis. 2016, 117, 273–281. [Google Scholar] [CrossRef]
- Manos, G.; Garforth, A.; Dwyer, J. Catalytic degradation of high-density polyethylene over different zeolitic structures. Ind. Eng. Chem. Res. 2000, 39, 1198–1202. [Google Scholar] [CrossRef]
- Miandad, R.; Rehan, M.; Barakat, M.A.; Aburiazaiza, A.S.; Khan, H.; Ismail, I.M.I.; Dhavamani, J.; Gardy, J.; Hassanpour, A.; Nizami, A.S. Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Front. Energy Res. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Contreras, F.E. Estudio de la Pirólisis Catalítica de Polietileno en un Reactor Semi-Batch. Master’s Thesis, Civil Engineering mention in Chemistry, University of Chile, Santiago, Chile, 2014. [Google Scholar]
- Syamsiro, M.; Cheng, S.; Hu, W.; Saptoadi, H.; Pratama, N.N.; Trisunaryanti, W. Liquid and Gaseous Fuel from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Processes over Indonesian Natural Zeolite Catalysts. Waste Technol. 2014, 2. [Google Scholar] [CrossRef]
- Beliy, V.A.; Udoratina, E.V. Kinetic study of wood pyrolysis in presence of metal halides. Cent. Eur. J. Chem. 2014, 12, 1294–1303. [Google Scholar] [CrossRef]
- Quesada, L.; Calero, M.; Martín-Lara, M.A.; Pérez, A.; Blázquez, G. Production of an Alternative Fuel by Pyrolysis of Plastic Wastes Mixtures. Energy Fuels 2020, 34, 1781–1790. [Google Scholar] [CrossRef]
- Williams, P.T.; Hall, W.J.; Zakaria, N. Pyrolysis of latex gloves in the presence of Y-zeolite. Waste Manag. 2009, 29, 797–803. [Google Scholar] [CrossRef] [Green Version]
Catalyst | Nominal Cation Form | Si/Al | Na2O w. (%) | Surface Area, m2/g | Pores Volume, cm3/g | Acidity | References |
---|---|---|---|---|---|---|---|
Zeolite ZSM-5 (CBV3024E) | NH4 | 15 | 0.05 | 405 | Micro. 0.13 Meso. 0.11 | B/L 2.32 Total acid sites: 1.10 mmol/g | [25,26,27,28] |
FCC | - | 23.2 | - | 192 | Micropore Area 94.2 m2/g | 0.51 meqv. of NH3/g) | [25,29] |
Zeolite Y NaY-Geace (CBV-100) | Na | 2.5 | 13.0 | 900 | Micro. 0.37 Meso. 0.16 | Yes | [25,30,31] |
Zeolite Y HUSY-5.1 (CBV-600) | H | 2.6 | 0.2 | 660 | Micro. 0.27 Meso. 0.16 | B/L 1.51Total acid sites: 0.99 mmol/g | [22,25,26,27,31] |
Zeolite Y HUSY-5.1-Metal (CBV-600) | H | 2.6 | - | - | - | Yes | [32] |
Zeolite Y ZHA (CBV-600) | H | 2.6 | - | - | - | Yes | [33] |
Zeolite Y HUSY-30 (CBV-720) | H | 15 | 0.03 | 780 | Micro. 0.36 Meso. 0.23 | B/L 3.18 Total acid sites: 1.43 mmol/g | [25,34] |
Zeolite β HBEA-25 (CPE 814E) | NH4 | 12.5 | 0.05 | 680 | Micro. 0.18 Meso. 0.28 | B/L 1.67–0.93 Total acid sites: 1.12 mmol/g | [27,35,36] |
Zeolite β HBEA-75 (CPE 811E) | NH4 | 37.5 | 0.05 | 680 | Micro. 0.183 Meso. 0.188 | B/L 1.01 | [26,37] |
Zeolite β HBEA-150 (CPE 814E) | NH4 | 75 | 0.05 | 680 | - | Yes | [38,39] |
Zeolite Natural Clinoptilolite | 5.67 | - | 80–100 | Micro. 0.0254 Meso. 0.028 | Yes | [40,41] | |
SiO2Al2O3Co | - | - | - | - | - | Yes | [41] |
SiO2 | - | - | - | - | - | Yes | [42] |
Al2O3 | - | - | 265 | Micro. 0.019 Meso. 0.438 Macro. 0.017 | Total acid sites 0.21 mmol/g | [27,43] | |
CaCO3 | - | - | - | - | No | [44] | |
Zeolite powder 13X | - | 1–1.5 | 15.93 | 729 | Micro. 0.26 Meso. 0.165 Macro. 0.027 | Yes, strong | [45] |
Fe2O3 | - | - | - | 4.3 | - | No | [46,47,48] |
NH2SO3H | - | - | - | - | - | - | [48] |
SnCl2 | - | - | - | - | - | - | [49] |
Catalyst | Catalytic Pyrolysis Fractions | ||
---|---|---|---|
Catalyst | Liquid (%) | Char (%) | Gas (%) |
Without catalyst | 72.85 | 9.28 | 17.87 |
ZSM-5 | 56.12 | 10.27 | 39.64 |
FCC | 23.92 | 14.42 | 61.65 |
Zeocel clinoptilolite | 54.98 | 3.32 | 41.70 |
HBEA-25 | 42.96 | 4.22 | 52.82 |
HBEA-75 | 35.04 | 4.26 | 60.69 |
HBEA-150 | 44.82 | 1.78 | 53.40 |
NaY-Geace | 51.56 | 1.20 | 47.24 |
HUSY-5.1 | 37.33 | 5.42 | 57.25 |
HUSY-5.1-Ni (1%) | 24.98 | 6.29 | 68.72 |
HUSY-5.1-Pd (1%) | 17.25 | 1.14 | 82.89 |
HUSY-5.1-Ru (1%) | 29.06 | 3.95 | 66.99 |
HUSY-30 | 39.06 | 7.87 | 53.08 |
ZHA | 36.40 | 7.10 | 56.50 |
13X | 53.97 | 6.49 | 39.54 |
SiO2-Al2O3-Co | 30.81 | 3.25 | 65.94 |
Al2O3 | 56.68 | 12.05 | 31.27 |
SiO2 | 57.70 | 5.77 | 36.53 |
CaCO3 | 63.38 | 3.30 | 33.32 |
SnCl2 | 67.57 | 6.92 | 25.51 |
Catalyst | Catalytic Pyrolysis Fractions | ||
---|---|---|---|
Catalyst | Liquid (%) | Char (%) | Gas (%) |
5% HUSY-5.1 | 39.64 | 7.82 | 52.55 |
10% HUSY-5.1 | 37.33 | 5.42 | 57.25 |
20% HUSY-5.1 | 34.94 | 5.97 | 59.09 |
Catalyst | Catalytic Pyrolysis Fractions | ||
---|---|---|---|
Catalyst | Liquid (%) | Char (%) | Gas (%) |
5% Fe2O3 | 58.57 | 6.70 | 34.73 |
10% Fe2O3 | 59.78 | 12.90 | 27.32 |
20% Fe2O3 | 64.33 | 21.24 | 14.43 |
Catalytic Pyrolysis Fractions | |||
---|---|---|---|
Catalyst | Liquid (%) | Char (%) | Gas (%) |
5% NH2SO3H | 60.02 | 5.87 | 34.11 |
10% NH2SO3H | 55.11 | 9.27 | 35.63 |
20% NH2SO3H | 63.84 | 10.84 | 25.32 |
Catalyst | Dynamic Viscosity (Pa·s) | Kinematic Viscosity (cst) |
---|---|---|
Zeocel clinoptilolite | 0.09 | 115.11 |
HBEA-25 | 0.07 | 89.37 |
HBEA-75 | 0.08 | 99.62 |
HBEA-150 | 0.08 | 97.89 |
NaY-Geace | 0.08 | 93.06 |
Catalyst | Dynamic Viscosity (Pa·s) | Kinematic Viscosity (cst) |
---|---|---|
5% HUSY-5.1 | 1.17 | 1440.78 |
10% HUSY-5.1 | 0.11 | 137.28 |
20% HUSY-5.1 | 0.04 | 53.21 |
10% HUSY-30 | 0.17 | 209.38 |
10% HUSY-5.1Ni (1%) | 0.08 | 96.72 |
10% HUSY-5.1 Pd (1%) | 0.08 | 97.64 |
10% HUSY-5.1 Ru (1%) | 0.06 | 75.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quesada, L.; Calero de Hoces, M.; Martín-Lara, M.A.; Luzón, G.; Blázquez, G. Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste. Sustainability 2020, 12, 5482. https://doi.org/10.3390/su12135482
Quesada L, Calero de Hoces M, Martín-Lara MA, Luzón G, Blázquez G. Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste. Sustainability. 2020; 12(13):5482. https://doi.org/10.3390/su12135482
Chicago/Turabian StyleQuesada, Lucía, Mónica Calero de Hoces, M. A. Martín-Lara, Germán Luzón, and G. Blázquez. 2020. "Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste" Sustainability 12, no. 13: 5482. https://doi.org/10.3390/su12135482
APA StyleQuesada, L., Calero de Hoces, M., Martín-Lara, M. A., Luzón, G., & Blázquez, G. (2020). Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste. Sustainability, 12(13), 5482. https://doi.org/10.3390/su12135482