Magnetic Fe3O4-Ag0 Nanocomposites for Effective Mercury Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Fe3O4
2.3. Mercury Removal Efficiency
2.4. Characterization
2.5. Calculations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Budnik, L.T.; Casteleyn, L. Mercury pollution in modern times and its socio-medical consequences. Sci. Total Environ. 2019, 654, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Wang, L.; Hou, D.; Cao, Y.; Ok, Y.S.; Tack, F.M.G.G.; Rinklebe, J.; O’Connor, D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environ. Int. 2020, 134, 105281. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Barakat, S.; Van Bramer, S.E.; Nelson, K.A.; Hensley, D.K.; Chen, J. Noncompetitive and Competitive Adsorption of Heavy Metals in Sulfur-Functionalized Ordered Mesoporous Carbon. ACS Appl. Mater. Interfaces 2016, 8, 34132–34142. [Google Scholar] [CrossRef] [PubMed]
- Tauanov, Z.; Tsakiridis, P.E.; Shah, D.; Inglezakis, V.J. Synthetic sodalite doped with silver nanoparticles: Characterization and mercury (II) removal from aqueous solutions. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 2019, 54, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Tauanov, Z.; Tsakiridis, P.E.; Mikhalovsky, S.V.; Inglezakis, V.J. Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. J. Environ. Manag. 2018, 224, 164–171. [Google Scholar] [CrossRef]
- De Clercq, J. Removal of mercury from aqueous solutions by adsorption on a new ultra stable mesoporous adsorbent and on a commercial ion exchange resin. Int. J. Ind. Chem. 2012, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.; Hua, T. Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption. Carbohydr. Polym. 2016, 153, 246–252. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Zhang, J.; Wang, C.; Li, Q. Preparation and characterization of chitosan–poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. Chem. Eng. J. 2014, 251, 404–412. [Google Scholar] [CrossRef]
- Baimenov, A.Z.; Berillo, D.A.; Moustakas, K.; Inglezakis, V.J. Efficient removal of mercury (II) from water by use of cryogels and comparison to commercial adsorbents under environmentally relevant conditions. J. Hazard. Mater. 2020, 399, 123056. [Google Scholar] [CrossRef] [PubMed]
- Sumesh, E.; Bootharaju, M.S.; Anshup; Pradeep, T. A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J. Hazard. Mater. 2011, 189, 450–457. [Google Scholar] [CrossRef]
- Qu, Z.; Fang, L.; Chen, D.; Xu, H.; Yan, N. Effective and regenerable Ag/graphene adsorbent for Hg(II) removal from aqueous solution. Fuel 2017, 203, 128–134. [Google Scholar] [CrossRef]
- Gumiński, C. Review Selected properties of simple amalgams. J. Mater. Sci. 1989, 24, 2661–2676. [Google Scholar] [CrossRef]
- Song, B.Y.; Eom, Y.; Lee, T.G. Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites. Appl. Surf. Sci. 2011, 257, 4754–4759. [Google Scholar] [CrossRef]
- Behjati, M.; Baghdadi, M.; Karbassi, A. Removal of mercury from contaminated saline wasters using dithiocarbamate functionalized-magnetic nanocomposite. J. Environ. Manag. 2018, 213, 66–78. [Google Scholar] [CrossRef]
- Dou, B.; Dupont, V.; Pan, W.; Chen, B. Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite. Chem. Eng. J. 2011, 166, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhan, C.; Kong, B.; Zhu, X.; Liu, J.; Xu, W.; Cai, W.; Wang, H. Self-curled coral-like γ-Al2O3 nanoplates for use as an adsorbent. J. Colloid Interface Sci. 2015, 453, 244–251. [Google Scholar] [CrossRef]
- Azat, S.; Arkhangelsky, E.; Papathanasiou, T.; Zorpas, A.A.; Abirov, A.; Inglezakis, V.J. Synthesis of biosourced silica-Ag nanocomposites and amalgamation reaction with mercury in aqueous solutions. Comptes Rendus Chim. 2020, 23, 77–92. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, Y.; Wang, M.; Liu, F.; Zhang, T. Application of Iron-Based Materials for Remediation of Mercury in Water and Soil. Bull. Environ. Contam. Toxicol. 2019, 102, 721–729. [Google Scholar] [CrossRef]
- Shan, C.; Ma, Z.; Tong, M.; Ni, J. Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4 at SiO2 magnetic nanoparticles. Water Res. 2015, 69, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Pittman, C.U.; Mohan, D. Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J. Colloid Interface Sci. 2015, 442, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horst, M.F.; Lassalle, V.; Ferreira, M.L. Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes. Front. Environ. Sci. Eng. 2015, 9, 746–769. [Google Scholar] [CrossRef]
- Tavares, D.S.; Vale, C.; Lopes, C.B.; Trindade, T.; Pereira, E. Reliable quantification of mercury in natural waters using surface modified magnetite nanoparticles. Chemosphere 2019, 220, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Mohmood, I.; Lopes, C.B.; Lopes, I.; Tavares, D.S.; Soares, A.M.V.M.; Duarte, A.C.; Trindade, T.; Ahmad, I.; Pereira, E. Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles. Sci. Total Environ. 2016, 557–558, 712–721. [Google Scholar] [CrossRef]
- Morsi, R.E.; Al-Sabagh, A.M.; Moustafa, Y.M.; ElKholy, S.G.; Sayed, M.S. Polythiophene modified chitosan/magnetite nanocomposites for heavy metals and selective mercury removal. Egypt. J. Pet. 2018, 27, 1077–1085. [Google Scholar] [CrossRef]
- Oveisi, F.; Nikazar, M.; Razzaghi, M.H.; Mirrahimi, M.A.S.; Jafarzadeh, M.T. Effective removal of mercury from aqueous solution using thiol-functionalized magnetic nanoparticles. Environ. Nanotechnol. Monit. Manag. 2017, 7, 130–138. [Google Scholar] [CrossRef]
- Marimón-Bolívar, W.; Tejeda-Benítez, L.; Herrera, A.P. Removal of mercury (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass. Environ. Nanotechnol. Monit. Manag. 2018, 10, 486–493. [Google Scholar] [CrossRef]
- Okamoto, T.; Tachibana, S.; Miura, O.; Takeuchi, M. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents. Phys. C Supercond. Its Appl. 2011, 471, 1516–1519. [Google Scholar] [CrossRef]
- Figueira, P.; Lopes, C.B.; Daniel-da-Silva, A.L.; Pereira, E.; Duarte, A.C.; Trindade, T. Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: Application to synthetic and natural spiked waters. Water Res. 2011, 45, 5773–5784. [Google Scholar] [CrossRef]
- Andrade, Â.L.; Cavalcante, L.C.D.; Fabris, J.D.; Pereira, M.C.; Ardisson, J.D.; Pizarro, C. Zeolite-magnetite composites to remove Hg2+ from water. Hyperfine Interact. 2019, 240, 18–23. [Google Scholar] [CrossRef]
- Girginova, P.I.; Daniel-da-Silva, A.L.; Lopes, C.B.; Figueira, P.; Otero, M.; Amaral, V.S.; Pereira, E.; Trindade, T. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J. Colloid Interface Sci. 2010, 345, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Xu, Z.; Wang, F. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Appl. Surf. Sci. 2008, 254, 3522–3530. [Google Scholar] [CrossRef]
- Dong, L.; Xie, J.; Fan, G.; Huang, Y.; Zhou, J.; Sun, Q.; Wang, L.; Guan, Z.; Jiang, D.; Wang, Y. Experimental and theoretical analysis of element mercury adsorption on Fe3O4/Ag composites. Korean J. Chem. Eng. 2017, 34, 2861–2869. [Google Scholar] [CrossRef]
- Marimon-Bolivar, W.; Toussaint-Jimenez, N. A review on green synthesis of magnetic nanoparticles (magnetite) for environmental applications. In Proceedings of the 2019 Congreso Internacional de Innovación y Tendencias en Ingenieria (CONIITI), Bogotá, Colombia, 2–4 October 2019. [Google Scholar]
- Shahriary, M.; Veisi, H.; Hekmati, M.; Hemmati, S. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater. Sci. Eng. C 2018, 90, 57–66. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Oakes, J.; Dyar, M.D. Investigation of iron reduction by green tea polyphenols. Appl. Geochem. 2018, 97, 263–269. [Google Scholar] [CrossRef]
- Madrid, S.I.U.; Pal, U.; Jesus, F.S.-D. Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process. Adv. Nano Res. 2014, 2, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.D.; Zhang, J.; Sun, D.D. Solvothermal synthesis and magnetic properties of Fe3O4 microspheres. Adv. Mater. Res. 2012, 393–395, 947–950. [Google Scholar]
- Ganguly, M.; Dib, S.; Ariya, P.A. Fast, Cost-effective and Energy Efficient Mercury Removal-Recycling Technology. Sci. Rep. 2018, 8, 16255. [Google Scholar] [CrossRef] [Green Version]
- Tauanov, Z.; Lee, J.; Inglezakis, V.J. Mercury reduction and chemisorption on the surface of synthetic zeolite silver nanocomposites: Equilibrium studies and mechanisms. J. Mol. Liq. 2020, 305, 112825. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Eldesoky, G.E.; Khaleque, M.A.; Rahman, M.M.; Naushad, M. Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chem. Eng. J. 2016, 290, 243–251. [Google Scholar] [CrossRef]
- Abdelrahman, E.A.; Hegazey, R.M. Facile Synthesis of HgO Nanoparticles Using Hydrothermal Method for Efficient Photocatalytic Degradation of Crystal Violet Dye Under UV and Sunlight Irradiation. J. Inorg. Organomet. Polym. Mater. 2019, 29, 346–358. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Senkovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Riccò, M.; Bulusheva, L.G.; et al. Single-Walled Carbon Nanotube Reactor for Redox Transformation of Mercury Dichloride. ACS Nano 2017, 11, 8643–8649. [Google Scholar] [CrossRef] [PubMed]
- Wiatrowski, H.A.; Das, S.; Kukkadapu, R.; Ilton, E.S.; Barkay, T.; Yee, N. Reduction of Hg(II) to Hg(0) by magnetite. Environ. Sci. Technol. 2009, 43, 5307–5313. [Google Scholar] [CrossRef]
- Pasakarnis, T.S.; Boyanov, M.I.; Kemner, K.M.; Mishra, B.; O’Loughlin, E.J.; Parkin, G.; Scherer, M.M. Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite. Environ. Sci. Technol. 2013, 47, 6987–6994. [Google Scholar] [CrossRef]
- Harika, V.K.; Kumar, V.B.; Gedanken, A. One-pot Sonochemical Synthesis of Hg–Ag Alloy Microspheres from Liquid Mercury. Ultrason. Sonochem. 2018, 40, 157–165. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, P.; Liu, M. Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: Enhanced catalytic performance by morphology selection. J. Mater. Chem. 2011, 21, 16413–16419. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, D.; Mao, H.; Song, W.; Gao, G.; Liu, F. Preparation and characterization of Ag/AgO nanoshells on carboxylated polystyrene latex particles. J. Mater. Res. 2006, 21, 349–354. [Google Scholar] [CrossRef]
Material | Capacity (mg/g) | Reference |
---|---|---|
Dithiothreitol functionalized Fe3O4 nanoparticles | 6.3 | [30] |
SiO2-Ag0 nanocomposites | 7.8–8.3 | [19] |
Synthetic zeolites | 20.5–22.3 | [42] |
Zeolite-magnetite composites | 26.2 | [32] |
Activated carbon doped with Fe3O4 nanoparticles | 38.3 | [30] |
Nanocomposites based on Fe3O4 nanoparticles, chitosan nanoparticles and polythiophene | 50 | [27] |
Fe3O4 nanoparticles coated with amino organic ligands and yam peel biomass | 60 | [29] |
Dithiocarbamate surface functionalized Fe3O4 particles | 122–246 | [31] |
Mesoporous silica-ammonium (4-chloro-2-mercaptophenyl) carbamodithioate | 164 | [43] |
Thiol-functionalized Fe3O4 nanoparticles | 345 | [28] |
Fe3O4@SiO2 magnetic nanoparticles modified by grafting poly(1-vinylimidazole) | 346 | [21] |
Cryogels | 240–742 | [11] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inglezakis, V.J.; Kurbanova, A.; Molkenova, A.; Zorpas, A.A.; Atabaev, T.S. Magnetic Fe3O4-Ag0 Nanocomposites for Effective Mercury Removal from Water. Sustainability 2020, 12, 5489. https://doi.org/10.3390/su12135489
Inglezakis VJ, Kurbanova A, Molkenova A, Zorpas AA, Atabaev TS. Magnetic Fe3O4-Ag0 Nanocomposites for Effective Mercury Removal from Water. Sustainability. 2020; 12(13):5489. https://doi.org/10.3390/su12135489
Chicago/Turabian StyleInglezakis, Vassilis J., Aliya Kurbanova, Anara Molkenova, Antonis A. Zorpas, and Timur Sh. Atabaev. 2020. "Magnetic Fe3O4-Ag0 Nanocomposites for Effective Mercury Removal from Water" Sustainability 12, no. 13: 5489. https://doi.org/10.3390/su12135489
APA StyleInglezakis, V. J., Kurbanova, A., Molkenova, A., Zorpas, A. A., & Atabaev, T. S. (2020). Magnetic Fe3O4-Ag0 Nanocomposites for Effective Mercury Removal from Water. Sustainability, 12(13), 5489. https://doi.org/10.3390/su12135489