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Abstract: In this study, magnetic Fe3O4 particles and Fe3O4-Ag0 nanocomposites were prepared
by a facile and green method, fully characterized and used for the removal of Hg2+ from water.
Characterizations showed that the Fe3O4 particles are quasi-spherical with an average diameter of
217 nm and metallic silver nanoparticles formed on the surface with a size of 23–41 nm. The initial
Hg2+ removal rate was very fast followed by a slow increase and the maximum solid phase loading
was 71.3 mg/g for the Fe3O4-Ag0 and 28 mg/g for the bare Fe3O4. The removal mechanism is complex,
involving Hg2+ adsorption and reduction, Fe2+ and Ag0 oxidation accompanied with reactions of Cl−

with Hg+ and Ag+. The facile and green synthesis process, the fast kinetics and high removal capacity
and the possibility of magnetic separation make Fe3O4-Ag0 nanocomposites attractive materials for
the removal of Hg2+ from water.
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1. Introduction

Mercury and its compounds are considered to be extremely hazardous pollutants. Contamination
of the environment with mercury has become a global problem and mercury polluted areas have
been identified worldwide [1]. In most cases, the release of Hg0 or Hg2+ into the environment
occurs due to industrial emissions, transportation, waste treatment or technological accidents [2].
Therefore, the development of efficient methods for the removal of mercury from water is imperative.
Several removal and immobilization methods are available, such as membrane separation, reduction,
precipitation, physical and chemical adsorption, ion exchange and bioremediation [3,4]. Of these
methods, adsorption exhibits several advantages in terms of process design, operation and cost and it
is the most studied one [4]. A number of materials have been used as adsorbents for the removal of
Hg2+ from water, including activated carbons [5], zeolites [6,7], resins and other polymers [8–11] and
silver-modified materials [7,12,13].

Silver is an important metal that can form various amalgam compounds with mercury such
as AgHg, Ag2Hg3, Ag3Hg4, Ag4Hg5 and Ag10Hg13 [14]. The amalgamation reaction can be greatly
enhanced by utilizing Ag in the form of nanocomposites. Such nanocomposites based on silica,
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magnetite, titanium oxide and alumina have been studied for the removal of heavy metals and mercury
from water [15–19]. Among them, magnetite-based nanocomposites are being broadly studied for use
in water purification owing to their low cost, simple application, and absence of toxicity towards the
environment [20,21]. Furthermore, magnetite nanoparticles are easily separable from the aqueous
solution when a magnetic field is applied and can be reused several times [22]. Heavy metals can be
bound to the surface of magnetite by complexation, precipitation and adsorption mechanisms. Various
types of magnetic nanomaterials are being investigated for the extraction of hazardous pollutants
from water. In particular, magnetite-based nanocomposites show high efficiency in the removal and
recovery of copper, zinc, nickel and mercury ions from industrial wastewater [23,24].

Fe3O4@SiO2 magnetic nanoparticles modified by grafting poly(1-vinylimidazole) oligomer were
used to remove Hg2+ from water reaching a maximum capacity of 346 mg/g [21]. Fe3O4 nanoparticles
coated with silica shells functionalized with dithiocarbamate groups were used for mercury removal
from seawater and quantification of mercury in natural waters [25,26]. Nanocomposites based on
Fe3O4 nanoparticles, chitosan nanoparticles and polythiophene were used for Hg2+ removal from
aqueous solutions reaching a loading of about 50 mg/g [27]. Thiol-functionalized Fe3O4 nanoparticles
have shown a high removal capacity for Hg2+ reaching 345 mg/g [28]. Fe3O4 nanoparticles coated with
amino organic ligands and yam peel biomass reached a loading of about 60 mg/g [29]. Dithiothreitol
functionalized Fe3O4 nanoparticles showed a capacity of 6.3 mg/g and activated carbon doped with
Fe3O4 nanoparticles reached a capacity of 38.3 mg/g [30]. Dithiocarbamate surface functionalized
Fe3O4 particles reached a loading of 122–246 mg/g [31]. Zeolite-magnetite composites were used to
remove Hg2+ from water reaching a maximum loading of 26.2 mg/g [32]. Fe3O4 particles have been
also used as core covered with a silica shell [33,34].

As the literature review demonstrates the direct surface interactions of mercury ions with bare
Fe3O4 and Fe3O4-Ag0 nanocompositeshave not been studied so far. An exception is the work of Dong
et al. [35] who used Fe3O4-Ag0 particles but for the removal of Hg0 from flue gas. On the synthesis part,
great attention is paid to the development of green processes with minimal use of toxic substances [36].
Plant extracts utilization as reducing and stabilizing agents have drawn considerable attention for the
synthesis of metallic nanoparticles as it is considered an eco-friendly method [37,38]. Furthermore,
the synthesis process should be low-cost and easily scalable for mass production. Such a green
synthesis of Ag nanoparticles on magnetic iron oxide modified by a herbal tea extract has been studied
for antibacterial activity and 4-nitrophenol reduction [37]. In this study, we synthesized magnetic
Fe3O4-Ag0 nanocomposites by a facile method using green tea extract. The nanocomposite was then
used as a magnetically separable adsorbent for efficient mercury removal from water. The mechanism
of mercury removal is discussed in detail and verified by advanced characterization methods.

2. Materials and Methods

2.1. Chemicals

High purity iron (III) chloride hexahydrate (FeCl3·6H2O, 99%), anhydrous sodium acetate
(CH3COONa, 99.0%), anhydrous ethylene glycol (C2H6O2, 99.8%), silver nitrate (AgNO3, ≥99%),
mercury (II) chloride (HgCl2, 99.8%) were used as received. Green tea was purchased at the local market.

2.2. Synthesis of Fe3O4

Magnetite particles were synthesized according to previously published protocols [39,40]. In a
typical synthesis process, FeCl3·6H2O (2.16 g) and CH3COONa (6 g) were dissolved in 15mL ethylene
glycol. The prepared mixture solution was then transferred to a Teflon-lined stainless-steel autoclave
and then heated at 200 ◦C for 8 h, with heating rate of 10 ◦C per 1 min. The black product was
washed by magnet decantation several times with water/ethanol and then dried at 40 ◦C. 2.3. Synthesis
of Fe3O4-Ag0.
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Green tea extract (GTE) was prepared by boiling 0.2 g of dried green tea leaves in 20 mL of water
for 5 min. The GTE was then filtered using a Whatman filter paper N1 to obtain an aqueous extract of
green tea. To prepare the Fe3O4-Ag0 nanocomposites, 100 mg of magnetite spheres were dispersed
in 10 mL of water and dispersed for 20 min. To the above solution, 500 µL of GTE was added and
the solution was stirred at room temperature for 24 h. Finally, AgNO3 (20 mg) was added to the
solution and kept under stirring for 24 h. The as-prepared composite was separated by the magnet,
washed with water/ethanol and then dried at 30 ◦C.

2.3. Mercury Removal Efficiency

The Hg2+ removal efficiency of Fe3O4 particles and Fe3O4-Ag0 nanocomposites was studied in
HgCl2 solutions. A stock solution of Hg2+ (100 and 200 ppm) was prepared by dissolving HgCl2 in
deionized water. The Hg2+ solution volume was 20 mL and the solids mass 50 mg. All adsorption
experiments were performed without any stirring at room temperature (23 ± 2 ◦C) without pH
adjustment. The mercury concentration in the solutions was measured by a mercury analyzer
(Lumex RA-915M) until no concentration changes were observed, i.e., until equilibrium was attained.
All experiments were performed in duplicate and the average standard deviation was 2%.

2.4. Characterization

The crystalline phase and the structure of the synthesized Fe3O4 particles and Fe3O4-Ag0

nanocomposites before and after mercury adsorption were performed using an X-ray diffractometer
(XRD) (RigakuSmartLab, Tokyo, Japan). The surface of the materials was studied by Scanning Electron
Microscopy (SEM) using a Zeiss Auriga Crossbeam 540. Chemical analysis was carried out using an
Energy-Dispersive X-ray spectrometer (Aztec, Oxford Instruments, Abingdon, UK). The nanoscale
analysis was done with a high-resolution JEOL JEM-1400 Plus transmission electron microscope (TEM),
operating at 120 kV.

2.5. Calculations

The kinetics of mercury removal from water was studied in order to obtain information about the
adsorption mechanism of the pure Fe3O4 particles and Fe3O4-Ag0 nanocomposites. The percentage of
mercury removal (R) was calculated using as follows:

R (%) = ((Ci − Cf)/Ci) × 100 (1)

q (mg/g) = (Ci − Cf) × V/m (2)

where Ci and Cf (mg/L) are the initial and final concentrations of Hg2+, V (L) is the volume of the
solution and m (g) is mass of the adsorbent.

3. Results and Discussion

SEM analysis was used to investigate the morphology of as-prepared bare Fe3O4 particles and
Fe3O4-Ag0 nanocomposites. Figure 1A shows that the bare Fe3O4 particles were quasi-spherical and
had a mean diameter of 217± 76 nm. Figure 1B shows that the surface of the Fe3O4-Ag0 nanocomposites
became rougher because of Ag nanoparticle (23–41 nm) deposition on the surface of the Fe3O4 particles.
The TEM image (Figure 1C) and EDX analysis (Figure 1D) confirmed that Fe3O4 particles were
decorated with Ag nanoparticles. In particular, main elements such as Fe, O and Ag were clearly
detectable in the EDX spectrum of Fe3O4-Ag0 nanocomposites. Figure 1E shows that Fe3O4-Ag0

nanocompositesweremagnetic and could be conveniently extracted by the use of a permanent magnet.
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XRD analysis of the bare Fe3O4 and Fe3O4-Ag0confirmed the successful deposition of Ag 
nanoparticles on the surface of Fe3O4 particles. Figure 2 shows that diffraction peaks at 30.1°, 35.5°, 
43.1°, 53.7°, 57.3° and 62.6° couldbe indexed to the (220), (311), (400), (422), (511) and (440) planes of 
the face-centered cubic structure of the Fe3O4(JCPDS # 19-629) and the four peaks located at 38.2°, 
44.3°, 64.2° and 73.9° corresponded to the characteristic (111), (200), (220) and (311) reflection planes 
of the face-centered cubic Ag (JCPDS # 04-0783). It should be noted that the strong diffraction peaks 
indicated the formation of particles with good crystallinity and purity since no other peaks were 
detected. 

 
Figure 2. XRD patterns of bare Fe3O4 and Fe3O4-Ag0 particles. 

Figure 3a shows the adsorption kinetics results. It was found that Fe3O4-Ag0 removed more than 
80% of the mercury within the first hour followed by a slow approach to an equilibrium point with a 
maximum solid phase loading of 71.3 mg/g. On the other hand, the bare Fe3O4 removed less than 10% 
of mercury after the first hour and less than 40% at equilibrium, reaching a solid phase loading of 
about 28 mg/g. Qualitatively similar trends were observed for the removal of Hg0 from flue gas by 
using bare Fe3O4 and Fe3O4-Ag0 [35]. Some studies argue that magnetite either does not remove Hg2+ 

Figure 1. SEM images of (A) bareFe3O4 and (B) Fe3O4-Ag0 particles. TEM image (C) of an individual
Fe3O4-Ag0 particle, (D) EDX spectrum and (E) digital image of Fe3O4-Ag0 particles in a water solution
attracted by a permanent magnet.

XRD analysis of the bare Fe3O4 and Fe3O4-Ag0 confirmed the successful deposition of Ag
nanoparticles on the surface of Fe3O4 particles. Figure 2 shows that diffraction peaks at 30.1◦, 35.5◦,
43.1◦, 53.7◦, 57.3◦ and 62.6◦ couldbe indexed to the (220), (311), (400), (422), (511) and (440) planes of the
face-centered cubic structure of the Fe3O4(JCPDS # 19-629) and the four peaks located at 38.2◦, 44.3◦,
64.2◦ and 73.9◦ corresponded to the characteristic (111), (200), (220) and (311) reflection planes of the
face-centered cubic Ag (JCPDS # 04-0783). It should be noted that the strong diffraction peaks indicated
the formation of particles with good crystallinity and purity since no other peaks were detected.
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Figure 3A shows the adsorption kinetics results. It was found that Fe3O4-Ag0 removed more than
80% of the mercury within the first hour followed by a slow approach to an equilibrium point with
a maximum solid phase loading of 71.3 mg/g. On the other hand, the bare Fe3O4 removed less than
10% of mercury after the first hour and less than 40% at equilibrium, reaching a solid phase loading of
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about 28 mg/g. Qualitatively similar trends were observed for the removal of Hg0 from flue gas by
using bare Fe3O4 and Fe3O4-Ag0 [35]. Some studies argue that magnetite either does not remove Hg2+

or removes only up to 1.14 mg/g [21,41]. As mentioned in the introduction, there are no studies on the
removal of Hg2+ from water by the use of this material and for comparison representative published
studies are presented in Table 1. As is evident, capacity depends on the materials and conditions
used. An important advantage of Fe3O4-Ag0 is the ease of separation of the solid phase after the
adsorption process.
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between 100 and 200 ppm for Fe3O4-Ag0 (B).

Table 1. Published studies on the removal of mercury from aqueous solutions.

Material Capacity
(mg/g) Reference

Dithiothreitol functionalized Fe3O4 nanoparticles 6.3 [30]
SiO2-Ag0 nanocomposites 7.8–8.3 [19]

Synthetic zeolites 20.5–22.3 [42]
Zeolite-magnetite composites 26.2 [32]

Activated carbon doped with Fe3O4 nanoparticles 38.3 [30]
Nanocomposites based on Fe3O4 nanoparticles, chitosan

nanoparticles and polythiophene 50 [27]

Fe3O4 nanoparticles coated with amino organic ligands
and yam peel biomass 60 [29]

Dithiocarbamate surface functionalized Fe3O4 particles 122–246 [31]
Mesoporous silica-ammonium

(4-chloro-2-mercaptophenyl) carbamodithioate 164 [43]

Thiol-functionalized Fe3O4 nanoparticles 345 [28]
Fe3O4@SiO2 magnetic nanoparticles modified by grafting

poly(1-vinylimidazole) 346 [21]

Cryogels 240–742 [11]

Additional experiments for short time demonstrated that reaction on the surface of Fe3O4-Ag0

particles was rapid and the majority of mercury ions are removed within the first 10 min (Figure 3B).
Almost the same trend was observed for two different concentrations of Hg2+.

The interaction of Hg2+ with bare Fe3O4 and Fe3O4-Ag0 was further investigated using SEM,
EDX and XRD. Figure 4A shows the SEM analysis of the bare Fe3O4 after contact with Hg2+ for 12 h.
It was clear that the Fe3O4 particles still retained the quasi-spherical shape. An EDX survey (Figure 4B)
revealed that a small quantity of Hg and Cl were adsorbed on the surface of Fe3O4 particles. Analysis
of the Fe3O4-Ag0 after contact with Hg2+ for 12 h was also performed for comparison. Figure 5A shows
that the morphology of the Fe3O4-Ag0 particles was not changed significantly. However, EDX analysis
revealed that the quantity of adsorbed Hg and Cl significantly increased. The detected amount of Hg
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(wt.%) became five times higher, while the detected amount of Cl (wt.%) became eight times higher.
These results demonstrated that the addition of Ag0wasbeneficial in terms of Hg2+ removal.Sustainability 2020, 12, x FOR PEER REVIEW 6 of 10 
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An XRD analysis was performed to elucidate the adsorption pathways on the surface of bare
Fe3O4 and Fe3O4-Ag0 (Figure 6). Upon contact of Fe3O4 particles with Hg2+, new peaks at 24◦ and
32◦ appeared due to the formation of HgO [44] and a peak at 44◦ appeared due to the formation of
Hg2Cl2 [45]. The reaction mechanism between mercury and magnetite is still not well understood.
However, a recent report suggested that Hg2+couldbe adsorbed on the surface of magnetite from
a HgCl2 solution and then reduced to volatile Hg0 by Fe2+ [46]. The formation of volatile Hg0 is
difficult to confirm but if it happens it obviously gives no trace on the XRD. Another study on magnetite
found that in the absence of chloride ions, Hg2+ is reduced to Hg0, while in the presence of chloride
ions it is reduced to Hg+ resulting in Hg2Cl2 [47], which is in agreement with the results of the present
study.The interaction of Fe species with Hg2+ and the redox reactions resulting in Hg2Cl2, Hg0 and
HgO are discussed in other studies as well [41]. The possible reactions are the following:

2Fe2+ + Hg2+
→ 2Fe3+ + Hg0 (3)

Fe2+ + Hg2+
→ Fe3+ + Hg+ (4)

Hg2+ + 0.5O2→ HgO (5)

2Hg+ + 2Cl−→ Hg2Cl2 (6)
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Figure 6. XRD patterns of Fe3O4 and Fe3O4-Ag0 after 12 h contact with HgCl2 solution.

In the case of Fe3O4-Ag0 nanocomposites, the appearance of a new peak at around 17º probably
indicated the formation of an Hg-Ag amalgam (moschellandbergite phase, Ag2Hg3) [48]. The absence
of literature on the removal of Hg2+ from aqueous solutions by the use of Fe3O4-Ag0 nanocomposites is
difficult to support this conclusion. However, there are papers presenting the removal of Hg from a gas
phase by the use of Fe3O4-Ag0 nanocomposites [35] where the formation of Hg-Ag amalgams is offered
as the best explanation for the efficiency of the nanocomposite in comparison to the bare magnetite.
Additional peaks at around 27◦ and 46◦ were indexed to the AgCl [49] structure, which appeared due
to the reaction between the Ag+ and Cl−. Furthermore, a peak at 53◦ appeared due to the formation of
monoclinic AgO [50]. The formation of Ag2Hg3 and Hg2Cl2 and the effect of Hg2+ speciation on the
reaction mechanismsare discussed in more detail on different Ag0 nanocomposites elsewhere [19,42].
Thus, in addition to reactions (3)–(6), in the presence of Ag0 the following reactions can occur:

2Ag0 + Hg2+
→ 2Ag+ + Hg0 (7)

Ag0 + Hg2+
→ Ag+ + Hg+ (8)

Ag0 + 0.5O2→ AgO (9)

Ag+ + Cl−→ AgCl (10)

2Ag0 + 3Hg0
→Ag2Hg3 (11)

The results suggest that the interactions on the surface of Fe3O4 and Fe3O4-Ag0 are complex
and there is a competition between several reactions, which govern the removal rate of Hg2+ from
water. As it is clear, XPS analysis should be conducted in order to further investigate the possible
redox reactions.

4. Conclusions

Fe3O4 particles and Fe3O4-Ag0 nanocomposites were successfully synthesized, characterized and
used for the removal of Hg2+ from water. The results showed that micron-sized magnetite particles
are formed on which Ag0 nanoparticles are anchored. The mercury removal experiments showed
that Fe3O4-Ag0 nanocomposites are more effective than Fe3O4 particles. XRD analysis revealed the
formation of several compounds on the surface of the materials, including HgO, Hg2Cl2, AgCl, AgO and
possibly Ag2Hg3. The formation of these compounds is a strong indication of surface redox reactions
between Fe2+, O2, Ag0 and Hg2+. Thus, several reactions can occur at the same time and further
characterizations, such as XPS, are needed in order to draw safe conclusions. The facile synthesis,
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the fast removal and the magnetic properties render the Fe3O4-Ag0 nanocomposite a promising
material for Hg2+ removal from water.
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