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Abstract: A key concept in the pharmaceutical industry is open innovation, in which pharmaceutical
companies contribute to human health and adapt to a changing business environment by acquiring
external knowledge. As successful drug discoveries and developments have become challenging,
pharmaceutical companies must proactively pursue the open innovation of new drugs through
various inter-firm partnerships to be more sustainable. This study aims to interpret the trend of
inter-firm partnerships in the development of cancer drugs and to evaluate their effectiveness by
examining inter-firm transactions related to cancer drugs approved by the US Food and Drug
Administration (FDA). It is a novel approach to exercise this on each product instead of at the
company level. The findings revealed that the number of inter-firm transactions in the oncology
field has increased over the past 20 years. Furthermore, the annual number of transactions related to
biologics has surpassed that of small molecules since 2015 and has been primarily driven by three
PD-(L)1 inhibitors: Keytruda, Opdivo, and Tecentriq. Moreover, the average number of inter-firm
transactions related to biologics is significantly higher than that of small molecules in total, in alliances,
and in financing, suggesting that inter-firm transactions for biologic cancer drugs actively occur
through various means. Additionally, a positive and significant correlation exists between the number
of transactions and the average number of approved indications for biologics, but not for small
molecules. These results suggest that the observed trend of active inter-firm transactions is key in
increasing the probability of success in cancer drug research and development. This could provide a
potential breakthrough in this industry for the successful development of innovative drug candidates
to address unmet medical needs. Further study is necessary to confirm the applicability of this
paradigm in broader drug discoveries and development.

Keywords: pharmaceutical industry; open innovation; inter-firm transactions; cancer drugs; biologics;
small molecules; PD-(L)1 inhibitors

1. Introduction

The pharmaceutical industry occupies an important position in society in terms of its ability
to generate valuable solutions for the treatment of diseases and contribute to global human health.
Recently, the environment surrounding the pharmaceutical industry has become challenging, as
most companies have struggled with longer durations to develop drugs, a lower probability of
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success [1] that is defined as phase transition rates or approval rate in most cases in this industry,
and increased research and development (R&D) costs [2,3]. Recently, drug development has become
more complicated due to various modalities (i.e., gene and cell therapies), and high unmet medical
needs in a specific target population (i.e., patients with rare diseases). In this situation, pharmaceutical
companies require a dynamic shift in terms of R&D toward their sustainable development. Specifically,
key regulatory authorities—including the US Food and Drug Administration (FDA), the European
Medicine Agency (EMA), and the Japan Ministry of Health, Labour and Welfare/Pharmaceuticals and
Medical Devices Agency (MHLW/PMDA)—have started to prioritize more innovative, differentiated
drugs by enforcing special regulatory paths for prioritized drug candidates and health economic
analyses for reimbursement. For example, the distinct and successful approaches by the FDA,
MHLW/PMDA, and EMA in their development phases, such as the breakthrough designation (BTD)
launched in 1997, the Sakigake Designation launched in 2015, and Priority Medicines (PRIME) launched
in 2016, respectively, have accelerated drug development [4,5].

While pharmaceutical companies have realized the necessity of external knowledge and expertise
in addressing a diverse R&D pipeline, open innovation is recognized as a potential option in establishing
an adaptive business model in the changing industrial environment, with many major pharmaceutical
companies having already implemented open innovation platforms [6]. While Chesbrough [7] originally
advocated for the open innovation concept, each industry has recently integrated it into their own
business operations [8–11].

Inter-firm transactions in the pharmaceutical industry are considered as part of open innovation,
and this paradigm shift has affected the active partnerships and transactions across companies [12].
From the late 1990s and through to 2010, mergers and acquisitions (M&As) intermittently occurred
between pharmaceutical companies, and the most noteworthy of these were the M&As between the
largest pharmaceutical companies. However, the M&As have recently lost momentum, and previous
research has argued that M&As do not create positive value in terms of R&D productivity, returns on
investments, and profit margins [13,14]. Subsequently, business conditions became increasingly
diverse, with many cases of strategic partnerships without M&As emerging [15,16]. Inter-firm
transactions exist not only between private sectors, but also in various combinations among the private
sectors, venture companies, investment enterprises, and academia. These have gained momentum
with each passing year, resulting in the generation of new drug discoveries or pipelines; moreover,
these partnerships have established biotechnology venture companies by increasing access to external
capabilities and knowledge [17–19]. It is particularly noteworthy that generally licensed compounds
have higher clinical approval success rates than self-originated compounds [20].

Therefore, this work aims to explore the following key question: are inter-firm transactions effective
in the pharmaceutical industry? Many studies argue that open innovation is effective in this industry,
although most focus on the company level, rather than individual products. For example, Carroll
studied the effectiveness of open innovation and its impact in terms of investments, pipeline health,
returns, culture, and capabilities by using real-time data from Eli Lilly [6]. Additionally, Mazzola argued
that institutional collaborations—measured by the number of university research centers and public
and non-profit organizational collaborations for knowledge inflows—positively affect both innovation
performance and financial performance [12]. Bianchi studied the uniqueness of the organizational
models of biopharmaceutical companies with external partners at the company level [21]. Although a
company’s open innovation performance is an important perspective, it is difficult to discern how
inter-firm transactions affect the successful discovery and development of drugs. This is because
many pharmaceutical companies apply different empirical strategies for each drug during their R&D,
manufacturing, and commercialization phases; R&D tactics vary among individual drugs depending
on mode of action, target indication, type of modality, and regional environment, including clinical
practices and regulatory policies, among other factors. Therefore, our approach in this study is to
evaluate the effects of inter-firm transactions on each product.
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To investigate this effectively, we focus on cancer drugs that treat tumors, but we exclude drugs
for cancer prevention, such as cancer vaccines. The scientific field specializing in cancer is also called
oncology or neoplastic, and has been a top therapeutic class in terms of the number of candidates
and approved drugs and active inter-firm deals conducted over the past three decades [3,6,19,22].
Therefore, we believe that sufficient data exist compared to other therapeutic areas. In the oncology
field, immune checkpoint inhibitors represent a major breakthrough, and anti-programmed death-1
(anti-PD-1) antibody and anti-programmed death ligand-1 (anti-PD-L1) antibody are examples of
these. Anti-PD-(L)1 antibody is designed to activate anti-tumor immunity by blocking the PD pathway.
Keytruda (pembrolizumab or lambrolizumab, Merck) was the first PD-1 inhibitor approved by the
FDA for the treatment of melanoma in September 2014, and Opdivo (nivolumab, Bristol-Myers Squibb)
was then approved for the treatment of melanoma in December 2014. Tecentriq (Atezolizumab,
Genentech/Roche) was the first PD-L1 inhibitor approved by the FDA for the treatment of urothelial
carcinoma in May 2016. There have been other PD-(L)1 inhibitors in the market or under development
for treatment of various types of cancer [23–25].

We also focus on a comparison between small molecules and biologics. On the one hand,
small molecules have been an essential modality in the pharmaceutical industry, generated through
well-established techniques and synthetic organic and drug discovery chemistry platforms for over
half a century [26–28]. On the other hand, biologics were first approved in 1998 in the United States
when Embrel was approved by the FDA, and they are currently a major modality in this industry.
Biologics are primarily discovered and developed by biotechnology companies [29]. Small molecules
and biologics are often compared in their specificity and safety [30,31], success rates [1,20,32–34],
development costs [34,35], and drug pricing [36]. Previous research has generally suggested that
biologics have a higher specificity and safety, higher success rates, higher R&D costs, and a longer
R&D period than small molecules. Therefore, it is important to compare small molecules and biologics
in the field of oncology, in terms of inter-firm transaction trends and how these are effective for drug
discovery and development.

We establish the following two hypotheses:

1. Much more inter-firm partnerships are performed for biologics in their product life cycle than for
small molecules.

2. Inter-firm transactions positively impact drug values, or specifically, the number of drug approvals.

We aim to evaluate whether inter-firm transaction trends differ depending on the type of action
by comparing small molecules and biologics. This work also aims to determine whether a correlation
exists between the number of inter-firm transactions and approval rate as a success parameter for
drug discoveries and development, such as the number of approvals. This will provide proof of the
potential effectiveness of active transactions in the pharmaceutical industry.

2. Materials and Methods

2.1. Samples and Data Sources

Sample data on cancer drugs were collected from the FDA’s New Molecular Entity (NME) list of
approved small molecules, and the New Biological Entity (NBE) list of approved biologics [25] from
the calendar years spanning 1999 to 2018. Target drugs are determined based on CenterWatch’s list [37]
of new cancer drug approvals, which we cross-referenced against the FDA’s NME and NBE lists.
We selected 77 small molecules and 30 biologics as samples for this study according to this approach.

Drugs were then identified as approved under BTD by matching our cancer drug list to the list of
breakthrough therapy approvals on the FDA website [38] from the calendar years spanning 2013 to
2018. We identified 21 small molecules and 17 biologics that were approved under BTD for this study
according to this approach.
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2.2. Variables and Data Sources

Information on the number of transactions per product was collected from the Informa database’s
strategic transactions list [39]. We examined 1193 transactions related to identified 107 cancer drugs
approved by FDA. The first layer of deal categories includes acquisitions, alliances, and financing.
The second layer of deal categories in acquisitions includes the acquisition of private biotech; full
acquisitions; includes contracts; includes earn-outs; intra-biotech deals; payment includes cash;
payment includes stocks; reverse acquisitions. The second layer in the alliances category includes
co-promotions; includes contract; includes equity; includes royalties or profit split information;
intra-biotech deals; marketing-licensing; product or technology swaps; R&D and marketing-licensing;
and trial collaborations. The second layer in the financing category includes follow-on public offerings;
initial public offerings; nonconvertible debt; private investments in public equity; and private placement.

The number of indications were collected from labels on the FDA website [25]. We counted the
number of indications listed in the Indication and Usage section of each drug’s label, which is the X in
the “Section 1.X” noted on each label.

2.3. Statistical Analysis

Microsoft Excel 2016 is used for our study’s statistical analysis. We performed Welch’s t-test
and ordinary least squares (OLS) regression corresponding 95% confidence intervals. p-value were
obtained and showed p < 0.01 as **, p < 0.05 as * and p < 0.1 as † in figures.

3. Results

3.1. Inter-Firm Partnerships for Biologics and Small Molecules

First, Figure 1a displays the transition in the number of approved cancer drugs’ NME and NBE,
for small molecules and biologics, respectively, from year 1999 to 2018. It reveals that the number of both
small molecules and biologics generally increased every year in the sample period. Figure 1b illustrates
the accumulated number of transactions for cancer drugs in each year. Clearly, transactions increase
yearly for both small molecules and biologics, with a substantial increase in biologics transactions
from 2015.
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We investigate Hypothesis 1 by performing Welch’s t-test between small molecules and 
biologics in terms of the average number of transactions of individual drugs in total and the three 
major strategic transaction categories: acquisitions, alliances, and financing. Figure 2 indicates that 
inter-firm transactions occur more actively occur with biologics than small molecules, and the 
average number of total, alliances, and financing transactions are significantly higher for biologics 
than small molecules (small molecules: biologics’ total = 8.12, SD 7.439: 18.93, SD 24.673, p < 0.05; 
alliances = 5.77, SD 5.647: 14.90, SD 19.485, p < 0.05; financing = 1.27, SD 2.017: 2.37, SD 3.388, p < 0.1). 
In other words, Hypothesis 1 is supported given the number of transactions in total, as well as in the 
alliances and financing categories. 
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We investigate Hypothesis 1 by performing Welch’s t-test between small molecules and biologics
in terms of the average number of transactions of individual drugs in total and the three major
strategic transaction categories: acquisitions, alliances, and financing. Figure 2 indicates that inter-firm
transactions occur more actively occur with biologics than small molecules, and the average number of
total, alliances, and financing transactions are significantly higher for biologics than small molecules
(small molecules: biologics’ total = 8.12, SD 7.439: 18.93, SD 24.673, p < 0.05; alliances = 5.77, SD 5.647:
14.90, SD 19.485, p < 0.05; financing = 1.27, SD 2.017: 2.37, SD 3.388, p < 0.1). In other words, Hypothesis 1
is supported given the number of transactions in total, as well as in the alliances and financing categories.
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3.2. Key Driver of Inter-Firm Transactions for Biologics in 2015

As we discovered that the total number of small molecules and biologics transactions reversed
since 2015, we decide to investigate why this occurred. Table 1 indicate that Keytruda, Opdivo,
and Tecentriq were key drivers of the number of transactions in 2015. All three of these drugs are
noteworthy immune-checkpoint inhibitors, which are the new standard of care in patients with cancer
(including non-small-cell lung cancer and melanoma, among others), since Keytruda and Opdivo were
originally approved in 2014 and Tecentriq was approved in 2016. It is observed that the transactions
for these three drugs increased just after their original approvals. It is also suggested that the number
of transactions after the original approval in biologics generally exhibited a much more substantial
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increase than that of small molecules. When only observing the year 2015, the number of transactions
for Imfinzi, Kadcyla, and Yervoy are also high, but with no tendency toward continuity.

Table 1. The annual number of transactions for each drug from year 1999 to 2018: Small molecules
and Biologics.

Original
Approval Year

Brand
Name Generic Name +5y +4y +3y +2y +1y App −1y −2y −3y −4y −5y

Small Molecules

2018 VITRAKVI LAROTRECTINIB NA NA NA NA NA 0 6 0 0 0 1

2018 COPIKTRA DUVELISIB NA NA NA NA NA 6 2 1 0 1 0

2017 ZEJULA NIRAPARIB NA NA NA NA 4 6 5 1 1 1 1

2012 XTANDI ENZALUTAMIDE 0 6 3 3 2 0 0 0 1 0 0

2012 ICLUSIG PONATINIB 3 5 3 6 1 0 1 1 0 0 0

2004 TARCEVA ERLOTINIB
HYDROCHLORIDE 4 5 5 2 2 1 2 1 1 0 0

Biologics

2017 BAVENCIO AVELUMAB NA NA NA NA 7 5 6 3 1 0 0

2017 IMFINZI DURVALUMAB NA NA NA NA 8 4 1 10 2 0 0

2016 TECENTRIQ ATEZOLIZUMAB NA NA NA 10 10 12 5 1 1 0 0

2014 KEYTRUDA PEMBROLIZUMAB NA 20 28 15 19 3 0 1 0 0 0

2014 OPDIVO NIVOLUMAB NA 11 23 15 12 6 0 0 1 0 0

2013 KADCYLA TRASTUZUMAB
EMTANSINE 5 5 6 7 2 7 3 2 1 5 0

2011 YERVOY IPILIMUMAB 7 7 5 1 1 4 0 1 0 0 2

2004 ERBITUX CETUXIMAB 1 1 5 6 5 6 2 2 0 2 1

2004 AVASTIN BEVACIZUMAB 1 2 2 8 2 2 1 2 0 0 0

The annual number of transactions in the original approval year and ±5 years are indicated as 6–10 (light gray),
11–20 (dark gray), or 21 or more (black). Drugs with less than six transactions per year are excluded from this table.
App = original approval year, y = year(s), and NA = not applicable.

3.3. Relationship between Inter-Firm Transactions and Approved Indications

We investigate Hypothesis 2 by comparing the number of approved indications between small
molecules and biologics and performing Welch’s t-test. As Figure 3 demonstrates, biologics have
statistically more approved indications than small molecules (small molecules: biologics = 1.74,
SD 1.490: < 2.73, SD 3.084, p < 0.1).
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We then investigate the correlation between the number of approved indications and the number
of inter-firm transactions in both small molecules and biologics, then perform an OLS regression
for each transaction category. The results shown in Figure 4 reveal that all categories of biologics
transactions statistically correlate with the number of approved indications, although this is not
observed with small molecules (R in the total, acquisitions, alliances, and financing categories are 0.82,
0.66, 0.80, and 0.84, respectively; p < 0.01). This supports Hypothesis 2.Sustainability 2020, 12, x FOR PEER REVIEW 8 of 15 
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3.4. Relationship between Inter-Firm Transactions and Approved Indication under BTD

To further study Hypotheses 1 and 2, we compare the number of approvals for cancer drugs under
BTD in small molecules and biologics as BTD. This is a relatively new regulatory path as previously
described. Specifically, it aims to provide patients with better access to innovative drugs through
generous regulatory and scientific support from the FDA. The results reveal that a higher ratio of
biologics is approved under BTD, or 27.3% (21 out of 77) for small molecules and 56.7% (17 out of 30)
for biologics. We also compare the average number of approvals under BTD between small molecules
and biologics, then performed Welch’s t-test. Figure 5 illustrates a noteworthy finding, in that the
number of approvals under BTD for biologics are statistically higher than that for small molecules
(small molecules: biologics = 0.50, SD 0.995: < 1.30, SD 2.152, p < 0.05).
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We also study the correlation between the number of approvals under BTD and the number of
inter-firm transactions in both small molecules and biologics, then perform an OLS regression in each
transaction category. Consequently, Figure 6 shows that all biologics transaction categories statistically
correlate with the number of approved indications, although this is not observed with small molecules
(R of the total, acquisitions, alliances, and financing categories are 0.69, 0.49, 0.69, and 0.68, respectively;
p < 0.01). This result suggests that active inter-firm transactions involving biologics positively affect
approvals under BTD. This is an important finding, as the same tendency occurs under the innovative
indicator, which is confirmed in Figure 4.
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4. Discussion

We investigate the effectiveness of inter-firm transactions during the discovery and development
phases of oncology drugs by evaluating the number of transactions and approved indications.
We collected data for each parameter from an open source database and performed statistical analyses
to study the trends of inter-firm transactions, the correlation between inter-firm transactions and
approved indications, the correlation between inter-firm transactions and the number of approvals
under BTD, and the trends in small molecules and biologics over the past 20 years. Our findings
support our hypotheses and suggest that inter-firm transactions could be an important success factor
in generating innovative biologics in the oncology field, although this would not be the case for
small molecules.

As to the effective judgement of transactions by partners, these occurred more in the approval
year or after, as shown in Table 1. This suggests that external partners tend to make decisions regarding
deals after the candidate drugs are deemed promising. Bianchi argues that two dimensions exist for
open innovations in bio-pharmaceutical companies: inbound and outbound open innovation [21].
The former involves collaborations with other companies to sense and absorb the novel knowledge
and technologies to trigger new innovations in early developmental stages, while the latter includes
collaborations for commercial exploitation in later developmental stages. The majority of the data
observed in this study could be categorized as outbound innovation, while further study is needed
to unveil the prospects for inbound open innovation in this field. The limitations of the database
used could also be a factor, as we searched for transactions by generic and brand names, but not by
development code, as this would not work well with strategic transactions.

Regarding the type of enterprise, biologics are primarily discovered by biotechnology
companies [18,29] and these had smaller R&D budgets during the timespan addressed in this
study’s developed hypotheses. In fact, the ratio of applicants that were originally approved in
small molecules was 70% for pharmaceutical companies versus 30% for biotechnology companies;
of those approved in biologics, 53% were pharmaceutical companies, while 47% were biotechnology
companies. This suggests that a higher ratio of biologics is developed by biotechnology companies.
Alternatively, pharmaceutical and biotechnology companies applied an average of 18 and 21 biologics
transactions, respectively, which are not statistically significant (p = 0.7). This may be because the top
two biologics of the total number of transactions are Keytruda and Opdivo, which were developed by
pharmaceutical companies. Additionally, more than half of biotechnology companies hold a large share
of the market: Genentech, which is now a member of the Roche Group, holds five drugs; Amgen holds
two; and Janssen holds one. These three companies have developed 8 of the 14 biologics developed by
biotechnology companies. It is compelling that frequent inter-firm transactions may not relate to the
company type or size.

We further investigated details regarding the types of inter-firm transactions that occurred for
Keytruda, Opdivo, and Tecentriq, which led the transition period in 2015. We classified the transactions’
levels in detail by observing the second layer of deal categories. Some deals overlapped, in that one
deal covered multiple types of transactions at the second layer of deal categories, and we counted these
cases in all types of transactions. Table 2 illustrates that the trial collaboration is a common type of
active transaction for all three drugs, which includes therapies combining other drugs licensed by other
companies, followed by R&D and marketing-licensing, and includes royalty or profit split information.
This can be objectively observed that life cycle management is highly active. This is also can be seen on
company websites and ClinicalTrials.gov [40], an Internet-based resource that provides information
on publicly and privately supported clinical studies of a range of diseases and conditions provided
and updated by the study’s sponsor or principal investigator. The number of approved indications is
also high, as Keytruda is ranked first of the 30 biologics that we investigated, with 15 indications; it is
followed by Opdivo, ranked second with 10 indications; and Tecentriq, which was ranked fifth, with
4 indications. These observations suggest that inter-firm transactions are effective for successful drug
discoveries and development in biologics. It is also noteworthy that trends in inter-firm transactions

ClinicalTrials.gov
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over the past two decades differ between PD-(L)1 inhibitors and other types of cancer drugs, even in
biologics. As differences in the observed durations for each drug exist depend on the original approval
year, future researchers could further investigate this topic.

Table 2. Detailed types of inter-firm transactions for Keytruda, Opdivo, and Tecentriq performed from
1999 to 2018.
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Keytruda 3 8 4 4 0 8 1 0 7 1 3 11 6 4 0 16 56 5 3 0 3 7

Opdivo 4 6 3 4 1 5 2 1 3 2 6 18 2 1 1 27 40 2 4 1 0 2

Tecentriq 1 1 0 1 0 1 0 0 5 1 2 12 18 0 0 12 30 0 4 0 0 1

The number of transactions is indicated as 10 or less (white), 11–19 (light yellow), or 20 or more (yellow).

As another point to expand, our study’s evaluation of trends among inter-firm transactions
also revealed that horizontal collaborations have occurred more actively in biologics, and especially
in the PD-(L)1 inhibitor segment of cancer drugs. This point should be investigated in depth in
future research. Originally, the pharmaceutical industry comprised vertically integrated organizations,
in which adjusting several different types of specialized knowledge and compiling a myriad of research
was both necessary and important in creating novel types of drugs [41]. However, the trends of open
innovations have expanded to several other industries and, thus, we observe the current, horizontally
collaborative modes between pharmaceutical firms and start-ups [42,43].

5. Conclusions and Implications

We originally attempt to evaluate the effectiveness of inter-firm partnership in this pharmaceutical
industry. Our findings suggest that a new paradigm exists to determine a pathway for successful
drug discoveries and development in oncology; the more inter-firm transactions that are performed
(especially trial collaborations), the more approvals that are achieved. This could provide a potential
breakthrough in this industry to successfully develop innovative drug candidates to address current
critically unmet medical needs. While we have not focused on other modes of action to investigate
this issue, further study is necessary to confirm the applicability of this paradigm in broader drug
discoveries and development in the pharmaceutical industry, which has a very important role in
society. The pharmaceutical industry is expected to continuously deliver innovative treatment options
to patients and healthcare providers for a sustainable future. We have realized this through our
own experiences, especially when we face critical situations such as the current COVID-19 pandemic,
where effective collaboration across companies is necessary to share knowledge, pool capabilities and
resources, and leverage these for timely and effective drug research and development.
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