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Abstract: Trace metal contamination in urban road dust has attracted global concern due to its
potential risk to the urban environment and human health. Compared to big cities, relative studies
in counties and small towns have not been well quantified. This research identified the trace metal
contamination characteristics and possible sources in the road dust of a typical mountainous county
and a town in the Three Gorges Reservoir region, southwest China, and their associations with
major regional socio-economic factors. The trace metal concentrations were determined, and the
contamination levels were assessed. Concentrations of Zn, Pb, and Cu were relatively high in both
locations, and a significant accumulation of them was confirmed by the geo-accumulation method.
Multivariate analysis and geographic information system (GIS) mapping were combined to explore
the sources of trace metals in the investigated area. Anthropogenic activities predominantly affected
the contamination levels of Zn, Pb, Cu, and Co, and traffic emission, agricultural activities, and fossil
fuel combustion were their main sources. The significant accumulation of Zn should attract special
concern for its wide use in industrial and agricultural activities. Population and vehicle density were
the main factors that controlled the trace metal contamination levels in the roadway dust. Rapid
urbanizing promoted trace metal accumulation in counties and towns. Therefore, it is urgent to make
appropriate strategies for trace metal pollution mitigation in the process of urbanization.
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1. Introduction

Road dust is a valuable indicator of urban environment quality, which has attracted global concern
in recent years due to its negative environmental impacts [1–8]. Trace metals in urban roadway
dust were considered a priority for their high toxicity, long-distance transport, and bioaccumulation
properties [8,9]. Trace metal pollution in urban areas has been widely investigated across the
world [10–14]. Cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), zinc (Zn), nickel (Ni),
and arsenic (As) were reported as ubiquitous pollutants in urban roadway dust [1–9,15–17]. Road dust
might effortlessly enter the human body via ingestion, dermal contact, and inhalation because of
small particle size and inherent mobility in windy weather, which poses a potentially high health
risk to human beings [15–23]. According to Wei and Yang [24], approximately 65% of all Chinese
cities presented a high trace metal pollution level in urban roadway dust, indicating significant effects
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of anthropogenic activities. In the last two decades, investigations of trace metal accumulation in
roadway dust have been extensively conducted in China [1–6,14–28]. Concentration, spatio-temporal
distribution, environmental risk, and source of trace metals in roadway dust have been extensively
studied [25–29]. However, these studies were mostly carried out in large cities [15], and limited
information could be found about counties or small towns.

China has experienced rapid industrialization and urbanization in recent decades. By the
end of 2018, there were 2851 counties and 39,945 towns in China, and the average growth rate of
urban residence was 3.4 % in the last two decades (2001–2018) [30]. In this process, continuously
increasing population density and anthropogenic activities will inevitably place great stress on the
local environment. Except for traffic and industrial emission, the misuse of chemical fertilizers and
pesticides might also be a potential source of trace metals in counties and small towns [31]. Furthermore,
long-distance transport by atmospheric dust might be another source of some trace metals in roadway
dust [32]. The mobility and various sources of road dust make it difficult for us to fully understand the
mechanism of the accumulation characteristics and fates of trace metals in the urban environment,
especially in counties and small towns. Meanwhile, the quality of public service and medical care
in these areas is far behind those in big cities. Therefore, the prevention and control for trace metal
contamination in counties and small towns are great challenges for the government of China.

Chongqing is the only municipality in southwestern China. The urbanization rate of Chongqing
was 35.6% in 2000, and it became 65.5% by the end of 2018 [30]. During the rapid process of urbanization,
intense anthropogenic activities, such as industrial, agricultural, commercial, and traffic activities,
greatly affected the local environment [33]. Moderate pollution of trace metals was observed in the
Chongqing surface environment [34–36]. The massive use of fossil fuels in industrial production
and the rapidly increasing number of motor vehicles were suggested to be predominant sources of
trace metals in Chongqing [37]. Furthermore, a higher health risk resulted from trace metals in road
dust was observed in southeast China, Chongqing included [1,37]. Wushan is a typical mountainous
county in the Three Gorges Reservoir Region of China, which is located in the northeast of Chongqing.
Previous studies reported that the soils in a town of Wushan were polluted by cadmium, which might
cause adverse risk to the local residents [38,39]. Nonetheless, the metal pollution status of road dust in
this area is limited. This research characterized the spatial variation, assessed the accumulation degree,
and determined potential sources of the target trace metals in road dust. Furthermore, the associations
of trace metal accumulation levels and the major regional socio-economic factors were analyzed.
The findings of this research will enhance our understanding of the trace metal accumulation in
counties and towns during the rapid urbanization process.

2. Materials and Methods

2.1. Study Area and Sample Collection

The study area is situated in the northeast of Chongqing Municipality (105◦11′~110◦11′ E,
28◦10′~32◦13′ N), which is surrounded by two rivers and four mountains (Figure 1). Wushan county
(109◦33′-110◦11′ E, 30◦45′-23◦28′ N) is known as the “East Gate of Chongqing” and is located in the
central region of the Three Gorges Reservoir Region, which has several key enterprises, including
thermal power plants, building-material chemical plants, cement plants, and cigarette factories.
The sampling campaign was conducted from July to August in 2017. A total of 80 road dusts were
sampled in Wushan county, and 10 samples were collected in Duping town. Detailed information was
provided in the supplementary information (SI).
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2.2. Analytical Procedures and Quality Assurance

All samples were pretreated according to our previous method [5]. Briefly, the dust samples
were put through the procedure of air-drying, slightly crushing, and screening with a 200-mesh sieve.
Eight trace metals (Co, Cu, Zn, Cr, Ni, Mn, Pb, V) were detected with X-ray fluorescence spectrometry
(XRF, Brucker S8, Germany). Method detection limits (MDLs) were 1.6, 1.2, 2.0, 3.0, 1.5, 10.0, 2.0,
and 4.0 mg/kg for Co, Cu, Zn, Cr, Ni, Mn, Pb, and V, respectively. The milled road-dust sample
(4.0 g) and boric acid (2.0 g) were weighed out accurately and placed in the mold, then pressed
into a 32-mm diameter pellet under 30-ton pressure for metal determination. The method accuracy
was evaluated by analyzing the reference materials (GSD12 and GSS1, Institute of Geophysical and
Geochemical Exploration, Chinese Academy of Geological Sciences). Replicate analytical errors of the
target elements were in the range of -8.6 % to 9.3 %. The average relative standard deviation (RSD) of
two replicates of 18 dust samples was between 2.6% and 7.9%. More details were provided in the SI.

2.3. Contamination Evaluation

The geo-accumulation index (Igeo) was often applied to identify the influence of anthropogenic
activities on the hypergene environment and estimate the accumulation levels of trace metals [16,17].
Igeo is computed as the equation (1):

Igeo = log2

[ Cn

1.5× Bn

]
(1)

where Cn is the content of trace metals in the road dust, Bn is the baseline value of the trace metals,
and the soil background values in Chongqing [40] were used as Bn values in this study [5]. The seven
pollution levels are classified in Table S1.
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2.4. Statistics and Data Processing

Statistical analysis of trace metals in dust was conducted using SPSS 25.0. Multivariate statistical
analysis combined with GIS mapping was introduced to conduct the source analysis of the trace metals
by using JMP 13.0 and ArcGIS 10.2, respectively. Redundancy analysis (RDA) was carried out using
Canoco 5 to quantify the impact that environmental variables might make on trace metal accumulation.
Tukey-Kramer HSD test was conducted to examine the significant differences at a significance level
of 0.05 [41].

3. Results and Discussion

3.1. Contents of Trace Metals in Roadway Dust

Statistical results of the analyzed trace metals in roadway dust for both locations are listed in
Table 1. For samples in Wushan, the median concentrations were 57.3, 49.4, 33.7, 22.4, 427.6, 31.9,
62.1, and 98.0 mg/kg for Cr, Co, Cu, Ni, Mn, Pb, V, and Zn, respectively. For Duping, the median
concentrations of the eight trace metals were 72.0, 24.8, 23.9, 28.0, 1020.0, 27.3, 84.1, and 121.6 mg/kg.
Although trace metal contents in this study were lower than those in big cities in China, according to the
results of Wei and Yang [24], several trace metals already presented a certain degree of accumulation in
both locations. Contents of Zn and Co in the road dust in both locations were generally elevated in
comparison with the soil background value. In addition, Co and Pb in Wushan and Mn in Duping
were relatively higher.

Table 1. Descriptive statistics of trace metal concentrations in the road dust from Wushan and
Duping (mg/kg).

Elements Co Cr Cu Mn Ni Pb V Zn

Wushan

Minimum 17.5 29.4 14.1 295.8 13.9 15.6 42.1 39.9
Maximum 127.6 150.7 160.2 1278.1 81.5 118.5 120.1 461.4

Mean 53.2 61.2 37.0 464.5 24.4 38.4 66.6 120.7
Median 49.4 57.3 33.7 427.6 22.4 31.9 62.1 98.0

SD 25.3 18.4 19.4 164.1 8.5 22.4 15.1 78.9
CV (%) 47 30 52 35 35 58 23 65

Kurtosis −0.33 6.21 20.01 13.72 24.93 2.94 2.31 4.69
Skewness 0.60 1.77 3.62 3.37 4.10 1.78 1.53 2.05

Reference value [40] 17.6 79.0 31.1 657 32.6 30.9 96.0 86.5

Duping

Minimum 20.8 45.3 14.3 374.7 21.5 19.3 54.1 49.0
Maximum 59.0 84.9 44.2 1194.4 35.7 129.5 101.6 369.5

Mean 31.4 70.0 26.0 851.7 26.8 41.0 80.6 134.7
Median 24.8 72.0 23.9 1020.0 28.0 27.3 84.1 121.6

SD 14.8 12.6 9.5 348.1 4.4 36.0 16.4 92.3
CV (%) 47 18 36 41 16 88 20 69

Kurtosis 0.68 0.08 −0.15 −2.04 0.50 4.05 −1.28 5.08
Skewness 1.49 −0.83 0.76 −0.42 0.62 2.14 −0.38 2.04

Reference value [40] 17.6 79.0 31.1 657 32.6 30.9 96.0 86.5

SD: standard deviation; CV (%): coefficient of variance.

Furthermore, the results of the Tukey-Kramer HSD test suggested a significant difference for
the contents of Mn, Co, and V in Wushan and Duping, and insignificant difference for other trace
metals (α = 0.05) (Figure S1). Cobalt concentration in Wushan was significantly higher than that in
Duping, which might be due to the thermal plant in the east of Wushan. Contrarily, Mn and V in
Wushan were significantly lower than those in Duping. Apparently, this result seemed to contradict
with the common conclusion that the trace metal pollution level generally reduces from the urban
to suburban [12]. But the recent research confirmed that recently introduced metals in automotive
technology were higher in younger roads, which might be relative to the higher concentration of Mn in
the street of Duping than that in Wushan. Vehicular speed, road age, and traffic density might be the
influencing factors that led to the difference in Wushan and Duping [42]. In addition, this result might
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also be due to the differences among the sample amounts or potential sources in the surrounding area,
which should be further explored.

The result of this study was compared with the data reported for cities in China and other
countries, Chongqing included (Table S2). The trace metal concentrations were generally at a moderate
level. Specifically, the trace metal contents in Chongqing were generally lower than in the megacities
of Beijing [43] and Shanghai [44], and they were comparable to the provincial capital cities, such as
Xi’an [5], Lanzhou [45], and Wuhan [46]. These results reflected that the high concentrations of
trace metals were closely related to the larger population [47]. Similarly, trace metal contents in
Wushan and Duping were lower than those in the urban area of Chongqing [48], especially Cu and Pb.
The result indicated that population density could have an obvious impact on the spatial distribution
of trace metals.

As presented in Table 1, a wide range of concentrations for each metal was observed as shown by
the high values of variation coefficients (CV%). Generally, a CV% ≤ 20 % indicates low variability,
a CV% range of 21–50% indicates moderate variability, and a CV% range of 51–100% suggests high
variability [5]. For Wushan, Pb, Cu, and Zn presented high variability (CV% > 50%), while the other
trace metals showed moderate variability (CV% > 21%). For Duping, only Pb and Zn showed high
variability (88% and 69%). Cobalt, Cu, and Mn showed moderate variability, while the other trace
metals showed low variability. Therefore, Pb and Zn in both locations presented spatial heterogeneity,
which might indicate the input of anthropogenic sources as observed in metropolises [49].

3.2. Trace Metal Pollution Levels in Roadway Dust

To quantitatively assess the trace metal accumulation level, the Igeo values were calculated for each
metal (Figure 2). The mean values of Igeo of the trace metals were generally lower than 0, indicating
no contamination of these elements at present. Only the mean Igeo value of Co in Wushan county
and those of Co and Pb in Duping were slightly higher than 0, which suggested no contamination to
moderate contamination [50].
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But it should be noticed that many individual values of Igeo were higher than 0, which might
indicate some degree of trace metal contamination in the sampling sites. Specifically, the Igeo of Cu,
Co, Pb, and Zn in Wushan and Co, Pb, and Zn in Duping were mostly higher than 1, which indicated
moderate contamination of these metals in corresponding sampling sites. Therefore, the above metals
were the main potential pollutants in both locations. Compared to those in Chongqing, the accumulation
levels of these elements in Wushan and Duping were generally lower [34,35]. This result further
confirmed that trace metal contents in road dust might increase along with city growth and its
dynamics [51].

3.3. Multivariate Statistical Analysis and Source Identification

3.3.1. Correlation Analysis between Trace Metals

Spearman’s correlation coefficients are illustrated in Tables S3 and S4 to reveal the interrelationships
among trace metals, Al and Fe. For Wushan, moderate positive correlations existed in the following
trace metal pairs: Mn-Cr, Cu-Cr, Pb-Cr, Ni-Cr, V-Cr, Zn-Cr, Cu-Pb, Cu-Ni, Cu-Zn, Mn-V, Mn-Ni, Zn-Ni,
V-Ni, and Zn-Pb. Since significant correlations of trace metals suggested a similar origin of them [52],
three groups of the analyzed trace metals were identified. Of the eight metals, significant correlations
were found between Cr, Ni, Mn, and V, and they all significantly correlated to Fe and Al. This result
indicated similar geochemical behaviors of these metals and natural sources of them. Copper, zinc,
and lead also showed a significant correlation between each other, but they presented weak or no
correlations to Al and Fe. Therefore, the main source of them was from anthropogenic activities [2].
Only Co was not correlated to any of the other elements, which suggested a different source of this
element. For Duping, similar results were found. Significant positive correlations were observed
between Cr-V, Cu-Pb, Mn-Ni, Mn-V, and Ni-V. Similarly, Cr, Ni, Mn, and V were indicated to primarily
originate from natural sources. Copper and Pb were significantly correlated to each other and had
similar sources. Zinc and Co were not correlated with any of the other metals, and they might have
different sources.

3.3.2. Principal Component Analysis (PCA)

Principal component analysis (PCA) was conducted with the data from Wushan to provide an
estimation of the amount of variance explained by a particular number of components (Table S5).
The results of PCA exhibited that four principal components (PCs) were obtained to interpret 82.46%
of the total variance. PC 1 was predominately composed of Cr, Mn, and V, which explained 26.64% of
the total variance. PC 2 explained 25.74% of the data variance, which was heavily weighted by Cu, Pb,
and Zn. PC 3 and PC 4 accounted for 16.61% and 13.47% of the total variance, and the main element
was Ni and Co, respectively.

An intuitive representation of the result was illustrated by a rotated component loadings plot
(Figure 3). The vectors representing the contents of Cu, Cr, Pb, Mn, Zn, and V were close to 1, indicating
a good representation of these elements by PC 1 and PC 2. By analogy, the direction and length of
the vectors of Ni and Co indicated that they were well represented by PC 3 and PC 4, respectively.
Interestingly, the loading characteristics of Ni and Co were visibly different. The vector of Ni directed
towards PC 2 to some degree, but that of Co only directed towards PC 4.
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3.3.3. Source Identification

Trace metals are considered to be markers of some typical sources [53]. The results of correlation
analysis and PCA combined, three groups were identified for the eight trace metals studied in Wushan.
To validate the correlation between trace metals and environmental factors, RDA was conducted
and similar results were obtained (Figure 4). Several environmental variables of road dust, such as
magnetic susceptibilities (i.e., low-frequency (LF), high-frequency (HF), frequency-dependent (FD))
and total organic carbon (TOC), were included. Both magnetic susceptibilities and TOC were helpful
indicators of the anthropogenic sources of trace metals [54].
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The first group included Cr, Mn, Ni, and V, and their close relationships to the conservative
elements, i.e., Al and Fe, indicated that they mainly originated from natural sources [55]. This result
was consistent with that of the Igeo, which indicated no obvious contamination of the above metals in
the study area.

The second group included Cu, Pb, and Zn, and their close relationships to LF, HF, and TOC
suggested that they mainly came from anthropogenic sources [54]. It was generally acknowledged
that traffic emission was the dominant source of Pb, Cu, and Zn in roadway dust [1,52,55]. Except for
traffic emission, fertilizers and agrochemicals applied in agricultural activities were also suggested to
be one source of trace metals in road dust [56,57]. In our study, TOC was measured and significant
correlations were observed between TOC and Cu (R = 0.49, α = 0.05) and TOC and Zn (R= 0.72,
α = 0.05). Since TOC represented the organic content in urban dust, the value of TOC was closely
related to agricultural activities in the study area. Continuous and heavy application of inorganic
fertilizer, pesticides, and soil amendments would cause the metal accumulations in road dust [58].
Thus, traffic emission and agriculture activities were identified as the main sources of Pb, Cu, and Zn
in roadway dust.

Of the three metals in this group, Zn presented a high level of accumulation in most areas of
Wushan. According to Liu et al. [29], Zn might become the most dominant metal in road dust due to its
wide utilization in the components of vehicles. In addition, Zn might also originate from agricultural
fertilizers and livestock manure [59]. Considering the phase-out of leaded gasoline, a historical trend
of an obvious decrease has been observed for Pb in recent decades [6,60]. Therefore, more attention
should be gradually shifted to Zn.

Cobalt was separated from the other trace metals, which might originate from the large
consumption amounts of coal and fossil fuel in China [61]. Since the amount of trace metals
from the atmospheric deposition in this area was high, the thermal power plant in the east of Wushan
might affect the distribution pattern of Co by air pollutant migration [7,62].

As for Duping, similar results were observed. Chromium, Mn, Ni, and V presented significant
correlation to Al and Fe, which indicated the natural source of them. Copper and Pb were significantly
correlated to each other, which might originate from traffic emission. Different from Wushan, Zinc
presented no significant correlation to other metals. As discussed above, Zn might have a mixed
source, which includes traffic emission and agriculture activities [28,63].

3.4. Spatial Distribution Characteristics of Trace Metals

Considering the non-normal distribution of trace metal contents, Gauss Kriging interpolation
method was applied to explore the spatial distribution characteristics of trace metals in Wushan.
As shown in Figure 5, low concentrations and spatial heterogeneity of Mn, Ni, Cr, and V further
confirmed the natural origins of these elements. Some high metal concentrations were observed in the
southwest corner of Wushan, and this might be due to the scattering point pollution sources related to
steel product processing [64].

Copper, Pb, and Zn presented similar spatial distribution characteristics, which suggested that
except for industrial land use, residential land use was also characterized as having a high accumulation
of Cu, Pb, and Zn [65]. Meanwhile, most of the heavily polluted points scattered along the diagonal of
Wushan, especially for Pb and Zn. This diagonal was consistent with the two main road directions,
which confirmed that these metals were closely associated with traffic emissions [66].

As discussed above, Co was the most contaminated metal in this study. It could be observed in
Figure 5 that Co concentrations in most areas in Wushan were higher than the background value and
the concentrations increased obviously from northeast to southwest. The wide distribution of Co might
be the result of the wide use of biomass fuels by local residents [67]. While the increasing tendency was
due to the thermal power plant in the east of the county and the prevailing wind direction in this area.

In conclusion, the results of GIS mapping combined with the application of multivariate statistical
analysis indicated that trace metal contamination in Wushan and Duping were not as serious as that in
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big cities at present. However, the accumulation and potential environmental risks of trace metals
should not be neglected. Trace metals in road dust exhibited complex spatial variations and patterns in
counties and small towns impacted by the rapid industrialization and urbanization [68].
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3.5. Relationships between Trace Metal Contamination and Socio-Economic Factors

Socio-economic factors such as the population size, population density, built-up area, industrial
structure, gross domestic product (GDP), and the number of automobile vehicles were commonly
related to the environmental contamination levels [42,69]. In reference to previous research and
data availability, the following factors of the Chongqing region were selected: (1) per capita GDP;
(2) population density; (3) number of vehicles per 100 persons; and (4) number of vehicles per square
kilometers [52,69]. Data for the above factors were obtained from the data library of Chongqing
statistical yearbooks and regional economic statistics yearbooks in corresponding years. The average
Igeo values were applied to represent the average levels of trace metal contamination.

Trace metal contamination was related to the socio-economic factors (Figure 6). Specifically,
significant linear relationships were observed between the average Igeo values and vehicle density
(R2 = 0.50) and population density (R2 = 0.41). A weak positive linear relationship was also observed
with the number of vehicles per 100 persons (R2 = 0.21). However, the relationship between trace
metal contamination and per capita GDP was nonlinear. Therefore, population and vehicle density
were key factors affecting the pollution level of trace metals. An elevated population density leads to
more energy consumption and pollutant emissions. Similarly, increasing amounts of vehicles would
lead to the translocation and accumulation of trace metals in the roadway dust. Since population
and vehicle numbers will increase greatly in counties and towns in the process of rapid urbanization,
a large number of counties and towns tend to face increasing risks of trace metal contamination.
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Figure 6. Relationships between the average Igeo of trace metals and socio-economic factors; the solid
line on each scatterplot displays the linear fitting curve of the relationship; the shadow represents the
95% confidence interval.

Compared to the classical Environmental Kuznets Curve (EKC) hypothesis with inverted U-shaped
fitting curves [69], a linear relationship was observed between trace metal pollution and population and
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vehicle density in this study. Limited by data availability, the analysis in this study only concentrated
on Chongqing, which might not present the overall trend between the socio-economic factors and trace
metal pollution in China. The result observed in this study might only present one stage of the U-shaped
fitting curves in the EKC hypothesis. In future work, ground-based monitoring datasets should be used
to quantify the spatial pattern in a fairly long period and understand the relationships between trace
metal accumulation and socio-economic variables. Therefore, the control point during the urbanization
process might be revealed which were related to the differences in urbanization gradients.

4. Conclusions

This research investigated the trace metal accumulation in roadway dust in a typical mountainous
county in the Three Gorges Reservoir Region, Southeast China. Moderate contamination was suggested
by Igeo in specific sites in both locations. Specifically, more concern should be focused on the high
anthropogenic accumulation of Pb, Co, Cu, and Zn. The analysis of multivariate statistical analysis
and GIS mapping identified a natural source for Cr, Ni, V, and Mn, and an anthropogenic origin for
Co, Pb, Zn, and Cu. It was also revealed that Co distribution was controlled by coal combustion and
Pb, Cu, and Zn by traffic emission. Meanwhile, agriculture activities, especially the wide application
of fertilizers and pesticides, should pay more attention to the control and prevention of trace metal
contamination. The associations between trace metal contamination and socio-economic factors
reflected that rapid urbanization might increase the pollution risk of trace metals in counties and towns.
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