Gypsum, Geopolymers, and Starch—Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment
Abstract
:1. Introduction
2. Raw Materials and Preparation Methods
2.1. Alternative Binder Materials Proposed for Bio-Composites
2.2. Bio-Composite Treatment Methods
- Mineralization of straw bio-fillers (mineralized by 5% of CaCl2 and Ca(OH)2 solutions) considerably improves the properties of gypsum bio-composites, increasing their strength from 2.5 to 3.1 MPa (by 5–20%) and reducing thermal conductivity (λ) from 0.49 to 0.52 W/ (m × K) [61]. Gypsum bio-composite samples were prepared from a mixture containing straw fillers.
- Mineralization of cotton stalk fibers with styrene-acrylic emulsion improves the combined interface condition and mechanical properties of the cotton stalk fiber/gypsum bio-composite material [30]. Improved flexibility eases the shaping of the materials and improves strength and water-resistant properties of the composites remarkably, increasing bending strength from 5.6 to 10 MPa, reducing absorbed water content from 20.2% to 14.3%, and decreasing strength after water saturation reaching 91.4% compared with 66% for untreated bio-composite.
- Bio-based filler can be treated with various substances (sodium hydroxide (NaOH), ethylenediaminetetraacetic acid (EDTA), calcium hydroxide (Ca(OH)2), polyethyleneimine (PEI), and calcium chloride (CaCl2)) to increase the effectiveness of the contact zones between bio-fillers and binders in the bio-composites [53]. Alkaline treatment with 1% of NaOH removes amorphous compounds from the surface of hemp shives and improves the ability to activate hemp shives’ surface by degrading extracts.
- Several studies have shown that, prior to compounding, hemp shives can be subjected to reflux in a cyclohexane/ethanol mixture for 24 h [62]. This pre-treatment removes pectin, wax, and other components present on the surface of the hemp shives without affecting the morphological characteristics of the bio-based filler.
2.3. Specimen Manufacture
3. Properties of the Bio-Based Materials with Alternative Binders
3.1. Mixture Compositions and Physical and Mechanical Properties
3.2. Moisture and Water Resistance
3.3. Resistance to Microorganisms
3.4. Resistance to Fire
4. Preliminary LCA
4.1. Definitions of Goal and Scope and Inventory Analysis
4.2. Impact Assessment and Interpretation
5. Conclusions
- A review of alternative binders shows that gypsum, geopolymer, and starch can be good alternatives to lime and magnesium-based binders for building materials made of bio-composites.
- Starch is the most widely used and researched binder for bio-composites. It can provide low density and low thermal conductivity with a relatively high-compressive strength if the hot-pressing manufacturing method is used; additives for enhancing resistance to fire and biodegradation are necessary.
- Gypsum is a moderately common binder for bio-composites, it can provide average mechanical strength and thermal conductivity, as well as good resistance to fire and biodegradation.
- Geopolymer is the least used binder from this group, it can provide low thermal conductivity if a foamed geopolymer is used.
- All the described alternative binders can be vulnerable to aging in the changing surrounding environment, as wetting and drying cycles can change their physical and mechanical performance. Microbiological and fire tests must be carried out for each mixture, as very few articles have addressed these topics in the scientific literature.
- Preliminary LCA results indicate that geopolymer and starch binders have a similar environmental impact as traditionally used binders, with gypsum having a significantly lower impact. According to previous research, bio-composites with such binders would have lower CO2 emissions than standard building materials, such as aerated concrete.
Author Contributions
Funding
Conflicts of Interest
References
- EU Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; EU: Brussels, Belgium, 2010.
- Schimschar, S.; Surmeli, N.; Hermelink, A. National Plan for Increasing the Number of Nearly Zero-Energy Buildings in Finland; European Commission: Brussels, Belgium, 2013; pp. 1–43. [Google Scholar]
- Herczeg, M.; McKinnon, D.; Milios, L.; Bakas, I.; Klaassens, E.; Svatikova, K.; Widerberg, O. Resource efficiency in the building sector. Cph. Resour. Inst. 2014, 1–128. [Google Scholar] [CrossRef]
- Bosman, R.; Rotmans, J. Transition governance towards a bioeconomy: A comparison of Finland and The Netherlands. Sustainability 2016, 8, 1017. [Google Scholar] [CrossRef] [Green Version]
- Korjenic, A.; Petránek, V.; Zach, J.; Hroudová, J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy Build. 2011, 43, 2518–2523. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Hemström, K.; Mahapatra, K.; Gustavsson, L. Perceptions, attitudes and interest of Swedish architects towards the use of wood frames in multi-storey buildings. Resour. Conserv. Recycl. 2011, 55, 1013–1021. [Google Scholar] [CrossRef]
- Shalobyta, N.N.; Tur, V.V.; Shalobyta, T.P.; Rakhuba, V.I. Energy Efficient Composites Using Natural Organic Materials; E3S Web of Conferences; EDP Sciences: Jules, France, 2019; Volume 136. [Google Scholar]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Lagouin, M.; Magniont, C.; Sénéchal, P.; Moonen, P.; Aubert, J.E.; Laborel-préneron, A. Influence of types of binder and plant aggregates on hygrothermal and mechanical properties of vegetal concretes. Constr. Build. Mater. 2019, 222, 852–871. [Google Scholar] [CrossRef]
- Schiavoni, S.; D׳Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Sinka, M.; Van Den Heede, P.; De Belie, N.; Bajare, D.; Sahmenko, G.; Korjakins, A. Comparative life cycle assessment of magnesium binders as an alternative for hemp concrete. Resour. Conserv. Recycl. 2018, 133, 288–299. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Brancart, J.; Peeters, E.; De Laet, L. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE 2019, 14, e0213954. [Google Scholar] [CrossRef] [Green Version]
- Stevulova, N.; Cigasova, J.; Estokova, A.; Terpakova, E.; Geffert, A.; Kacik, F.; Singovszka, E.; Holub, M. Properties characterization of chemically modified hemp hurds. Materials (Basel) 2014, 7, 8131–8150. [Google Scholar] [CrossRef] [PubMed]
- Sinka, M.; Radina, L.; Sahmenko, G.; Korjakins, A.; Bajare, D. Enhancement of Lime-Hemp Concrete properties using different. In Proceedings of the 1st International Conference on Bio-Based Building Materials, Clermont-Ferrand, France, 22–24 June 2015; pp. 301–308, ISBN PRO 99: 978-2-35158-154-4. [Google Scholar]
- Arrigoni, A.; Pelosato, R.; Meli, P.; Ruggieri, G.; Sabbadini, S.; Dotelli, G. Life cycle assessment of natural building materials: The role of carbonation, mixture components and transport in the environmental impacts of hempcrete blocks. J. Clean. Prod. 2017, 149, 1051–1061. [Google Scholar] [CrossRef]
- Walker, R.; Pavia, S.; Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z. Light-weight wood-magnesium oxychloride cement composite building products made by extrusion. Constr. Build. Mater. 2012, 27, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Sinka, M.; Obuka, V.; Bajare, D.; Jakovics, A. Durability and Hygrothermal Performance Of Bio-Based Materials In Northern European Climate. In Proceedings of the 3rd International Conference on Bio-Based Building Materials ICBBM 2019, Belfast, UK, 26–28 June 2019. [Google Scholar]
- Vitola, L.; Sinka, M.; Korjakins, A.; Bajare, D. The impact of organic compounds extracted from hemp origin aggregates on the hardening process and compressive strength of different types of mineral binders. J. Mater. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Delannoy, G.; Marceau, S.; Glé, P.; Gourlay, E.; Guéguen-minerbe, M.; Diafi, D.; Amziane, S.; Farcas, F. Impact of hemp shiv extractives on hydration of Portland cement. Constr. Build. Mater. 2020, 244, 118300. [Google Scholar] [CrossRef]
- Bicer, A.; Kar, F. Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Therm. Sci. Eng. Prog. 2017, 1, 59–65. [Google Scholar] [CrossRef]
- BSI UK. BS EN 12859:2011, Gypsum Blocks—Definitions, Requirements and Test Methods; European Committee for Standardization: London, UK, 2011; ISBN 978-0-580-71036-0. [Google Scholar]
- Skujans, J.; Iljins, U.; Ziemelis, I.; Gross, U.; Ositis, N.; Brencis, R.; Veinbergs, A.; Kukuts, O. Experimental research of foam gypsum acoustic absorption and heat flow. Chem. Eng. Trans. 2010, 10, 79–84. [Google Scholar]
- Cherki, A.B.; Remy, B.; Khabbazi, A.; Jannot, Y.; Baillis, D. Experimental thermal properties characterization of insulating cork-gypsum composite. Constr. Build. Mater. 2014, 54, 202–209. [Google Scholar] [CrossRef]
- Hernández-Olivares, F.; Bollati, M.R.; Del Rio, M.; Parga-Landa, B. Development of cork-gypsum composites for building applications. Constr. Build. Mater. 1999, 13, 179–186. [Google Scholar] [CrossRef]
- Martias, C.; Joliff, Y.; Favotto, C. Effects of the addition of glass fibers, mica and vermiculite on the mechanical properties of a gypsum-based composite at room temperature and during a fire test. Compos. Part B Eng. 2014, 62, 37–53. [Google Scholar] [CrossRef]
- Gencel, O.; Del Coz Diaz, J.J.; Sutcu, M.; Koksal, F.; Alvarez Rabanal, F.P.; Martinez-Barrera, G.; Brostow, W. Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy Build. 2014, 70, 135–144. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sari, A. Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Sol. Energy Mater. Sol. Cells 2016, 149, 19–28. [Google Scholar] [CrossRef]
- Li, G.; Yu, Y.; Zhao, Z.; Li, J.; Li, C. Properties study of cotton stalk fiber/gypsum composite. Cem. Concr. Res. 2003, 33, 43–46. [Google Scholar] [CrossRef]
- Heath, A.; Paine, K.; Goodhew, S.; Ramage, M.; Lawrence, M. The potential for using geopolymer concrete in the UK. Proc. Inst. Civ. Eng. Constr. Mater. 2013. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J. Geopolymer Cement a review. Geopolymer Sci. Tech. 2013, 21, 1–11. [Google Scholar]
- Mustafa, M.; Bakri, A.; Jamaludin, L.; Hussin, K. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure. Int. J. Mol. Sci. 2012, 13, 4388–4395. [Google Scholar] [CrossRef] [Green Version]
- Nuaklong, P.; Sata, V.; Chindaprasirt, P. Influence of recycled aggregate on fly ash geopolymer concrete properties. J. Clean. Prod. 2016. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr. Build. Mater. 2017. [Google Scholar] [CrossRef]
- Xie, T.; Visintin, P.; Zhao, X.; Gravina, R. Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach. Constr. Build. Mater. 2020, 256, 119380. [Google Scholar] [CrossRef]
- Anuja, N.; Prabavathy, S. Study on thermal conductivity of flyash based geopolymer mortar under different curing conditions. In Proceedings of the 2016 International Conference on Energy Efficient Technologies for Sustainability, ICEETS 2016, Nagercoil, India, 7–8 April 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 834–840. [Google Scholar]
- Snell, C.; Tempest, B.; Asce, A.M.; Gentry, T. Comparison of the Thermal Characteristics of Portland Cement and Geopolymer Cement Concrete Mixes. J. Archit. Eng. 2017. [Google Scholar] [CrossRef]
- Farges, R.; Gharzouni, A.; Ravier, B.; Jeulin, P.; Rossignol, S. Insulating foams and dense geopolymers from biochar by-products. J. Ceram. Sci. Technol. 2018, 9, 193–200. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Ascensão, G.; Seabra, M.P.; Labrincha, J.A. Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J. Clean. Prod. 2016, 119, 99–107. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Deventer, J.S.J.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2006, 42, 2917–2933. [Google Scholar] [CrossRef]
- Okoye, F.N. Geopolymer binder: A veritable alternative to Portland cement. Mater. Today Proc. 2017, 4, 5599–5604. [Google Scholar] [CrossRef]
- Furtos, G.; Silaghi-Dumitrescu, L.; Pascuta, P.; Sarosi, C.; Korniejenko, K. Mechanical Properties of Wood Fiber Reinforced Geopolymer Composites with Sand Addition. J. Nat. Fibers 2019, 0, 1–12. [Google Scholar] [CrossRef]
- Korniejenko, K.; Łach, M.; Hebdowska-Krupa, M.; Mikuła, J. The mechanical properties of flax and hemp fibres reinforced geopolymer composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 379. [Google Scholar] [CrossRef]
- Sá Ribeiro, R.A.; Sá Ribeiro, M.G.; Sankar, K.; Kriven, W.M. Geopolymer-bamboo composite—A novel sustainable construction material. Constr. Build. Mater. 2016. [Google Scholar] [CrossRef]
- Simonova, H. Effect of softening function type in double-K Fracture Model: Alkali-activated fly ash mortar with hemp fibres. In Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Bayonne, France, 24–26 June 2019. [Google Scholar]
- Ye, H.; Zhang, Y.; Yu, Z.; Mu, J. Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer. Constr. Build. Mater. 2018. [Google Scholar] [CrossRef]
- Balčiunas, G.; Vejelis, S.; Vaitkus, S.; Kairyte, A. Physical properties and structure of composite made by using hemp hurds and different binding materials. Procedia Eng. 2013, 57, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Ramonaitytė, D. Cukraus ir Krakmolo Produktų Mokslo ir Technologijų Pagrindai; KTU Leidykla “Technologija”, Kaunas University of Technology: Kaunas, Lithuania, 2013. [Google Scholar]
- Le, A.T.; Gacoin, A.; Li, A.; Mai, T.H.; El Wakil, N. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Compos. Part B Eng. 2015, 75, 201–211. [Google Scholar] [CrossRef]
- Averous, L.; Boquillon, N. Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohydr. Polym. 2004, 56, 111–122. [Google Scholar] [CrossRef]
- Ashok, A.; Abhijith, R.; Rejeesh, C.R. Material characterization of starch derived bio degradable plastics and its mechanical property estimation. Mater. Today Proc. 2018, 5, 2163–2170. [Google Scholar] [CrossRef]
- Benitha Sandrine, U.; Isabelle, V.; Ton Hoang, M.; Maalouf, C. Influence of chemical modification on hemp-starch concrete. Constr. Build. Mater. 2015. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Lawrence, M.; Jiang, Y. Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites. Constr. Build. Mater. 2019, 212, 561–568. [Google Scholar] [CrossRef]
- Bourdot, A.; Moussa, T.; Gacoin, A.; Maalouf, C.; Vazquez, P.; Thomachot-Schneider, C.; Bliard, C.; Merabtine, A.; Lachi, M.; Douzane, O.; et al. Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy Build. 2017, 153, 501–512. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Schorr, D.; Jiang, Y.; Lawrence, M.; Blanchet, P. Hydrophobicity of hemp shiv treated with sol-gel coatings. Appl. Surf. Sci. 2018, 434, 850–860. [Google Scholar] [CrossRef]
- Dai, D.; Fan, M. Preparation of bio-composite from wood sawdust and gypsum. Ind. Crops Prod. 2015, 74, 417–424. [Google Scholar] [CrossRef]
- Simatupang, M.H.; Schmitt, U.; Kasim, A. Wood Extractives of Rubberwood (Hevea Brasiliensis) and Their Influences on the Setting of the Inorganic Binder in Gypsum-Bonded Particleboards. J. Trop. For. Sci. 1994, 6, 269–285. [Google Scholar]
- Zhou, B.; Wang, L.; Ma, G.; Zhao, X.; Zhao, X. Preparation and properties of bio-geopolymer composites with waste cotton stalk materials. J. Clean. Prod. 2020. [Google Scholar] [CrossRef]
- Kremensas, A.; Kairyte, A.; Vaitkus, S.; Vejelis, S.; Balčiunas, G. Mechanical performance of biodegradable thermoplastic polymer-based biocomposite boards from hemp shivs and corn starch for the building industry. Materials (Basel) 2019, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regulska, K.; Repelewicz, A. Properties of Gypsum Composites with Straw Fillers; IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Gironès, J.; López, J.P.; Mutjé, P.; Carvalho, A.J.F.; Curvelo, A.A.S.; Vilaseca, F. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos. Sci. Technol. 2012, 72, 858–863. [Google Scholar] [CrossRef]
- Bouasker, M.; Belayachi, N.; Hoxha, D.; Al-Mukhtar, M. Physical characterization of natural straw fibers as aggregates for construction materials applications. Materials (Basel) 2014, 7, 3034–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zou, S.; Li, H.; Deng, L.; Bai, C.; Zhang, X.; Wang, S.; Li, N. Experimental physical properties of an eco-friendly bio-insulation material based on wheat straw for buildings. Energy Build. 2019. [Google Scholar] [CrossRef]
- Berzins, A.; Morozovs, A.; Gross, U.; Iejavs, J. Mechanical properties of wood-geopolymer composite. Eng. Rural Dev. 2017, 16, 1167–1173. [Google Scholar] [CrossRef]
- Bénézet, J.C.; Stanojlovic-Davidovic, A.; Bergeret, A.; Ferry, L.; Crespy, A. Mechanical and physical properties of expanded starch, reinforced by natural fibres. Ind. Crops Prod. 2012, 37, 435–440. [Google Scholar] [CrossRef]
- Bergeret, A.; Benezet, J.C. Natural fibre-reinforced biofoams. Int. J. Polym. Sci. 2011, 2011. [Google Scholar] [CrossRef]
- Curvelo, A.A.S.; De Carvalho, A.J.F.; Agnelli, J.A.M. Thermoplastic starch-cellulosic fibers composites: Preliminary results. Carbohydr. Polym. 2001, 45, 183–188. [Google Scholar] [CrossRef]
- Kremensas, A.; Kairytė, A.; Vaitkus, S.; Vėjelis, S.; Członka, S.; Strąkowska, A. The impact of hot-water-treated fibre hemp shivs on the water resistance and thermal insulating performance of corn starch bonded biocomposite boards. Ind. Crops Prod. 2019, 137, 290–299. [Google Scholar] [CrossRef]
- Alhaik, G.; Dubois, V.; Wirquin, E.; Leblanc, A.; Aouad, G. Evaluate the influence of starch on earth/hemp or flax straws mixtures properties in presence of superplasticizer. Constr. Build. Mater. 2018, 186, 762–772. [Google Scholar] [CrossRef]
- Collet, F.; Prétot, S.; Lanos, C. Hemp-Straw Composites: Thermal and Hygric Performances. Energy Procedia 2017, 139, 294–300. [Google Scholar] [CrossRef]
- Mohit, H.; Arul Mozhi Selvan, V. A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Compos. Interfaces 2018, 25, 629–667. [Google Scholar] [CrossRef]
- Kulshreshtha, Y.; Schlangen, E.; Jonkers, H.M.; Vardon, P.J.; van Paassen, L.A. CoRncrete: A corn starch based building material. Constr. Build. Mater. 2017, 154, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Belayachi, N.; Hoxha, D.; Slaimia, M. Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Constr. Build. Mater. 2016, 125, 912–918. [Google Scholar] [CrossRef]
- Vegas, F.; Mileto, C.; Ivorra, S.; Baeza, F.J. Checking gypsum as structural material. Appl. Mech. Mater. 2012, 117–119, 1576–1579. [Google Scholar] [CrossRef]
- Morales-Conde, M.J.; Rodríguez-Liñán, C.; Pedreño-Rojas, M.A. Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works. Constr. Build. Mater. 2016, 114, 6–14. [Google Scholar] [CrossRef]
- Isabella, C. The Effect of Aggregate Particle Size on Formation of Geopolymeric Gel. In Proceedings of the Advanced Materials for Construction of Bridges, Buildings, and Other Structures III, Davos, Switzerland, 7–12 September 2003. [Google Scholar]
- Luhar, S.; Cheng, T.W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of glass wastes for the development of geopolymer composites—Durability, thermal and microstructural properties: A review. Constr. Build. Mater. 2019, 222, 673–687. [Google Scholar] [CrossRef]
- Balčiūnas, G.; Vėjelis, S.; Lekūnaitė, L.; Kremensas, A. Assessment of structure influence on thermal conductivity of hemp shives composite. Environ. Eng. Manag. J. 2016, 15, 699–705. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Degradation rate of natural fiber in cement composites exposed to various accelerated aging environment conditions. Corros. Sci. 2014, 88, 118–132. [Google Scholar] [CrossRef]
- Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of Their Thermal and Mechanical Properties; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 96. [Google Scholar]
- Doleželová, M.; Pokorný, J.; Vimmrová, A. Design of the ternary gypsum-based building composite using simplex optimization. In Advanced Structured Materials; Springer: Berlin/Heidelberg, Germany, 2019; Volume 98, pp. 119–128. [Google Scholar]
- Bernal, S.a.; Provis, J.L.; Brice, D.G.; Kilcullen, A.; Duxson, P.; van Deventer, J.S.J. Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry. Cem. Concr. Res. 2012, 42, 1317–1326. [Google Scholar] [CrossRef]
- Nedeljković, M.; Ghiassi, B.; van der Laan, S.; Li, Z.; Ye, G. Effect of curing conditions on the pore solution and carbonation resistance of alkali-activated fly ash and slag pastes. Cem. Concr. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, S. Effects of wetting and drying on alkalinity and strength of fly ash/slag-activated materials. Constr. Build. Mater. 2020, 254, 119069. [Google Scholar] [CrossRef]
- Liu, M.; Thygesen, A.; Summerscales, J.; Meyer, A.S. Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review. Ind. Crops Prod. 2017, 108, 660–683. [Google Scholar] [CrossRef] [Green Version]
- Krejsová, J.; Doleželová, M. Resistance of Mortars with Gypsum, Lime and Composite Binders Against Molds. Acta Polytech. Ctu Proc. 2019, 21, 16–20. [Google Scholar] [CrossRef]
- Obuka, V.; Sinka, M.; Nikolajeva, V.; Kostjukova, S.; Lazdina, L.; Klavins, M. Sapropel and lime as binders for development of composite materials. In Proceedings of the European Biomass Conference and Exhibition, Stockholm, Sweden, 12–15 June 2017; Volume 2017. [Google Scholar]
- Drugă, B.; Ukrainczyk, N.; Weise, K.; Koenders, E.; Lackner, S. Interaction between wastewater microorganisms and geopolymer or cementitious materials: Biofilm characterization and deterioration characteristics of mortars. Int. Biodeterior. Biodegrad. 2018, 134, 58–67. [Google Scholar] [CrossRef]
- Nelyubova, V.; Strokova, V.; Vasilenko, M.; Rykunova, M.; Danakin, D. Comparative Characteristics of Binders Resistance for Building Composites to Mold Fungi; EDP Sciences: Jules, France, 2018. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, V.W.; Lubbe, A.; Qin, L.; Deng, S.; Kennedy, M.; Bauer, D.; Singan, V.R.; Barry, K.; Northen, T.R.; et al. A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism. PLoS Genet. 2017, 13. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.-L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, M.; Formosa, J.; Lacasta, A.M. Thermal Degradation and Fire Behaviour of Thermal Insulation Materials Based on Food Crop By-Products. Constr. Build. Mater. 2015, 79, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Manzello, S.L.; Gann, R.G.; Kukuck, S.R.; Lenhert, D.B. Influence of gypsum board type (X or C) on real fire performance of partition assemblies. Fire Mater. 2007, 31, 425–442. [Google Scholar] [CrossRef]
- Battegazzore, D.; Alongi, J.; Duraccio, D.; Frache, A. Reuse and Valorisation of Hemp Fibres and Rice Husk Particles for Fire Resistant Fibreboards and Particleboards. J. Polym. Environ. 2018, 26, 3731–3744. [Google Scholar] [CrossRef]
- Prabhakar, M.N.; Rehman Shah, A.u.; Song, J.-L. Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green composites. Carbohydr. Polym. 2017, 168, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Sinka, M.; Korjakins, A.; Bajare, D.; Zimele, Z.; Sahmenko, G. Bio-based construction panels for low carbon development. Energy Procedia 2018, 147, 220–226. [Google Scholar] [CrossRef]
- Van den Heede, P.; De Keersmaecker, M.; Elia, A.; Adriaens, A.; De Belie, N. Service life and global warming potential of chloride exposed concrete with high volumes of fly ash. Cem. Concr. Compos. 2017, 80, 210–223. [Google Scholar] [CrossRef]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A.; Ventura, A. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resour. Conserv. Recycl. 2010, 54, 1231–1240. [Google Scholar] [CrossRef] [Green Version]
- Bumanis, G.; Zorica, J.; Bajare, D.; Korjakins, A. Technological properties of phosphogypsum binder obtained from fertilizer production waste. Energy Procedia 2018, 147, 301–308. [Google Scholar] [CrossRef]
- Sinka, M.; Korjakins, A.; Bajare, D.; Sahmenko, G. Life cycle assessment of bio-based construction panels with magnesium binder. In Proceedings of the SynerCrete’18 International Conference on Interdisciplinary Approaches for Cement-Based Materials and Structural Concrete, Funchal, Portugal, 24–26 October 2018; pp. 24–29. [Google Scholar]
Binder | Binder Type | Aggregate | Liquid/Binder 1, by Weight | Straw/Binder | Density, (kg/m3) | Thermal Cond., (W/ (m × K) | Compressive Strength, (MPa) | Bending Strength, (MPa) | Water Absorption, % | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Gypsum | Gypsum | Straw | 1.1–1.6 | 0.2–0.4 | 184–456 | 0.058–0.086 | 0.004–0.071 | - | - | [74] |
Gypsum | EPS | 0.5 | 0.2–0.8 | 527–1088 | 0.055–0.260 | 0.82–3.29 | - | 31–44 | [22] | |
Gypsum | Cork | 0.7 | - | 472–801 | 0.124–0.299 | - | - | - | [25] | |
Gypsum | Straw | 0.8–1.0 | 0.02–0.06 | 774–984 | 0.36–0.66 | 2.1–3.9 | 0.5–1.8 | 35–49 | [61] | |
Gypsum | Sawdust/wood shavings | 0.55–1.25 | 0.1–0.4 | 602–1260 | 0.199–0.25 | 1.7–13.3 | 1.09–9.02 | - | [76] | |
Gypsum | Wood sawdust | 0.65 | 0.1–0.2 | 870–1080 | - | 3.80–8.68 | 1.59–3.33 | - | [57] | |
Geopolymer | Metakaolin | Wheat straw | 1.0–5.0 | 0.064–0.558 | 290–320 | 0.099–0.120 | 0.7–1.7 | - | 65–105 | [64] |
Fly ash | Cotton stalk | 0.67 | 0.3–0.9 | 1479–1517 | - | 16–24 | - | 6.7–8.6 | [59] | |
Clay based | Wood sawdust | 7–10 | 0.27 | 570–660 | 0.088–0.110 | 1.8–2.8 | - | - | [65] | |
Starch | Wheat starch | Hemp shives 1–7 mm | 4 | 6–14 | 159–171 | - | 0.03–0.08 | - | - | [69] |
Wheat starch | Hemp shives 0–20 mm | 5.6 | 8–10 | 134–143 | 0.048–0.071 | 0.57–0.63 | - | 8–10 | [55] | |
Corn starch | Hemp shives 2.5–20 mm | 4 | 2–10 | 319–374 | 0.061–0.063 | - | - | 4.8–6.1 | [69] | |
Corn starch | Hemp shives 2–8 mm | 4 | 9 | 175–240 | 0.052–0.057 | 1.05 | - | 11–12 | [54] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumanis, G.; Vitola, L.; Pundiene, I.; Sinka, M.; Bajare, D. Gypsum, Geopolymers, and Starch—Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment. Sustainability 2020, 12, 5666. https://doi.org/10.3390/su12145666
Bumanis G, Vitola L, Pundiene I, Sinka M, Bajare D. Gypsum, Geopolymers, and Starch—Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment. Sustainability. 2020; 12(14):5666. https://doi.org/10.3390/su12145666
Chicago/Turabian StyleBumanis, Girts, Laura Vitola, Ina Pundiene, Maris Sinka, and Diana Bajare. 2020. "Gypsum, Geopolymers, and Starch—Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment" Sustainability 12, no. 14: 5666. https://doi.org/10.3390/su12145666
APA StyleBumanis, G., Vitola, L., Pundiene, I., Sinka, M., & Bajare, D. (2020). Gypsum, Geopolymers, and Starch—Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment. Sustainability, 12(14), 5666. https://doi.org/10.3390/su12145666