Investigation on High-Value Bioactive Compounds and Antioxidant Properties of Blackberries and Their Fractions Obtained by Home-Scale Juice Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blackberry Processing and Sample Preparation
2.2. Moisture Content
2.3. Extraction Procedure
2.4. L-Ascorbic Acid Content (L-AsAc)
2.5. Total Phenolic Content (TPC)
2.6. DPPH Assay
2.7. Evaluation of Polyphenolic Compounds Profile by Chromatographic Analysis
2.8. Statistical Data Analysis
3. Results and Discussion
3.1. Moisture Content
3.2. Total Phenolic and L-AsAc Content
3.3. Antioxidant Activity
3.4. Polyphenolic Compounds Profile
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zia-Ul-Haq, M.; Riaz, M.; de Feo, V.; Jaafar, H.Z.E.; Moga, M. Rubus-Fruticosus L. Constituents, Biological Activities and Health Related Uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, J.-J.; Xu, D.-P.; Zhou, T.; Zhou, Y.; Li, S.; Li, H.-B. Bioactivities and Health Benefits of Wild Fruits. Int. J. Mol. Sci. 2016, 17, 1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitryte, V.; Narkeviciute, A.; Tamkute, L.; Syrpas, M.; Pukalskiene, M.; Rimantas-Venskutonis, P. Multistep Fractionation of Blackberry (Rubus fruticosus L.) Pomace into High Value Functional Ingredients. In Proceedings of the EuroFoodChem XX Conference, Porto, Portugal, 17–19 June 2019. [Google Scholar]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Coman, V.; Teleky, B.-E.; Mitrea, L.; Martău, G.A.; Katalin, S.; Călinoiu, L.-F.; Vodnar, D.C.; Martău, A.G. Bioactive potential of fruit and vegetable wastes. Adv. Food Nutr. Res. 2019, 91, 157–225. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [Green Version]
- Struck, S.; Plaza, M.; Turner, C.; Rohm, H. Berry pomace—A review of processing and chemical analysis of its polyphenols. Int. J. Food Sci. Technol. 2016, 51, 1305–1318. [Google Scholar] [CrossRef]
- Socaci, S.A.; Rugină, D.O.; Diaconeasa, Z.M.; Pop, O.L.; Fărcaș, A.C.; Păucean, A.; Tofană, M.; Pintea, A. Antioxidant Compounds Recovered from Food Wastes. In Functional Food—Improve Health Through Adequate Food; IntechOpen: London, UK, 2017. [Google Scholar]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.; Silva, S.; Pintado, M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C.M. Emerging technologies to produce nutraceuticals from agricultural by-products: A viewpoint of opportunities and challenges. Food Bioprod. Process. 2013, 91, 575–579. [Google Scholar] [CrossRef]
- Dimou, C.; Karantonis, H.C.; Skalkos, D.; Koutelidakis, A.E. Valorization of Fruits by-products to Unconventional Sources of Additives, Oil, Biomolecules, and Innovative Functional Foods. Curr. Pharm. Biotechnol. 2019, 20, 776–786. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Metzner, C.R.; Poiana, M.A. Fruit-based natural antioxidants in edible oils: A review. J. Agroalim. Process. Technol. 2018, 24, 110–117. [Google Scholar]
- Kebede, M.; Admassu, S. Application of Antioxidants in Food Processing Industry: Options to Improve the Extraction Yields and Market Value of Natural Products. Adv. Food Technol. Nutr. Sci. Open J. 2019, 5, 38–49. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Moschona, A.; Ziagova, M.G.; Iliadou, A.; Liakopoulou-Kyriakides, M. Optimization Studies for Selective Recovery of Phenolics from Wine Wastes. Agric. Sci. 2016, 7, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Campos, D.; Gómez-García, R.; Vilas-Boas, A.; Madureira, A.R.; Pintado, M.E. Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otero-Pareja, M.J.; Casas, L.; Fernández-Ponce, M.T.; Mantell, C.; de la Ossa, E.J.M. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef]
- Lohri, C.R.; Diener, S.; Zabaleta, I.; Mertenat, A.; Zurbrügg, C. Treatment technologies for urban solid biowaste to create value products: A review with focus on low- and middle-income settings. Rev. Environ. Sci. Bio/Technol. 2017, 16, 81–130. [Google Scholar] [CrossRef] [Green Version]
- Simitzis, P. Agro-Industrial By-Products and Their Bioactive Compounds—An Ally against Oxidative Stress and Skin Aging. Cosmetics 2018, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Santos-Buelga, C.; González-Paramás, A.M.; Oludemi, T.; Ayuda-Durán, B.; González-Manzano, S. Plant phenolics as functional food ingredients. Adv. Food Nutr. Res. 2019, 90, 183–257. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.; Cruz-Cansino, N.D.S.; Delgadillo-Ramírez, A.; Alanís-García, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda-Ovando, A.; Ramírez-Moreno, E. Organic Acids, Antioxidants, and Dietary Fiber of Mexican Blackberry (Rubus fruticosus) Residues cv. Tupy. J. Food Qual. 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Skrede, G.; Wrolstad, R.; Durst, R. Changes in Anthocyanins and Polyphenolics During Juice Processing of Highbush Blueberries (Vaccinium corymbosum L.). J. Food Sci. 2000, 65, 357–364. [Google Scholar] [CrossRef]
- Danalache, F.; Mata, P.; Alves, V.D.; Moldao-Martins, M. Chapter 10: Enzyme-assisted extraction of fruit juices. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Chennai—Academic Press: Cambridge, MA, USA, 2018; pp. 183–200. [Google Scholar]
- Sahar, A.; Rahman, U.; Ishaq, A.; Munir, M.S.; Aadil, R.M. Chapter 12: Health-promoting perspectives of fruit-based functional energy beverages—Health-promoting prospects of various fruit juices—Blackberry juice. In Sports and Energy Drinks, the Science of Beverage; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier—Woodhead Publishing: Amsterdam, The Netherlands, 2019; pp. 399–438. [Google Scholar]
- Official Methods of Analysis of the AOAC. Anal. Chem. 1980, 52, 148A. [CrossRef]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of Extraction Conditions on the Phenolic Composition and Antioxidant Capacity of Grape Stem Extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Cao, S.-Y.; Lin, S.-J.; Zhang, J.-R.; Gan, R.-Y.; Li, H.-B. Polyphenolic Profile and Antioxidant Capacity of Extracts from Gordonia axillaris Fruits. Antioxidants 2019, 8, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azvanida, N.N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4. [Google Scholar] [CrossRef]
- Toledo-Martín, E.M.; García-García, M.D.C.; Font, R.; Moreno-Rojas, J.M.; Salinas-Navarro, M.; Gómez, P.; del Río-Celestino, M. Quantification of Total Phenolic and Carotenoid Content in Blackberries (Rubus Fructicosus L.) Using Near Infrared Spectroscopy (NIRS) and Multivariate Analysis. Molecules 2018, 23, 3191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viera, V.B.; Piovesan, N.; Rodrigues, J.B.; Mello, R.O.; Prestes, R.C.; Santos, R.C.V.; Vaucher, R.A.; Hautrive, T.P.; Kubota, E.H. Extraction of phenolic compounds and evaluation of the antioxidant and antimicrobial capacity of red onion skin (Allium cepa L.). Int. Food Res. J. 2017, 24, 990–999. [Google Scholar]
- AOAC. Vitamin C. Ascorbic acid in vitamin preparations and juices. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC Inc.: Arlington, VA, USA, 2000; pp. 1058–1059. [Google Scholar]
- Baranauskienė, R.; Kazernavičiūtė, R.; Pukalskienė, M.; Maždžierienė, R.; Venskutonis, P.R. Agrorefinery of Tanacetum vulgare L. into valuable products and evaluation of their antioxidant properties and phytochemical composition. Ind. Crop. Prod. 2014, 60, 113–122. [Google Scholar] [CrossRef]
- Lupitu, A.I.; Tomescu, D.; Mot, C.A.; Moisa, C.; Copolovici, D.M.; Copolovici, L. Variation in phenolic content and antioxidant activity of different plant parts of Primula veris. Sci. Bull. Ser. F. Biotechnol. 2018, 22, 50–53. [Google Scholar]
- Kasote, D.; Hegde, M.; Deshmukh, K. Antioxidant Activity of Phenolic Components from n-Butanol Fraction (PC-BF) of Defatted Flaxseed Meal. Am. J. Food Technol. 2011, 6, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Katalinic, V.; Možina, S.S.; Skroza, D.; Generalic, I.; Abramovič, H.; Boban, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Jazić, M.; Kukrić, Z.; Vulić, J.; Četojević-Simin, D. Polyphenolic composition, antioxidant and antiproliferative effects of wild and cultivated blackberries (Rubus fruticosus L.) pomace. Int. J. Food Sci. Technol. 2018, 54, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Moisa, C.; Copolovici, L.; Bungau, S.; Pop, G.; Imbrea, I.; Lupitu, A.I.; Nemeth, S.; Copolovici, D. Waste resulting from aromatic plants distillation—Bio-sources of antioxidants and phenolic compounds with biological active principles. Farmacia 2018, 66, 289–295. [Google Scholar]
- González-Centeno, M.; Rosselló, C.; Simal, S.; Garau, M.; López, F.; Femenia, A. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: Grape pomaces and stems. LWT 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Beuchat, L.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Ter Kuile, B.H. Low–Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef]
- FAO Agricultural Services Bulletin No.119. Fruit and Vegetable Processing—Ch05 General Procedures for Fruit and Vegetable Preservation. 1995. Available online: http://www.fao.org/3/V5030E/V5030E0b.htm#5.2%20Preservation%20by%20reduction%20of%20water%20content:%20drying/dehydration%20and%20concentration (accessed on 10 July 2020).
- Venskutonis, P.R. Chapter 5: Berries—Composition of berry pomace—Processing of berry pomace. In Valorisation of Food Processing By-Products; Charis, M., Ed.; Elsevier—Academic Press: Amsterdam, The Netherlands, 2019; pp. 95–180. [Google Scholar]
- Marhuenda, J.; Alemán, M.D.; Gironés-Vilaplana, A.; Pérez, A.; Caravaca, G.; Figueroa, F.; Mulero, J.; Zafrilla, P.; Alemá Marí, N. Phenolic Composition, Antioxidant Activity, and In Vitro Availability of Four Different Berries. J. Chem. 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Celant, V.M.; Braga, G.C.; Vorpagel, J.A.; Salibe, A.B. Phenolic composition and antioxidant capacity of aqueous and ethanolic extracts of blackberries. Rev. Bras. Frutic. 2016, 38. [Google Scholar] [CrossRef] [Green Version]
- Mratinic, M.T. Segregation of blackberry cultivars based on the fruit physico-chemical attributes. Tarım Bilim. Derg. 2012, 18, 100–109. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.; Estevinho, L.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Stratil, P.; Kubáň, V.; Fojtová, J. Comparison of the phenolic content and total antioxidant activity in wines as determined by spectrophotometric methods. Czech J. Food Sci. 2008, 26, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Fan-Chiang, H.-J.; Wrolstad, R.E. Sugar and Nonvolatile Acid Composition of Blackberries. J. AOAC Int. 2010, 93, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Kalušević, A.; Salević, A.; Đorđević, R.; Veljović, M.; Nedovic, V. Raspberry and blackberry pomaces as potential sources of bioactive compounds. Ukr. Food J. 2016, 5, 485–491. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Zhang, H.-C.; Liu, W.-X.; Li, C.-Y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B 2012, 13, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.J.; Howard, L.; Prior, R.L.; Clark, J.R. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2004, 84, 1771–1782. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.-J.; Jo, Y.D.; Jin, C.H.; Nam, B.M.; Lee, S.S.-Y.; Jeong, S.W.; Bin Im, S.; Oh, S.C.; Cho, L.; et al. Comparison of Phytochemicals and Antioxidant Activity in Blackberry (Rubus fruticosus L.) Fruits of Mutant Lines at the Different Harvest Time. Plant Breed. Biotechnol. 2016, 4, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Aly, A.A.; Maraei, R.; El-Leel, O.A. Comparative study of some bioactive compounds and their antioxidant activity of some berry types. Potravin. Slovak J. Food Sci. 2019, 13, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Diaconeasa, Z.; Iuhas, C.I.; Ayvaz, H.; Rugină, D.; Stanilă, A.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Socaciu, C.; Pintea, A. Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity. Antioxidants 2019, 8, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliani, C.; Perez, C.; Curutchet, A.; Arcia, P.; Cozzano, S. Blueberry pomace, valorization of an industry by-product source of fibre with antioxidant capacity. Food Sci. Technol. 2019, 39, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Čanadanović-Brunet, J.; Šaponjac, V.T.; Stajčić, S.; Ćetković, G.; Čanadanović, V.; Ćebović, T.; Vulić, J.; Stajčić, S. Polyphenolic composition, antiradical and hepatoprotective activities of bilberry and blackberry pomace extracts. J. Berry Res. 2019, 9, 349–362. [Google Scholar] [CrossRef]
- Cetojevic-Simin, D.; Ranitovic, A.; Cvetkovic, D.; Markov, S.; Vincic, M.; Djilas, S. Bioactivity of blackberry (Rubus fruticosus L.) pomace: Polyphenol content, radical scavenging, antimicrobial and antitumor activity. Acta Period. Technol. 2017, 48, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Bobinaite, R.; Viskelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
Area | County | Altitude (m.a.s.l.) | Max. Tav (°C) | Min. Tav (°C) | Precipitations (mm) |
---|---|---|---|---|---|
ZUGAU | Arad | 162 | 17 | 7 | 642 |
PALTINIS | Sibiu | 1442 | 12 | 3 | 1119 |
Sample | Moisture Content (%) |
---|---|
ZB | 85.87 ± 1.19 a |
ZBB | 50.61 ± 1.28 b |
DZBB | 3.17 ± 0.08 c |
PB | 87.59 ± 1.68 a |
PBB | 52.14 ± 1.16 b |
DPBB | 3.86 ± 0.09 c |
Sample | TPC (mg GAE/100 g d.s) | L-AsAc (mg/100 g d.s) |
---|---|---|
ZB | 5780.89 ± 15.94 a | 206.69 ± 2.16 a |
ZBB | 4618.54 ± 23.09 b | 39.08 ± 0.23 b |
DZBB | 3967.7 ± 21.43 c | 30.35 ± 0.09 c |
PB | 4989.61 ± 16.74 a | 172.30 ± 1.89 a |
PBB | 3674.01 ± 17.27 b | 31.68 ± 0.17 b |
DPBB | 2828.66 ± 12.1 c | 20.19 ± 0.05 c |
Sample | TPC (mg GAE/L) | L-AsAc (mg/L) |
ZBJ | 2594.25 ± 7.52 a | 520.45 ± 3.69 a |
PBJ | 2561.20 ± 7.91 b | 437.24 ± 2.73 b |
Sample | DPPH Radical Scavenging Activity | |
---|---|---|
I (%) | mg GAE/100 g d.s | |
ZB | 91.68 ± 1.37 a | 232.21 ± 2.01 a |
ZBB | 86.71 ± 1.41 b | 220.95 ± 0.97 b |
DZBB | 77.92 ± 1.96 c | 198.57 ± 1.37 c |
PB | 90.23 ± 2.24 a | 228.96 ± 1.62 a |
PBB | 84.46 ± 1.26 b | 215.21 ± 1.27 b |
DPBB | 71.02 ± 1.88 c | 178.13 ± 1.06 c |
Sample | I (%) | mg GAE/L |
ZBJ | 59.93 ± 0.89 a | 142.25 ± 0.55 a |
PBJ | 51.62 ± 0.78 b | 122.54 ± 0.84 b |
Polyphenolic Compounds (mg/100g d.s) | Samples | |||||
---|---|---|---|---|---|---|
ZB | ZBB | DZBB | PB | PBB | DPBB | |
R | 289.86 ± 1.54 a | 232.46 ± 1.16 b | 44.72 ± 1.11 c | 181.13 ± 0.83 a | 132.95 ± 0.52 b | 17.92 ± 0.49 c |
Q | 2.96 ± 0.05 a | 2.05 ± 0.06 b | 1.53 ± 0.04 c | 1.15 ± 0.03 a | 0.72 ± 0.02 b | 0.58 ± 0.02 c |
K | 0.96 ± 0.02 a | 0.61 ± 0.02 b | 0.26 ± 0.01 c | 0.71 ± 0.03 a | 0.42 ± 0.02 b | 0.17 ± 0.01 c |
C | 1389.26 ± 3.48 a | 1009.19 ± 2.93 b | 348.59 ± 2.51 c | 758.46 ± 2.28 a | 534.55 ± 2.08 b | 256.05 ± 1.82 c |
PC | 1493.43 ± 3.84 a | 1180.76 ± 3.78 b | 838.42 ± 3.61 c | 2719.74 ± 5.97 a | 2262.70 ± 5.48 b | 1750.61 ± 4.81 c |
p-CA | 653.82 ± 3.56 a | 483.05 ± 3.28 b | 248.92 ± 1.64 c | 209.02 ± 0.91 a | 158.83 ± 0.69 b | 70.74 ± 1.83 c |
CA | 455.19 ± 1.14 a | 321.44 ± 1.57 b | 143.36 ± 0.96 c | 135.29 ± 1.35 a | 87.29 ± 1.21 b | 54.83 ± 0.72 c |
RA | 67.09 ± 1.17 a | 42.23 ± 0.93 b | 15.63 ± 0.39 c | 68.92 ± 1.14 a | 43.81 ± 1.02 b | 13.14 ± 0.31 c |
VA | 158.18 ± 0.86 a | 103.38 ± 0.74 b | 97.74 ± 2.17 c | 118.51 ± 1.47 a | 74.29 ± 1.12 b | 60.02 ± 1.54 c |
GA | 35.18 ± 0.77 a | 22.34 ± 0.39 b | 18.61 ± 0.47 c | 35.77 ± 0.54 a | 19.54 ± 0.49 b | 16.36 ± 0.41 c |
SA | 202.49 ± 1.12 a | 166.68 ± 1.25 b | 132.79 ± 0.74 c | 235.81 ± 1.49 a | 189.71 ± 1.27 b | 128.92 ± 0.66 c |
Polyphenolic Compounds (mg/L) | Sample | |
---|---|---|
ZBJ | PBJ | |
R | 50.90 ± 0.97 a | 53.29 ± 1.19 a |
Q | 0.04 ± 0.01 a | 0.11 ± 0.28 b |
K | 0.47 ± 0.02 a | 0.34 ± 0.01 b |
C | 264.55 ± 0.85 a | 279.46 ± 1.96 b |
PC | 1393.16 ± 3.90 a | 1066.41 ± 3.09 b |
p-CA | 68.01 ± 1.66 a | 82.12 ± 1.24 b |
CA | 120.53 ± 0.59 a | 104.53 ± 0.32 b |
RA | 52.32 ± 1.28 a | 51.37 ± 0.78 a |
VA | 68.37 ± 1.56 a | 26.76 ± 0.58 b |
GA | 28.60 ± 0.73 a | 32.08 ± 0.81 b |
SA | 146.86 ± 1.03 a | 97.57 ± 2.45 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metzner Ungureanu, C.-R.; Lupitu, A.I.; Moisa, C.; Rivis, A.; Copolovici, L.O.; Poiana, M.-A. Investigation on High-Value Bioactive Compounds and Antioxidant Properties of Blackberries and Their Fractions Obtained by Home-Scale Juice Processing. Sustainability 2020, 12, 5681. https://doi.org/10.3390/su12145681
Metzner Ungureanu C-R, Lupitu AI, Moisa C, Rivis A, Copolovici LO, Poiana M-A. Investigation on High-Value Bioactive Compounds and Antioxidant Properties of Blackberries and Their Fractions Obtained by Home-Scale Juice Processing. Sustainability. 2020; 12(14):5681. https://doi.org/10.3390/su12145681
Chicago/Turabian StyleMetzner Ungureanu, Cristina-Ramona, Andreea Ioana Lupitu, Cristian Moisa, Adrian Rivis, Lucian Octav Copolovici, and Mariana-Atena Poiana. 2020. "Investigation on High-Value Bioactive Compounds and Antioxidant Properties of Blackberries and Their Fractions Obtained by Home-Scale Juice Processing" Sustainability 12, no. 14: 5681. https://doi.org/10.3390/su12145681
APA StyleMetzner Ungureanu, C. -R., Lupitu, A. I., Moisa, C., Rivis, A., Copolovici, L. O., & Poiana, M. -A. (2020). Investigation on High-Value Bioactive Compounds and Antioxidant Properties of Blackberries and Their Fractions Obtained by Home-Scale Juice Processing. Sustainability, 12(14), 5681. https://doi.org/10.3390/su12145681