Application of Waste Lemon Extract to Toxic Metal Removal through Gravitational Soil Flushing and Composting Stabilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waste Lemon-Extract Preparation
2.2. Compost Preparation
2.3. Analysis of Soil Properties
2.4. Waste Lemon-Extract Analysis
2.5. Compost Maturity Analysis
2.6. Soil-Column Flushing Experiment
2.7. Batch Metal Removal Experiment
2.8. Stabilization Experiment
2.9. Soil Quality
3. Results and Discussion
3.1. Soil and Waste Lemon Properties
3.2. Compost Maturity
3.3. Waste Lemon-Extract Flushing
3.4. Changes of Soil Fractionation after Flushing and Stabilization
3.5. Soil Quality Improvement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, T.; Liu, J.M.; Huang, X.F.; Xia, B.; Su, C.Y.; Luo, G.F.; Xu, Y.W.; Wu, Y.X.; Mao, Z.W.; Qiu, R.L. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives. J. Hazard. Mater. 2013, 262, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Wu, J.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and soil environmental quality monitoring in China: A review. Environ. Int. 2014, 69, 177–199. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Mahmood, Q.; Peng, D.; Fu, W.; Chen, T.; Wang, Y.; Li, S.; Chen, J.; Liu, D. The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead–zinc mine in Southeastern China. Soil Tillage Res. 2015, 153, 120–130. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2014, 49, 750–759. [Google Scholar] [CrossRef]
- Zhong, B.; Chen, J.; Shafi, M.; Guo, J.; Wang, Y.; Wu, J.; Ye, Z.; He, L.; Liu, D. Effect of lead (Pb) on antioxidation system and accumulation ability of Moso bamboo (Phyllostachys pubescens). Ecotoxicol. Environ. Saf. 2017, 138, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. Res. 2003, 10, 192–198. [Google Scholar] [CrossRef]
- Nriagu, J.O. A silent epidemic of environmental metal poisoning? Environ. Pollut. 1988, 50, 139–161. [Google Scholar] [CrossRef] [Green Version]
- Moon, C.; Zhang, Z.; Shimbo, S.; Watanabe, T.; Moon, D.; Lee, C.; Lee, B.; Ahn, K.; Lee, S.; Ikeda, M. Dietary Intake of Cadmium and Lead among the General Population in Korea. Environ. Res. 1995, 71, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Zhang, Z.W.; Qu, J.B.; Xu, G.F.; Song, L.H.; Wang, J.J.; Shimbo, S.; Nakatsuka, H.; Higashikawa, K.; Ikeda, M. Urban-rural comparison on cadmium exposure among general populations in Shandong Province, China. Sci. Total Environ. 1998, 217, 1–8. [Google Scholar] [CrossRef]
- Isoyama, M.; Wada, S.-I. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil. J. Hazard. Mater. 2007, 143, 636–642. [Google Scholar] [CrossRef]
- Di Palma, L.; Mecozzi, R. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. J. Hazard. Mater. 2007, 147, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tong, L.; Yuan, Y.; Liu, Z.; Huang, H.; Tan, F.; Qiu, R. Influence of soil washing with a chelator on subsequent chemical immobilization of heavy metal in a contaminated soil. J. Hazard. Mat. 2010, 178, 578–587. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Klimiuk, E. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 2012, 86, 383–391. [Google Scholar] [CrossRef]
- Moon, D.H.; Lee, J.R.; Wazne, M.; Park, J.H. Assessment of soil washing for Zn contaminated soils using various washing solutions. J. Ind. Eng. Chem. 2012, 18, 822–825. [Google Scholar] [CrossRef]
- Pociecha, M.; Lestan, D. Recycling of EDTA solution after soil washing of Pb, Zn, Cd and As contaminated soil. Chemosphere 2012, 86, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Cupta, B.S.; Hashim, M.A. Performance evaluationof two-stage electrokinetic washing as soil remediation method for lead removal using different wash solutions. Electromich. Acta. 2014, 147, 9–18. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, H.; Yang, X.H.; Xia, B.; Liu, J.M.; Su, C.Y.; Qiu, R.L. Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil. Chemosphere 2014, 109, 1–6. [Google Scholar] [CrossRef]
- Fedje, K.K.; Li, Y.; Strömvall, A. Remediation of metal polluted hotspot areas through enhanced soil washing–Evaluation of leaching methods. J. Environ. Manag. 2013, 125, 489–496. [Google Scholar] [CrossRef]
- Rao, C.R.M.; Sahuquillo, A.; López-Sánchez, J.F. A Review of the Different Methods Applied in Environmental Geochemistry For Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water Air. Soil Pollut. 2007, 189, 291–333. [Google Scholar] [CrossRef]
- Udovic, M.; Lestan, D. EDTA Leaching of Cu Contaminated Soils Using Ozone/UV for Treatment and Reuse of Washing Solution in a Closed Loop. Water Air Soil Pollut. 2006, 181, 319–327. [Google Scholar] [CrossRef]
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-LaFLèche, M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Ko, I.; Chang, Y.; Lee, C.; Kim, K.W. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J. Hazard. Mater. 2005, 127, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tampouris, S.; Papassiopi, N.; Paspaliaris, I. Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J. Hazard. Mater. 2001, 84, 297–319. [Google Scholar] [CrossRef]
- Bassi, R.; Prasher, S.O.; Simpson, B.K. Extraction of metals from a contaminated sand soil using citric acid. Env. Prog. 2000, 19, 275–282. [Google Scholar] [CrossRef]
- Li, Y.J.; Hu, P.J.; Zhao, J.; Dong, C.X. Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid. Environ. Sci. Pollut. Res. 2015, 22, 5563–5571. [Google Scholar] [CrossRef] [PubMed]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph No. 9; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, Part 1, 2nd ed.; Klute, A., Ed.; Agronomy Monograph No. 9; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–412. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E.; Sparks, L.M.; Page, A.; Helmke, P.; Loeppert, R. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph No. 9; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 539–577. [Google Scholar]
- International Organization for Standardization (ISO). Soil Quality: Extraction of Trace Elements Soluble in Aqua-Regia; ISO 11466; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- Luo, X.N.; Chen, C.Y. Analytical Chemistry Experiment, 3rd ed.; New Wun Ching Development Publishing Co., Ltd.: New Taipei City, Taiwan, 2014. (In Chinese) [Google Scholar]
- Al, I.K.E.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem. 2006, 98, 508–512. [Google Scholar] [CrossRef]
- Taiwan Industrial Development Bureau, Ministry of Economic Affairs. Composting Technology and Equipment Manual and Case Compilation; Taiwan Green Productivity Foundation: Taipei, Taiwan, 2005.
- Zucconi, F.; Monaco, A.D.E.; Forte, M.; De, B.M. Biological evaluation of compost maturity. Biocycle 1981, 22, 27–29. [Google Scholar]
- Huang, Z.Y.; Li, J.; Cao, Y.L.; Cai, C.; Zhang, Z. Behaviors of exogenous Pb in P-based amended soil investigated with isotopic labeling method coupled with Tessier approach. Geoderma 2016, 264, 126–131. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Cai, P.; Liang, W.; Huang, Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard. Mater. 2009, 163, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Ure, A.M. Methods of analysis for heavy metals in soils. In Heavy Metals in Soils; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1995; pp. 58–102. [Google Scholar]
- Xu, Z.Y.; Chen, Z.X.; Cai, C.Q. Selected Indicators and Conceptual Framework for Assessment Methods of Soil Quality in Arable Soils of Taiwan. Soil Environ. 1999, 2, 77–88. (In Chinese) [Google Scholar]
- Riffaldi, R.; Levi-Minzi, R.; Pera, A.; De Bertoidi, M. Evaluation of Compost Maturity by Means of Chemical and Microbial Analyses. Waste Manag. Res. 1986, 4, 387–396. [Google Scholar] [CrossRef]
- Amir, S.; Jouraiphy, A.; Meddich, A.; El Gharous, M.; Winterton, P.; Hafidi, M. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13C NMR. J. Hazard. Mater. 2010, 177, 524–529. [Google Scholar] [CrossRef]
- Vaca-Paulín, R.; Esteller, M.; De La Fuente, J.A.L.; Zavaleta-Mancera, H. Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil. Waste Manag. 2006, 26, 71–81. [Google Scholar] [CrossRef]
- Šćiban, M.; Klašnja, M.; Antov, M.G. Study of the biosorption of different heavy metal ions onto Kraft lignin. Ecol. Eng. 2011, 37, 2092–2095. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, T.T.; Rao, Q.Q.; Shui, S.W.; Li, W.-W.; He, H.B.; Yao, R.S. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. J. Environ. Sci. 2017, 53, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Choma, A.; Złotko, K.; Komaniecka, I.; Waśko, A.; Pleszczyńska, M.; Siwulski, M.; Wiater, A. Chemical characterization of alkali-soluble polysaccharides isolated from a Boletus edulis (Bull.) fruiting body and their potential for heavy metal biosorption. Food Chem. 2018, 266, 329–334. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Metals in Soils of Poland—Occurrence and Behavior. In Trace Substances in Environmental Health XXV; Science Reviews Limited: Northwood, NH, USA, 1991; pp. 53–70. [Google Scholar]
- Matheyambath, A.C.; Padmanabhan, P.; Paliyath, G. Citrus Fruits: Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 136–140. [Google Scholar]
- Jabeen, E.; Janjua, N.K.; Ahmed, S. Removal of metal ions using metal-flavonoid-DNA adduct protocol author links open overlay panel. J. Saudi Chem. Soc. 2019, 23, 118–126. [Google Scholar] [CrossRef]
- Lestan, D.; Luo, C.L.; Li, X.D. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ. Pollut. 2008, 153, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Tiquia-Arashiro, S.; Tam, N.F.Y. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresour. Technol. 1998, 65, 43–49. [Google Scholar] [CrossRef]
- California Compost Quality Council (CCQC). Compost Maturity Index; The California Compost Quality Council: Nevada, CA, USA, 2001. [Google Scholar]
- Bernal, M.; Alburquerque, J.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Xing, M.; Yang, J.; Qi, W.; Lu, Y. Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung. Bioresour. Technol. 2013, 132, 320–326. [Google Scholar] [CrossRef] [PubMed]
Steps | Fractionation | Expression | Soil: Solution | Experiment Condition |
---|---|---|---|---|
1 | Water-soluble | DI water | 1:10(w/v) | Shake 1 h at 25 °C |
2 | Exchangeable | 0.5 M KNO3 | 1:10(w/v) | Shake 16 h at 20 °C |
3 | Carbonate | 1 M CH3COONa | 1:10(w/v) | Shake 5 h at 25 °C |
4 | Fe/Mn oxides | 4.37 M CH3COOH (containing 0.04 M NH2OH·HCl) | 1:10(w/v) | Shake 5 h at 23 °C |
5 | Organic-bound | 0.05 M NaOH | 1:10(w/v) | Shake 16 h at 20 °C |
6 | Residual | HNO3:HCl = 1:3 | 1:10(w/v) | Digested with aqua regia |
Property | Unit | Soil |
---|---|---|
pH | 4.56 + 0.03 | |
EC | μS/cm | 54.1 ± 3.0 |
OMC | g/kg | 55.6 ± 3.8 |
Cu | mg/kg | 2487 ± 139 |
Zn | mg/kg | 403.7 ± 3.1 |
Ni | mg/kg | 140.9 ± 4.6 |
Pb | mg/kg | 108.0 ± 0.4 |
Cd | mg/kg | 1.94 ± 0.04 |
Cr | mg/kg | 204.0 ± 11.5 |
Sand | % | 82.1 ± 1.2 |
Silt | % | 14.0 ± 0.1 |
Clay | % | 3.9 ± 1.2 |
Texture | Loamy sand |
5 (min) | 15 (min) | 30 (min) | 60 (min) | 120 (min) | ||
---|---|---|---|---|---|---|
Cu (mg/L) | CCS | 26.2 | 25.4 | 26.3 | 28.7 | 28.6 |
WLE | 19.3 | 31.8 | 32.9 | 34.3 | 36.9 | |
Zn (mg/L) | CCS | 2.03 | 1.97 | 2.21 | 2.23 | 3.34 |
WLE | 1.84 | 2.26 | 2.52 | 2.80 | 3.44 | |
Ni (mg/L) | CCS | 0.18 | 0.18 | 0.19 | 0.19 | 0.20 |
WLE | 0.15 | 0.19 | 0.22 | 0.22 | 0.27 | |
Pb (mg/L) | CCS | 0.09 | 0.12 | 0.16 | 0.17 | 0.39 |
WLE | 0.07 | 0.08 | 0.17 | 0.18 | 0.43 | |
Cr (mg/L) | CCS | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 |
WLE | 0.02 | 0.02 | 0.04 | 0.05 | 0.09 | |
Cd (mg/L) | CCS | N.D. | N.D. | 0.003 | 0.005 | 0.012 |
WLE | 0.004 | 0.005 | 0.007 | 0.008 | 0.013 |
Original | CCS | WLE | Original + C | CCS + C | WLE + C | |
---|---|---|---|---|---|---|
pH | 4.56 ± 0.03 | 4.48 ± 0.01 | 5.70 ± 0.02 | 5.81 ± 0.04 | 5.42 ± 0.09 | 6.29 ± 0.03 |
SOM (g/kg) | 55.60 ± 3.80 | 38.80 ± 3.80 | 41.80 ± 4.40 | 51.90 ± 4.70 | 55.30 ± 1.20 | 59.30 ± 4.30 |
EC (μS/cm) | 54.10 ± 3.00 | 12.20 ± 0.80 | 36.80 ± 1.30 | 102.70 ± 6.10 | 56.60 ± 3.00 | 127.50 ± 7.10 |
Sand (%) | 82.10 ± 1.20 | 82.10 ± 1.00 | 78.50 ± 2.30 | 91.60 ± 1.20 | 83.80 ± 2.30 | 85.30 ± 1.10 |
Silt (%) | 14.00 ± 0.10 | 6.60 ± 1.70 | 10.80 ± 1.50 | 3.00 ± 1.20 | 7.50 ± 2.70 | 8.40 ± 1.10 |
Clay (%) | 3.90 ± 1.20 | 11.30 ± 1.20 | 10.70 ± 1.20 | 5.30 ± 1.20 | 8.70 ± 1.10 | 6.30 ± 0.10 |
Texture | Loamy sand | Loamy sand | Loamy sand | Sand | Loamy sand | Loamy sand |
Original | CCS | WLE | Original+ C | CCS + C | WLE + C | |
---|---|---|---|---|---|---|
Cd | 0.08 ± 0.01 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.07 ± 0.01 |
Cu | 677.70 ± 36.90 | 233.20 ± 5.75 | 221.30 ± 15.90 | 612.50 ± 11.30 | 218.90 ± 1.80 | 156.60 ± 9.30 |
Zn | 42.60 ± 2.80 | 33.70 ± 0.70 | 33.00 ± 1.80 | 41.70 ± 0.70 | 30.60 ± 1.50 | 30.90 ± 3.90 |
Ni | 29.20 ± 1.90 | 29.00 ± 0.30 | 21.40 ± 1.20 | 24.20 ± 0.20 | 23.70 ± 0.10 | 13.90 ± 1.30 |
Pb | 18.60 ± 0.50 | 15.80 ± 0.40 | 15.10 ± 2.20 | 11.80 ± 0.10 | 11.80 ± 0.10 | 11.30 ± 0.50 |
Cr | 11.80 ± 0.07 | 9.39 ± 0.89 | 9.31 ± 0.64 | 20.23 ± 1.14 | 14.28 ± 2.36 | 12.07 ± 1.10 |
Control Group | Experimental Group | |
---|---|---|
Initial | ||
After 3 days |
After 1 Day | After 2 Days | After 3 Days | |
---|---|---|---|
Original | 0.22 ± 0.03 | 0.27 ± 0.03 | 0.48 ± 0.03 |
CCS | 0.24 ± 0.03 | 0.29 ± 0.03 | 0.63 ± 0.05 |
WLE | 0.27 ± 0.03 | 0.34 ± 0.05 | 0.73 ± 0.06 |
Original + C | 0.17 ± 0.03 | 0.43 ± 0.28 | 1.23 ± 0.75 |
CCS + C | 0.18 ± 0.03 | 0.45 ± 0.28 | 2.15 ± 0.48 |
WLE + C | 0.27 ± 0.03 | 0.51 ± 0.08 | 2.57 ± 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.-W.; Huang, Y.-Z.; Fan, C.; Chang, T.-K. Application of Waste Lemon Extract to Toxic Metal Removal through Gravitational Soil Flushing and Composting Stabilization. Sustainability 2020, 12, 5751. https://doi.org/10.3390/su12145751
Zhang P-W, Huang Y-Z, Fan C, Chang T-K. Application of Waste Lemon Extract to Toxic Metal Removal through Gravitational Soil Flushing and Composting Stabilization. Sustainability. 2020; 12(14):5751. https://doi.org/10.3390/su12145751
Chicago/Turabian StyleZhang, Pei-Wen, Ya-Zhen Huang, Chihhao Fan, and Tsun-Kuo Chang. 2020. "Application of Waste Lemon Extract to Toxic Metal Removal through Gravitational Soil Flushing and Composting Stabilization" Sustainability 12, no. 14: 5751. https://doi.org/10.3390/su12145751
APA StyleZhang, P. -W., Huang, Y. -Z., Fan, C., & Chang, T. -K. (2020). Application of Waste Lemon Extract to Toxic Metal Removal through Gravitational Soil Flushing and Composting Stabilization. Sustainability, 12(14), 5751. https://doi.org/10.3390/su12145751