Sustainable and Resilient Smart House Using the Internal Combustion Engine of Plug-in Hybrid Electric Vehicles
Abstract
:1. Introduction
- Introducing a novel model for sustainable and resilient smart houses
- Use of gasoline energy of PHEVs in smart house management
- Use of smart houses for increasing power injected to distribution power systems in emergency situations
- Considering the effect of residents’ comfort levels on the amount of energy production.
2. Plug-In Hybrid Electric Vehicles
3. Vehicle to Grid (V2G) Operation under Grid Outage
3.1. Objective Function
3.2. Generations
3.3. Energy Storage System
3.4. Appliance
3.4.1. Electrically Controllable Appliances
3.4.2. Thermostatically Controllable Appliances
3.4.3. Optically Controllable Appliances
3.5. Energy Balance
3.6. Discomfort Index
3.7. PHEVs
4. Simulation Framework
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Chen, C.; Wang, J.; Baldick, R. Research on resilience of power systems under natural disasters, A review. IEEE Trans. Power Syst. 2016, 31, 1604–1613. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Qiu, F.; Zhao, D. Resilient Distribution System by Microgrids Formation after Natural Disasters. IEEE Trans. Smart Grid 2016, 7, 958–966. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, C.-C.; Schneider, K.P.; Ton, D.T. Toward a resilient distribution system. In Proceedings of the Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Haessig, P.; Bourdais, R.; Guéguen, H. Resilience in energy management system: A study case. IFAC PapersOnLine 2019, 52, 395–400. [Google Scholar]
- Chanda, S.; Srivastava, A.K. Defining and enabling resiliency of electric distribution systems with multiple microgrids. IEEE Trans. Smart Grid 2016, 7, 2859–2868. [Google Scholar] [CrossRef]
- Momen, H.; Abessi, A.; Jadid, S. Using EVs as Distributed Energy Resources for Critical Load Restoration in Resilient Power Distribution Systems. IET Gener. Transm. Distrib. 2020. [Google Scholar] [CrossRef]
- House, W. Economic Benefits of Increasing Electric Grid Resilience to Weather Outages; Executive Office of the President: Washington, DC, USA, 2013. [Google Scholar]
- Arghandeh, R.; Brown, M.; Del Rosso, A.; Ghatikar, G.; Stewart, E.; Vojdani, A.; von Meier, A. The Local Team: Leveraging Distributed Resources to Improve Resilience. IEEE Power Energy Mag. 2014, 12, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Gritzalis, D.; Theocharidou, M.; Stergiopoulos, G. Critical Infrastructure Security and Resilience; Springer: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook to Electric Mobility; IEA: Paris, France, 2019. [Google Scholar]
- Liu, C.; Chau, K.T.; Wu, D.; Gao, S. Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. Proc. IEEE 2013, 101, 2409–2427. [Google Scholar] [CrossRef] [Green Version]
- Brenna, M.; Foiadelli, F.; Longo, M. The exploitation of vehicle-to-grid function for power quality improvement in a smart grid. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2169–2177. [Google Scholar] [CrossRef] [Green Version]
- Abessi, A.; Zakariazadeh, A.; Vahidinasab, V.; Ghazizadeh, M.S.; Mehran, K. End-user participation in a collaborative distributed voltage control and demand response program. IET Gener. Transm. Distrib. 2018, 12, 3079–3085. [Google Scholar] [CrossRef]
- Turker, H.; Bacha, S. Optimal minimization of plug-in electric vehicle charging cost with vehicle-to-home and vehicle-to-grid concepts. IEEE Trans. Veh. Technol. 2018, 67, 10281–10292. [Google Scholar] [CrossRef]
- Nunna, H.K.; Battula, S.; Doolla, S.; Srinivasan, D. Energy management in smart distribution systems with vehicle-to-grid integrated microgrids. IEEE Trans. Smart Grid 2016, 9, 4004–4016. [Google Scholar] [CrossRef]
- Atasoy, T.; Akınç, H.E.; Erçin, Ö. An analysis on smart grid applications and grid integration of renewable energy systems in smart cities. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 547–550. [Google Scholar]
- Yazdani, S.; Ahadi, R.; Rezaee Khabooshan, B. Optimal electric vehicle charging station placing with integration of renewable energy. In Proceedings of the 15th Iran International Industrial Engineering Conference, Yazd, Iran, 23–24 January 2019. [Google Scholar]
- Jin, C.; Sheng, X.; Ghosh, P. Optimized electric vehicle charging with intermittent renewable energy sources. IEEE J. Sel. Top. Signal Process. 2014, 8, 1063–1072. [Google Scholar] [CrossRef]
- Tuttle, D.P.; Baldick, R. The evolution of plug-in electric vehicle-grid interactions. IEEE Trans. Smart Grid 2012, 3, 500–505. [Google Scholar] [CrossRef]
- Shin, H.; Baldick, R. Plug-in electric vehicle to home (V2H) operation under a grid outage. IEEE Trans. Smart Grid 2016, 8, 2032–2041. [Google Scholar] [CrossRef]
- Tuttle, D.P.; Fares, R.L.; Baldick, R.; Webber, M.E. Plug-in vehicle to home (V2H) duration and power output capability. In Proceedings of the 2013 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 16–19 June 2013; pp. 1–7. [Google Scholar]
- Rahimi, K.; Davoudi, M. Electric vehicles for improving resilience of distribution systems. Sustain. Cities Soc. 2018, 36, 246–256. [Google Scholar] [CrossRef]
- Shirazi, E.; Jadid, S. Optimal residential appliance scheduling under dynamic pricing scheme via HEMDAS. Energy Build. 2015, 93, 40–49. [Google Scholar] [CrossRef]
- Yu, L.; Jiang, T.; Zou, Y. Online energy management for a sustainable smart home with an HVAC load and random occupancy. IEEE Trans. Smart Grid 2017, 10, 1646–1659. [Google Scholar] [CrossRef] [Green Version]
- Amirioun, M.H.; Kazemi, A. A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex. Energy 2014, 69, 186–198. [Google Scholar] [CrossRef]
- Samadani, E.; Mastali, M.; Farhad, S.; Fraser, R.A.; Fowler, M. Li-ion battery performance and degradation in electric vehicles under different usage scenarios. Int. J. Energy Res. 2016, 40, 379–392. [Google Scholar] [CrossRef]
- García-Villalobos, J.; Zamora, I.; San Martín, J.I.; Junquera, I.; Eguía, P. Delivering energy from PEV batteries: V2G V2B and V2H approaches. In Proceedings of the International Conference on Renewable Energies and Power Quality, La Coruña, Spain, 25–27 March 2015; Volume 15, pp. 215–247. [Google Scholar]
- Mitsubishi Outlander PHEV, Catalog. 2020. Available online: https://www.mistubishi-motors.ca (accessed on 10 March 2020).
- Shirazi, E.; Jadid, S. Cost reduction and peak shaving through domestic load shifting and DERs. Energy 2017, 124, 146–159. [Google Scholar] [CrossRef]
- Zhang, D.; Shah, N.; Papageorgiou, L.G. Efficient energy consumption and operation management in a smart building with microgrid. Energy Convers. Manag. 2013, 74, 209–222. [Google Scholar] [CrossRef]
- Shirazi, E.; Zakariazadeh, A.; Jadid, S. Optimal joint scheduling of electrical and thermal appliances in a smart home environment. Energy Convers. Manag. 2015, 106, 181–193. [Google Scholar] [CrossRef]
Type | Predictability | Affecting Time |
---|---|---|
Hurricane, tropical storm | 24–72 h | Hours to days |
Tornado | 0–2 h | Minutes to hours |
Blizzard, Ice storm | 24–72 h | Hours to days |
Tsunami | Minutes to hours | Minutes to hours |
Scenario | Starting Hours of Outage | Ending Hours of Outage |
---|---|---|
1 | 8 | 12 |
2 | 14 | 18 |
3 | 8 | 20 |
4 | 0 | 24 |
Discomfort Level | Indoor °C (min) | Indoor °C (max) | Freezer °C (min) | Freezer °C (max) | Fridge °C (min) | Fridge °C (max) | t_Final Appliance | Lightening Factor |
---|---|---|---|---|---|---|---|---|
1 | 19 | 23 | −16 | −14 | 4 | 6 | 12 | 1 |
2 | 17 | 23 | −18 | −12 | 2 | 8 | 18 | 0.5 |
3 | 15 | 23 | −20 | −10 | 0 | 10 | 8 | 0 |
Without management | 20 | 23 | −20 | −18 | 4 | 6 | based on Table 4 | 1.5 |
Appliance | Power | T_start | T_final | Duration |
---|---|---|---|---|
Washing machine | 2 | 2 | 4 | 2 |
Dish washer | 2 | 2 | 3.5 | 1.5 |
Dryer | 2.5 | 4 | 5 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abessi, A.; Shirazi, E.; Jadid, S.; Shafie-khah, M. Sustainable and Resilient Smart House Using the Internal Combustion Engine of Plug-in Hybrid Electric Vehicles. Sustainability 2020, 12, 6046. https://doi.org/10.3390/su12156046
Abessi A, Shirazi E, Jadid S, Shafie-khah M. Sustainable and Resilient Smart House Using the Internal Combustion Engine of Plug-in Hybrid Electric Vehicles. Sustainability. 2020; 12(15):6046. https://doi.org/10.3390/su12156046
Chicago/Turabian StyleAbessi, Ahad, Elham Shirazi, Shahram Jadid, and Miadreza Shafie-khah. 2020. "Sustainable and Resilient Smart House Using the Internal Combustion Engine of Plug-in Hybrid Electric Vehicles" Sustainability 12, no. 15: 6046. https://doi.org/10.3390/su12156046
APA StyleAbessi, A., Shirazi, E., Jadid, S., & Shafie-khah, M. (2020). Sustainable and Resilient Smart House Using the Internal Combustion Engine of Plug-in Hybrid Electric Vehicles. Sustainability, 12(15), 6046. https://doi.org/10.3390/su12156046