Internet-of-Things-Assisted Smart System 4.0 Framework Using Simulated Routing Procedures
Abstract
:1. Introduction
- This paper proposes the Robust Bio-Dynamic Stimulated Routing Procedure (RDSRP) based on the real-time behavior of a new Hybrid Bird Optimizer (HBO) model. The proposed bio-inspired model can identify the nearest heavily used grids in the sense of optimization-based machining, butterfly operation, and genetic changes in the maturing process.
- In addition, double sinks are used to spread the data traffic burden dramatically and to reduce memory overload and problems in the network sensor nodes using packet transmission gully along a narrow roadway in each subregion.
2. Literature Survey
3. Robust Bio-Dynamic Stimulated Routing Procedure (RDSRP) Based on the Real-Time Behavior of a New Hybrid Bird Optimizer (HBO) Model
3.1. Smart Grid Technologies
3.2. Security Device
3.3. Inspired Bio-Computing Model
3.4. Optimization Using Butterfly Mating
Algorithm 1 |
Initialization of the bird population using robust bio-dynamic stimulated routing procedure. |
Procedure: determining the Bird Population Using Robust Bio-Dynamic Stimulated Routing Procedure |
Input: |
Execute the random set of population birds in an order. |
Calculate = |
Fitness values are calculated till it attains = |
Calculate monogamous = |
Calculate polygynous = |
Update |
Finally, determine the |
End for |
Until repeat for all the coefficients determines the current individuals and several previous generation individuals due to fusion and mutation to optimize solution in the problem search area. |
End procedure |
Algorithm 2 |
Mating process using robust bio-dynamic stimulated routing procedure. |
Procedure: determining Mating Process Using Robust Bio-Dynamic Stimulated Routing Procedure |
Input: - |
Determining the energy of available individual birds. |
Calculate = rand (.) *- |
Male successful mate with female birds are calculated till it attains = - |
Calculate superior values = + |
Calculate polygynous = |
Update |
Finally, determine the |
End for |
Until repeat for all the whole process repeats until the minimum value of every bird energy factor is reached. |
End procedure |
4. Results and Discussion
5. Conclusion and Future Outcomes
Author Contributions
Funding
Conflicts of Interest
References
- Faheem, M.; Butt, R.A.; Raza, B.; Ashraf, M.W.; Begum, S.; Ngadi, M.A.; Gungor, V.C. Bio-inspired routing protocol for WSN-based smart grid applications in the context of Industry 4.0. Trans. Emerg. Telecommun. Technol. 2019, 30, e3503. [Google Scholar] [CrossRef]
- Faheem, M.; Umar, M.; Butt, R.A.; Raza, B.; Ngadi, M.A.; Gungor, V.C. Software Defined Communication Framework for Smart Grid to Meet Energy Demands in Smart Cities. In Proceedings of the 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), Istanbul, Turkey, 25–26 April 2019; pp. 51–55. [Google Scholar]
- Cheena, K.; Amgoth, T.; Shankar, G. Emperor penguin optimised self-healing strategy for WSN based smart grids. Int. J. Sens. Netw. 2020, 32, 87–95. [Google Scholar] [CrossRef]
- Gilbert, E.P.K.; Lydia, M.; Baskaran, K.; Rajsingh, E.B. Trust aware fault tolerant prediction model for wireless sensor network based measurements in Smart Grid environment. Sustain. Comput. Inform. Syst. 2019, 23, 29–37. [Google Scholar] [CrossRef]
- Aazam, M.; Zeadally, S.; Harras, K.A. Deploying fog computing in industrial internet of things and industry 4.0. IEEE Trans. Ind. Inform. 2018, 14, 4674–4682. [Google Scholar] [CrossRef]
- Zedadra, O.; Guerrieri, A.; Jouandeau, N.; Spezzano, G.; Seridi, H.; Fortino, G. Swarm intelligence and IoT-based smart cities: A review. In The Internet of Things for Smart Urban Ecosystems; Springer: Cham, Switzerland, 2019; pp. 177–200. [Google Scholar]
- Akerele, M.; Al-Anbagi, I.; Erol-Kantarci, M. A fiber-wireless sensor networks QoS mechanism for smart grid applications. IEEE Access 2019, 7, 37601–37610. [Google Scholar] [CrossRef]
- Xi, Z.; Kan, X.; Cao, L.; Liu, H.; Manogaran, G.; Mastorakis, G.; Mavromoustakis, C.X. Research on Underwater Wireless Sensor Network and MAC Protocol and Location Algorithm. IEEE Access 2019, 7, 56606–56616. [Google Scholar] [CrossRef]
- Patil, V.; Oza, S. Spectrum Management Using NI USRP and LabVIEW Framework for Smart Grid Application. 2019. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3404030 (accessed on 2 July 2020).
- Bhardwaj, R.; Kumar, D. MOFPL: Multi-objective fractional particle lion algorithm for the energy aware routing in the WSN. Pervasive Mob. Comput. 2019, 58, 101029. [Google Scholar] [CrossRef]
- Das, S.; Barani, S.; Wagh, S.; Sonavane, S.S. An Exhaustive Survey On Nature Inspired Metaheuristic Algorithms for Energy Optimization in Wireless Sensor Network. ICTACT J. Comm. Tech. 2015, 6. Available online: 10.21917/ijct.2015.0172 (accessed on 2 July 2020). [CrossRef]
- Ali, R.; Qadri, Y.A.; Zikria, Y.B.; Umer, T.; Kim, B.S.; Kim, S.W. Q-learning-enabled channel access in next-generation dense wireless networks for IoT-based eHealth systems. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Thota, C.; Sundarasekar, R.; Manogaran, G.; Varatharajan, R.; Priyan, M.K. Centralized fog computing security platform for iot and cloud in healthcare system. In Exploring the Convergence of Big Data and the Internet of Things; IGI Global: California, CA, USA, 2018. [Google Scholar]
- Preeth, S.K.S.L.; Dhanalakshmi, R.; Shakeel, P.M. An intelligent approach for energy efficient trajectory design for mobile sink based IoT supported wireless sensor networks. Peer-to-Peer Netw. Appl. 2019, 1–12. [Google Scholar] [CrossRef]
- Bagdadee, A.H.; Hoque, M.Z.; Zhang, L. IoT Based Wireless Sensor Network for Power Quality Control in Smart Grid. Procedia Comput. Sci. 2020, 167, 1148–1160. [Google Scholar] [CrossRef]
- Khan, M.W.; Zeeshan, M.; Farid, A.; Usman, M. QoS-aware traffic scheduling framework in cognitive radio based smart grids using multi-objective optimization of latency and throughput. Ad. Hoc. Netw. 2020, 97, 102020. [Google Scholar] [CrossRef]
- Dhunna, G.S.; Al-Anbagi, I. A low power WSNs attack detection and isolation mechanism for critical smart grid applications. IEEE Sens. J. 2019, 19, 5315–5324. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Alturjman, S. Intelligent UAVs for Multimedia Delivery in Smart-Cities’ Applications. In Intelligence in IoT-Enabled Smart Cities; Taylor & Francis: Boca Raton, FL, USA, 2018; p. 143. [Google Scholar]
- Al-Turjman, F.; Alturjman, S. 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multimed. Tools Appl. 2018, 79, 8627–8648. [Google Scholar] [CrossRef]
- Preeth, S.K.S.L.; Dhanalakshmi, R.; Kumar, R.; Shakeel, P.M. An adaptive fuzzy rule based energy efficient clustering and immune-inspired routing protocol for WSN-assisted IoT system. J. Ambient Intell. Humanized Comput. 2018. [Google Scholar] [CrossRef]
- He, D.; Kumar, N.; Zeadally, S.; Vinel, A.; Yang, L.T. Efficient and privacy-preserving data aggregation scheme for smart grid against internal adversariesm. IEEE Transactions on Smart Grid 8 2017, 2411–2419. [Google Scholar] [CrossRef]
- Dhumane, A.V.; Prasad, R.S. Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wirel. Netw. 2019, 25, 399–413. [Google Scholar] [CrossRef]
- Ferouhat, S.; Zakaria, S.; Demri, M. Hybrid Energy-Efficient Routing Protocol Based on Cuckoo Search and Simulated Annealing Algorithms. Ph.D. Thesis, Ahmed Draia University, Adrar, Algeria, 2019. [Google Scholar]
- Hemalatha, R.; Prakash, R.; Sivapragash, C. Analysis on energy consumption in smart grid WSN using path operator calculus centrality based HSA-PSO algorithm. Soft Comput. 2019, 24, 10771–10783. [Google Scholar] [CrossRef]
- Ogbodo, E.; Dorrell, D.; Abu-Mahfouz, A. Radio Resource Allocation Improvements in CRSN for Smart Grid: A Survey. Preprints 2019, 2019110272. [Google Scholar] [CrossRef]
- Alam, S.; Malik, A.N.; Qureshi, I.M.; Ghauri, S.A.; Sarfraz, M. Clustering-based channel allocation scheme for neighborhood area network in a cognitive radio based smart grid communication. IEEE Access 2018, 6, 25773–25784. [Google Scholar] [CrossRef]
- Fadel, E.; Faheem, M.; Gungor, V.C.; Nassef, L.; Akkari, N.; Malik, M.G.A.; Almasri, S.; Akyildiz, I. Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Comput. Commun. 2017, 101, 106–120. [Google Scholar] [CrossRef]
- Faheem, M.; Shah, S.B.; Butt, R.; Raza, B.; Anwar, M.; Ashraf, M.W.; Ngadi, A.; Gungor, V.C. Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Comput. Sci. Rev. 2018, 30, 1–30. [Google Scholar] [CrossRef]
- Faheem, M.; Gungor, V.C. MQRP: Mobile sinks-based QoS-aware data gathering protocol for wireless sensor networks-based smart grid applications in the context of industry 4.0-based on internet of things. Future Gener. Comput. Syst. 2018, 82, 358–374. [Google Scholar] [CrossRef]
- Jegadeesan, S.; Azees, M.; Kumar, P.M.; Manogaran, G.; Chilamkurti, N.; Varatharajan, R.; Hsu, C.-H. An efficient anonymous mutual authentication technique for providing secure communication in mobile cloud computing for smart city applications. Sustain. Cities Soc. 2019, 49, 101522. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakraborty, D.; Law, A. Artificial intelligence in Internet of things. CAAI Trans. Intell. Technol. 2018, 3, 208–218. [Google Scholar] [CrossRef]
Tuple | Description |
---|---|
IoT | Internet of Things |
CIT | Communications and Information Technology |
CRSN | Cognitive Radio Sensor Networks |
WSN | Wireless Sensor Networks |
RDSRP | Robust Bio-Dynamic Stimulated Routing Procedure |
HBO | Hybrid Bird Optimizer |
CBA | Clustering Based Approach |
Parameter | Configuration Value |
---|---|
Wireless Devices | 400 |
Request Size | 68 bytes |
Number of Infrastructure Units | 20 |
Bandwidth | 4 Mbps |
Request Expiry Time | 250 ms |
Signature Size | 300 bits |
Time Slots | 350 |
Number of Rounds | FBR | IIP | IWSN | CRSN | CBA | RDSRP and HBO |
---|---|---|---|---|---|---|
100 | 75.6 | 74.3 | 72.8 | 71.1 | 70.9 | 70 |
200 | 67.8 | 65.3 | 63.9 | 62.3 | 60.9 | 59.6 |
300 | 70.7 | 68.4 | 64.5 | 60.2 | 58.6 | 54.5 |
400 | 65.6 | 60.6 | 59.8 | 57.6 | 54.6 | 50.8 |
500 | 60.5 | 57.4 | 55.4 | 50.3 | 46.3 | 36.5 |
Number of Rounds | FBR | IIP | IWSN | CRSN | CBA | RDSRP and HBO |
---|---|---|---|---|---|---|
100 | 74.5 | 75.8 | 76.5 | 77.4 | 78.8 | 80.1 |
200 | 60.3 | 76.6 | 78.3 | 82.1 | 84.5 | 87.4 |
300 | 65.6 | 67.8 | 69.9 | 65.6 | 70.4 | 75.2 |
400 | 70.8 | 72.9 | 76.1 | 79.8 | 83.3 | 89.8 |
500 | 76.4 | 79.3 | 82.7 | 85.3 | 88.9 | 97.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Chu, X.; Kadry, S.; S, R. Internet-of-Things-Assisted Smart System 4.0 Framework Using Simulated Routing Procedures. Sustainability 2020, 12, 6119. https://doi.org/10.3390/su12156119
Su J, Chu X, Kadry S, S R. Internet-of-Things-Assisted Smart System 4.0 Framework Using Simulated Routing Procedures. Sustainability. 2020; 12(15):6119. https://doi.org/10.3390/su12156119
Chicago/Turabian StyleSu, Jinglei, Xue Chu, Seifedine Kadry, and Rajkumar S. 2020. "Internet-of-Things-Assisted Smart System 4.0 Framework Using Simulated Routing Procedures" Sustainability 12, no. 15: 6119. https://doi.org/10.3390/su12156119
APA StyleSu, J., Chu, X., Kadry, S., & S, R. (2020). Internet-of-Things-Assisted Smart System 4.0 Framework Using Simulated Routing Procedures. Sustainability, 12(15), 6119. https://doi.org/10.3390/su12156119