Assessing Sustainability in the Shipbuilding Supply Chain 4.0: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. An Overview of the Results
3.2. Analysis of the Key Enabling Technologies
3.3. Evaluation of the Key Enabling Technologies according to Some Basic Categories
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
KET | Interventions | Author(s) |
---|---|---|
Additive Manufacturing | Improvement techniques for the minimization of defects | [101] |
General study of the technology | [24,25,26,27,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120] | |
Parts manufacturing and repair | [28,29,121,122,123,124,125,126,127,128] | |
Parts property improvement | [30,31,129,130,131,132,133,134,135] | |
Redesign for application in additive manufacturing | [32,136,137] | |
Big Data Analytics | Process and system improvement | [33,34,35,138,139,140,141,142,143,144] |
Environmental studies | [36,37,80,145,146,147,148,149,150] | |
Smart systems | [38,40] | |
General study of the technology | [39,40,151,152] | |
Cloud Computing | Performance improvement in service | [41,42,43,153] |
Control system improvement | [44,45,47,154,155,156,157,158] | |
Energetic efficiency and environmental sustainability | [46,47,158] | |
Augmented Reality | Learning and the influence of technology on the sector | [39,48,49,159,160,161,162,163,164,165,166,167,168] |
Simulated naval environments applied to navigation, safety and maintenance | [50,51,52,53,169,170,171,172,173,174,175,176,177,178,179,180] | |
Application to the improvement of the efficiency of systems, mainly navigation | [54,181,182] | |
Autonomous Robots | Welding | [55,56,183,184,185] |
General study of the technology | [39,168] | |
Improvement of system efficiency | [59,186] | |
Cleaning, inspection and maintenance work | [57,58,187,188] | |
Unmanned vehicles | [189,190,191,192] | |
Automated Guided Vehicle | System improvement | [60,193,194,195,196] |
Repairs, maintenance, and inspection | [61,62,63,64,197,198,199,200,201,202] | |
Vehicle systems improvement | [203,204,205,206] | |
Blockchain | Applications of its use | [65,207] |
Strengthening security | [66,208] | |
Energetic efficiency | [67] | |
Cybersecurity | General considerations in the implementation of the technology | [75,76,208,209,210,211,212] |
Environmental risk reduction | [73,213] | |
Improving the safety of onboard systems | [74] | |
Horizontal and Vertical Integration System | New product development | [68] |
Impact on productivity | [69,214,215] | |
Alternatives study | [70] | |
Encouraging transfer | [216] | |
Outsourcing comparison | [72,217,218] | |
Artificial Intelligence | Navigation and control systems improvement | [77,219,220,221,222,223] |
General study of the technology | [39,78,82,224,225] | |
Decision support | [79,226] | |
Energy efficiency | [80] | |
Process optimization | [81,227] | |
Internet of Things | Linking to other technologies | [49,82,228] |
Support to the design of ships | [83,225] | |
Process and system integration | [84,168] | |
Simulation | New propulsion systems | [85,86,229] |
Structure and services ship study | [87,88,89,90,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274] | |
Welding | [55,91,92,93,275,276,277] | |
Navigation systems study | [94,278,279] | |
Supply chain | [95,280,281] | |
Production planning and control | [96,97,98,282,283,284] | |
Design | [40,99,100,285,286,287,288,289,290,291,292,293] |
References
- Oliver, R.K.; Webber, M.D. Supply-Chain Management: Logistics Catches up with Strategy; Allen & Hamilton, Inc.: London, UK, 2012; pp. 183–194. [Google Scholar]
- SCM Definitions and Glossary of Terms. Available online: https://cscmp.org/imis0/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx?hkey=60879588-f65f-4ab5-8c4b-6878815ef921 (accessed on 4 May 2020).
- Porter, M.; Porter, M.; Kramer, M. Strategy and society: The link between competitive advantage and corporate social responsibility (HBR OnPoint Enhanced Edition). Havard Bus. Rev. 2007, 84, 78–92. [Google Scholar]
- Jurado, P.J.M.; Fuentes, J.M. Lean management, supply chain management and sustainability: A literature review. J. Clean. Prod. 2014, 85, 134–150. [Google Scholar] [CrossRef]
- Christopher, M. The agile supply chain competing in volatile markets. Ind. Mark. Manag. 2000, 29, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Aravind Raj, S.; Jayakrishna, K.; Vimal, K.E.K. Modelling the metrics of leagile supply chain and leagility evaluation. Int. J. Agil. Syst. Manag. 2018, 11, 179–202. [Google Scholar]
- Cunha, L.; Ceryno, P.; Leiras, A. Social supply chain risk management: A taxonomy, a framework and a research agenda. J. Clean. Prod. 2019, 220, 1101–1110. [Google Scholar] [CrossRef]
- Carvalho, H.; Duarte, S.; Machado, V.C. Lean, agile, resilient and green: Divergencies and synergies. Int. J. Lean Six Sigma 2011, 2, 151–179. [Google Scholar] [CrossRef]
- Srivastava, S.K. Green supply-chain management: A state-of-the-art literature review. Int. J. Manag. Rev. 2007, 9, 53–80. [Google Scholar] [CrossRef]
- Mello, M.H.; Strandhagen, J.O. Supply chain management in the shipbuilding industry: Challenges and perspectives. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 261–270. [Google Scholar] [CrossRef]
- Xie, G.; Yue, W.; Wang, S. Energy efficiency decision and selection of main engines in a sustainable shipbuilding supply chain. Transp. Res. Part D Transp. Environ. 2017, 53, 290–305. [Google Scholar] [CrossRef]
- Briner, R.B.; Denyer, D. Systematic review and evidence synthesis as a practice and scholarship tool. In Systematic Review and Evidence Synthesis as a Practice and Scholarship Tool; Oxford University Press (OUP): New York, NY, USA, 2012; pp. 112–129. [Google Scholar]
- Kagermann Henning Lukas, W.-D.; Wahlster, W. Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. vierten industriellen Revolution. 2011. Available online: http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie_4_0_Mit_dem_Internet_der_Dinge_auf_dem_Weg_zur_vierten_industriellen_Revolution_2.pdf (accessed on 29 May 2020).
- Kagermann, H.; Wahlster, W.; Helbig, J. Securing the future of German manufacturing industry: Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final Rep. Ind. 2013, 4, 1–84. [Google Scholar]
- Criado García-Legaz, A.; Merino Rego, C. Una visión del astillero 4.0 de navantia. Revista General de Marina 2018, 275, 249–281. [Google Scholar]
- Ramirez-Peña, M.; Sánchez-Sotano, A.; Pérez-Fernandez, V.; Abad, F.J.; Batista, M. Achieving a sustainable shipbuilding supply chain under I4.0 perspective. J. Clean. Prod. 2020, 244, 118789. [Google Scholar] [CrossRef]
- Ramirez-Peña, M.; Fraga, F.J.A.; Sotano, A.J.S.; Batista, M. Shipbuilding 4.0 Index Approaching Supply Chain. Materials 2019, 12, 4129. [Google Scholar] [CrossRef] [Green Version]
- Frederico, G.F.; Garza-Reyes, J.A.; Anosike, A.; Kumar, V. Supply Chain 4.0: Concepts, maturity and research agenda. Supply Chain Manag. Int. J. 2019, 25, 262–282. [Google Scholar] [CrossRef]
- Dossou, P.-E. Impact of Sustainability on the supply chain 4.0 performance. Procedia Manuf. 2018, 17, 452–459. [Google Scholar] [CrossRef]
- Daú, G.; Scavarda, A.; Carmo, L.F.R.R.S.D.; Portugal, V.J.T. The Healthcare Sustainable Supply Chain 4.0: The Circular Economy Transition Conceptual Framework with the Corporate Social Responsibility Mirror. Sustainability 2019, 11, 3259. [Google Scholar] [CrossRef] [Green Version]
- Denyer, D.; Tranfield, D.; van Aken, J.E.; Denyer, D.; Tranfield, D. Developing design propositions through research synthesis. Organ. Stud. 2008, 29, 393–413. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A Comparison between two main academic literature collections: Web of science and scopus databases. Asian Soc. Sci. 2013, 9. [Google Scholar] [CrossRef] [Green Version]
- Duda, T.; Raghavan, L.V. 3D metal printing technology. IFAC Papers On Line 2016, 49, 103–110. [Google Scholar] [CrossRef]
- Lu, Z.; Cao, J.; Song, Z.; Li, D.; Lu, B. Research progress of ceramic matrix composite parts based on additive manufacturing technology. Virtual Phys. Prototyp. 2019, 14, 333–348. [Google Scholar] [CrossRef]
- Fisher, C.R.; Vail, C.E. Computational Simulation of an Additively Manufactured Marine Component. J. Mater. Eng. Perform. 2018, 28, 627–632. [Google Scholar] [CrossRef]
- Grace, R. U.S. Marines: Seeking a Few Good Co-Creators: Leveraging open-source product development, the Marines are using digital technology and 3D printing to enhance their supply chain. In Plastics Engineering; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 18–23. [Google Scholar]
- Lu, Z.-L.; Zhang, A.F.; Tong, Z.Q.; Yang, X.H.; Li, D.; Lu, B.H. Fabricating the steam turbine blade by direct laser forming. Mater. Manuf. Process. 2011, 26, 879–885. [Google Scholar] [CrossRef]
- Torims, T.; Pikurs, G.; Ratkus, A.; Logins, A.; Vilcāns, J.; Sklariks, S. Development of technological equipment to laboratory test in-situ laser cladding for marine engine crankshaft renovation. Procedia Eng. 2015, 100, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Tor, S.B.; Merchant, A.A. Tensile properties of ASTM A131 EH36 shipbuilding steel processed by selective laser melting. In Proceedings of the International Conference on Progress in Additive Manufacturing, Singapore, 14–17 May 2018; pp. 684–689. [Google Scholar]
- Xing, X.; Duan, X.; Jiang, T.; Wang, J.; Jiang, F. Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting. Metals 2019, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.J.; Al Rifaie, M.; Mian, A.; Srinivasan, R. Low-velocity impact behavior of sandwich structures with additively manufactured polymer lattice cores. J. Mater. Eng. Perform. 2018, 27, 2505–2512. [Google Scholar] [CrossRef]
- Perera, L.P.; Mo, B.; Soares, C.; Santos, T. Machine intelligence for energy efficient ships: A big data solution. In Proceedings of the Maritime Technology and Engineering III, Lisbon, Portugal, 4–6 July 2016; pp. 143–150. [Google Scholar]
- Sumesh, A.; Rameshkumar, K.; Mohandas, K.; Babu, R.S. Use of machine learning algorithms for weld quality monitoring using acoustic signature. Procedia Comput. Sci. 2015, 50, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Osen, O.L.; Li, G.; Li, W.; Dai, H.-N.; Zeng, W. Big data and industrial Internet of Things for the maritime industry in Northwestern Norway. In Proceedings of the TENCON 2015—2015 IEEE Region 10 Conference, Piscataway, NJ, USA, 1–4 November 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Xu, G.; Shi, Y.; Sun, X.; Shen, W. Internet of Things in Marine Environment Monitoring: A Review. Sensors 2019, 19, 1711. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Wang, K.; Yuan, Y.; Jiang, X.; Negenborn, R.R. Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors. Ocean Eng. 2018, 169, 457–468. [Google Scholar] [CrossRef]
- Muthuramalingam, S.; Bharathi, A.; Kumar, S.R.; Gayathri, N.; Sathiyaraj, R.; Balamurugan, B. IoT Based Intelligent Transportation System (IoT-ITS) for global perspective: A case study. Math. Anal. Appl. 2018, 154, 279–300. [Google Scholar] [CrossRef]
- Morais, D.; Waldie, M.; Roberts, P.; David, P. How to implement tech in shipbuilding: Charting the course to success. SNAME Marit. Conv. 2018, 2018, 2020. [Google Scholar]
- Nikolopoulos, L.; Boulougouris, E. A methodology for the holistic, simulation driven ship design optimization under uncertainty. In Proceedings of the Conference: International Marine Design Conference, Helsinki, Finland, 10–14 June 2018; pp. 227–244. [Google Scholar]
- Ayyub, B.M.; Stambaugh, K.A.; McAllister, T.A.; De Souza, G.F.M.; Webb, D. Structural Life Expectancy of Marine Vessels: Ultimate Strength, Corrosion, Fatigue, Fracture, and Systems. ASCE-ASME J. Risk Uncert. Eng. Syst Part B Mech. Eng. 2015, 1, 011001. [Google Scholar] [CrossRef]
- Mihanović, L.; Ristov, P.; Belamarić, G. Use of new information technologies in the maintenance of ship systems. Sci. J. Marit. Res. 2016, 30, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Nishizaki, C.; Itoh, H.; Yoshimura, K.; Hikida, K.; Mitomo, N. Development of a method for marine accident analysis with bridge simulator. In Proceedings of the 2011 6th International Conference on System of Systems Engineering, Albuquerque, NM, USA, 27–30 June 2011; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 31–36. [Google Scholar]
- Bannister, N.; Neyland, D. Maritime domain awareness with commercially accessible electro-optical sensors in space. Int. J. Remote. Sens. 2015, 36, 211–243. [Google Scholar] [CrossRef]
- Zhang, S.-K.; Shi, G.-Y.; Liu, Z.-J.; Zhao, Z.-W.; Wu, Z.-L. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity. Ocean Eng. 2018, 155, 240–250. [Google Scholar] [CrossRef]
- Carbone, R.; Montella, R.; Narducci, F.; Petrosino, A. DeepNautilus: A Deep Learning Based System for Nautical Engines’ Live Vibration Processing. In Intelligent Tutoring Systems; Springer: Berlin, Germany, 2019; pp. 120–131. [Google Scholar]
- Ju, D.; Shen, B. Sustainable Development of Marine Economy Guided by Knowledge Cloud Services. In Proceedings of the 2011 Second International Conference on Networking and Distributed Computing, Beijing, China, 21–24 September 2011; pp. 235–239. [Google Scholar]
- He, C.; Jia, X.; Liu, D.; Liu, Y. Study of augmented reality technology applied in the field of marine engineering. Simul. Model. Methodol. Technol. Appl. 2014, 60, 585–592. [Google Scholar] [CrossRef]
- Blanco-Novoa, O.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Vilar-Montesinos, M. A Practical Evaluation of Commercial Industrial Augmented Reality Systems in an Industry 4.0 Shipyard. IEEE Access 2018, 6, 8201–8218. [Google Scholar] [CrossRef]
- Rowen, A.; Grabowski, M.; Rancy, J.-P.; Crane, A. Impacts of Wearable Augmented Reality Displays on operator performance, Situation Awareness, and communication in safety-critical systems. Appl. Ergon. 2019, 80, 17–27. [Google Scholar] [CrossRef]
- Shang, L.; Gao, Q.; Chen, J.; Hu, F. Research of Virtual Simulation Experiment Platform for Marine Auxiliary Machinery Based on VR/AR. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering-CSAE 2019, Sanya, China, 22–24 October 2019; p. 64. [Google Scholar]
- Morgère, J.-C.; Diguet, J.-P.; Laurent, J. Electronic navigational chart generator for a marine mobile augmented reality system. 2014 Oceans-St. John’s 2014, 1–9. [Google Scholar] [CrossRef]
- Grabowski, M.; Rowen, A.; Rancy, J.-P. Evaluation of wearable immersive augmented reality technology in safety-critical systems. Saf. Sci. 2018, 103, 23–32. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Kim, D.; Nam, B.; Li, R. Study on Alignment of Navigational Information through Transparent Window; Informa UK Limited: London, UK, 2015; pp. 741–744. [Google Scholar]
- Rooks, B. Robot welding in shipbuilding. Ind. Robot. Int. J. 1997, 24, 413–417. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.-Y.; Kim, T.-W.; Lee, N.; Lee, S.; Lim, C.; Kang, S.-W. Rail Running Mobile Welding Robot ‘RRX3’ for Double Hull Ship Structure. In IFAC Proceedings Volumes; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 41, pp. 4292–4297. [Google Scholar]
- Larsen, K.R. Autonomous robot cleans ship hulls and inspects for corrosion. Mater Perform. 2009, 48, 17–19. [Google Scholar]
- Cavada, J.; Fadón, F. Robotic Solutions Applied to Production and Measurement of Marine Propellers. In Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, France, 2–4 July 2012; pp. 275–281. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, M.; Chen, W.-H.; Chen, C.; Zheng, S. Structure synthesis & simulation analysis of the repeated foldable waste disposal robot of the marine. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 242–247. [Google Scholar]
- Geertsma, R.; Negenborn, R.; Visser, K.; Hopman, J. Design and control of hybrid power and propulsion systems for smart ships: A review of developments. Appl. Energy 2017, 194, 30–54. [Google Scholar] [CrossRef]
- Sivcev, S.; Rossi, M.; Coleman, J.; Omerdic, E.; Dooly, G.; Toal, D. Collision Detection for Underwater ROV Manipulator Systems. Sensors 2018, 18, 1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trslic, P.; Rossi, M.; Sivcev, S.; Dooly, G.; Coleman, J.; Omerdic, E.; Toal, D. Long term, inspection class ROV deployment approach for remote monitoring and inspection. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018. [Google Scholar] [CrossRef]
- Fahrni, L.; Thies, P.R.; Johanning, L.; Cowles, J. Scope and feasibility of autonomous robotic subsea intervention systems for offshore inspection, maintenance and repair. In Advances in Renewable Energies Offshore, Proceedings of the 3rd International Conference on Renewable Energies Offshore; CRC Press: Leiden, The Neteherlands, 2019; pp. 771–778. [Google Scholar]
- Steinke, D.M.; Nicoll, R.S.; Roy, A.R. Real-Time Finite Element Analysis of a Remotely Operated Pipeline Repair System. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Nantes, France, 9–14 June 2013. [Google Scholar] [CrossRef]
- Gausdal, A.H.; Czachorowski, K.; Solesvik, M. Applying Blockchain Technology: Evidence from Norwegian Companies. Sustainability 2018, 10, 1985. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xie, W.; Huang, L.; Wei, Z. Marine data security based on blockchain technology. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 322, p. 052028. [Google Scholar]
- Košťál, K.; Krupa, T.; Gembec, M.; Veres, I.; Ries, M.; Kotuliak, I. On Transition between PoW and PoS. In Proceedings of the 2018 International Symposium ELMAR, Zadar, Croatia, 16–19 September 2018; pp. 207–210. [Google Scholar] [CrossRef]
- Ali, S.A.; Moritz, R.R. Rolls-Royce Power Generation Current Products and New Product Plans. In Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations; ASME: New York, NY, USA, 2001; pp. 1–8. [Google Scholar] [CrossRef]
- Lamb, T.; Hellesoy, A. A shipbuilding productivity predictor. J. Ship Prod. 2002, 18, 79–85. [Google Scholar]
- Haartveit, D.E.G.; Semini, M.; Alfnes, E. Integration Alternatives for Ship Designers and Shipyards. In Nonlinear Model Predictive Control; Springer Science and Business Media LLC: Berlin, Germany, 2012; Volume 384, pp. 309–316. [Google Scholar]
- Grabot, B.; Vallespir, B.; Gomes, S.; Bouras, A.; Kiritsis, D. Advances in Production Management Systems: Innovative and Knowledge-Based Production Management in a Global-Local World: IFIP WG 5.7. In Proceedings of the International Conference, APMS 2014, Ajaccio, France, 20–24 September 2014. [Google Scholar]
- Sergio, E.; Senada, S. The Make-or-Buy Decision in the Croatian Shipbuilding Industry: A Transaction Cost Economics Approach. South East Eur. J. Econ. Bus. 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- McGillivary, P. Why Maritime Cybersecurity Is an Ocean Policy Priority and How It Can Be Addressed. Mar. Technol. Soc. J. 2018, 52, 44–57. [Google Scholar] [CrossRef]
- Selvam, N.; Scott, R.; DeWitt, C. Use of a Cybersecurity Laboratory in Support of the Virtual Vessel Concept to Increase Safety Onboard Marine and Offshore Assets. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 2017; pp. 2299–2306. [Google Scholar]
- Chen, J. How to choose the right computing platform for IIoT. ECN Electron Compon News 2017, 61, 18–20. [Google Scholar]
- Silverajan, B.; Vistiaho, P. Enabling Cybersecurity Incident Reporting and Coordinated Handling for Maritime Sector. In Proceedings of the 2019 14th Asia Joint Conference on Information Security (AsiaJCIS), Kobe, Japan, 1–2 August 2019; pp. 88–95. [Google Scholar]
- Tsou, M.-C.; Kao, S.-L.; Su, C.-M. Decision Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts. J. Navig. 2009, 63, 167–182. [Google Scholar] [CrossRef]
- de Góngora, R. Practical use cases of artificial intelligence in the shipdesign stage. In RINA, Royal Institution of Naval Architects-19th International Conference on Computer Applications in Shipbuilding; ICCAS: London, UK, 2019; p. 2020. [Google Scholar]
- Cebi, S.; Celik, M. Ship machinery installation based on fuzzy information axiom: The case of compressed air system. In Proceedings of the Computational Intelligence in Decision and Control, Madrid, Spain, 21–24 September 2008; pp. 1093–1098. [Google Scholar]
- Park, S.W.; Roh, M.I.; Oh, M.J.; Kim, S.H.; Lee, W.J.; Kim, I.I.; Kim, C.Y. Estimation model of energy efficiency operational indicator using public data based on big data technology. In Proceedings of the International Offshore and Polar Engineering Conference, Sapporo, Japan, 10–15 June 2018; pp. 894–897. [Google Scholar]
- Grela, J.S.; Otero, J.; Guijarro-Berdiñas, B.; Rego-Fernández, D. Optimizing the ship constructions by automatic line heating forming process based in numerical simulation and artificial intelligence. In Comput Methods Mar Eng VI; International Centre for Numerical Methods in Engineering: Barcelona, Spain, 2015; pp. 218–229. [Google Scholar]
- Mikulić, A.; Parunov, J. A review of artificial intelligence applications in ship structures. In Trends in the Analysis and Design of Marine Structures; Informa UK Limited: London, UK, 2019; pp. 515–523. [Google Scholar]
- Sullivan Brendan, P.; Monica, R.; Claudio, S.; Rossella, L.; Lucia, R.; Sergio, T. Lincoln integrated solution supporting the design of specialized connected vessels. In Proceedings of the Summer School Francesco Turco, Milan, Italy, 12–14 June 2018; pp. 250–256. [Google Scholar]
- Hiekata, K. Advanced Information Systems for Ship Design, Construction and Operation. J. Jpn. Soc. Precis. Eng. 2017, 83, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Ericsen, T. The ship power electronic revolution: Issues and answers. In Proceedings of the 2008 55th IEEE Petroleum and Chemical Industry Technical Conference, Cincinnati, OH, USA, 22–24 September 2008; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2008; pp. 1–11. [Google Scholar]
- Ghassemi, H.; Ikehata, M.; Yamasaki, H. An Investigation of Wake Model and Its Effect on the Hydrodynamic Performance of Propellers by Using a Surface Panel Method. J. Soc. Nav. Arch. Jpn. 1995, 1995, 83–91. [Google Scholar] [CrossRef]
- Okawa, T.; Sumi, Y. A computational approach for fatigue crack propagation in ship structures under random sequence of clustered loading. J. Mar. Sci. Technol. 2008, 13, 416–427. [Google Scholar] [CrossRef]
- Liu, B.; Villavicencio, R.; Soares, C.G. Experimental and numerical analysis of residual stresses and strains induced during cold bending of thick steel plates. Mar. Struct. 2018, 57, 121–132. [Google Scholar] [CrossRef]
- Lee, D.; Choi, J.; Park, B.J.; Kang, H.J.; Lim, S. Study of damage safety assessment for a ship carrying radioactive waste. Int. J. Nav. Arch. Ocean Eng. 2012, 4, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.Y.; Park, S.-I.; Lee, J.B.; Kwon, S.; Hwang, Y. A Preliminary Investigation on the Risk Arising From the Use of HP FGS System in LNGC by Analyzing Risk Contributors Comparatively. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea, 19–24 June 2016; Volume 3. [Google Scholar] [CrossRef]
- Lee, J.; Choi, W.; Kang, M.; Chung, H. Variation Simulation and Diagnosis Model of Compliant Block Assembly Considering Welding Deformation. J. Ship Prod. Des. 2019, 35, 263–272. [Google Scholar] [CrossRef]
- Song, L.; Mao, Y.; Xiang, Z.; Chen, Z.; Bin, L. A Simulation on the Effect of Welding Sequences for T-joints under Single V Groove. Manuf. Technol. 2018, 18, 504–509. [Google Scholar] [CrossRef]
- Lee, J.; Choi, W.; Kang, M.; Chung, H. Tolerance analysis and diagnosis model of compliant block assembly considering welding deformation. Trans.-Soc. Nav. Arch. Mar. Eng. 2016, 124, 154–164. [Google Scholar]
- Tarovik, O.; Topaj, A.; Bakharev, A.A.; Kosorotov, A.V.; Krestyantsev, A.B.; Kondratenko, A. Multidisciplinary Approach to Design and Analysis of Arctic Marine Transport Systems. In Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017. [Google Scholar] [CrossRef]
- Woo, J.H.; Kim, Y.; Jeong, Y.; Shin, J.-G.; Hun, W.J.; Youngmin, K.; Yong-Kuk, J.; Jong-Gye, S. A Research on Simulation Framework for the Advancement of Supplying Management Competency. J. Ship Prod. Des. 2017, 33, 60–79. [Google Scholar] [CrossRef]
- Özkök, M.; Helvacıoğlu, I.; Weintrit, A.; Neumann, T. Simulation-based Modeling of Block Assembly Area at Shipyards. In Safety of Sea Transportation; Informa UK Limited: London, UK, 2017; pp. 165–170. [Google Scholar]
- Karpowicz, A.S.; Simone, V. An application of computer simulation methods in ship production process. Comput. Ind. 1987, 9, 37–51. [Google Scholar] [CrossRef]
- Munitic, A.; Dvornik, J.; Simundic, S. Computing simulation model of shipbuilding organization process. In Simulation Series; TIB: Hannover, Germany, 2003; pp. 191–194. [Google Scholar]
- Vasconcellos, J.M. Optimization procedure as decision tool for ship design. In Proceedings of the International Maritime Conference, Sydney, Australia, 27–29 January 2010; pp. 340–349. [Google Scholar]
- Ferguson, S.W. Towards a marine digital twin, predictive engineering analytics for ship design. In RINA, Royal Institution of Naval Architects—International Conference on Computer Applications in Shipbuilding; ICCAS0: London, UK, 2017; pp. 104–107. [Google Scholar]
- Kim, T.B.; Yue, S.; Zhang, Z.; Jones, E.; Jones, J.; Lee, P.D. Additive manufactured porous titanium structures: Through-process quantification of pore and strut networks. J. Mater. Process. Technol. 2014, 214, 2706–2715. [Google Scholar] [CrossRef]
- Kumar, M.; Ramakrishnan, R.; Omarbekova, A. 3D printed polycarbonate reinforced acrylonitrile–butadiene–styrene composites: Composition effects on mechanical properties, micro-structure and void formation study. J. Mech. Sci. Technol. 2019, 33, 5219–5226. [Google Scholar] [CrossRef]
- Gonzales, M.A.C.; Kujala, P. 3D Printing Miniature Marine Structures Models for Structural Analysis Purpose: Is it Possible? In Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, UK, 9–14 June 2019. [Google Scholar] [CrossRef]
- Ermakova, A.; Mehmanparast, A.; Ganguly, S. A review of present status and challenges of using additive manufacturing technology for offshore wind applications. Procedia Struct. Integr. 2019, 17, 29–36. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhang, M.; Tan, X.; Jing, W.; Liu, E.J.; Tor, S.B.; Li, H. Impact and fatigue characteristics of additively manufactured steel materials: A review. Proc. Int. Conf. Prog. Addit. Manuf. 2018, 2018, 487–492. [Google Scholar]
- Wistance, W.; Lee, J. Additive Manufacturing Metal 3D Printing for the Marine and Offshore Sector—Paving the Path from Lab into the Field. In Offshore Technology Conference, Kuala Lumpur, Malaysia, 20–23 March 2018; Society of Petroleum Engineers (SPE): Kuala Lumpur, Malaysia, 2018; Volume 1987, pp. 1–12. [Google Scholar]
- Kostidi, E.; Nikitakos, N. Exploring the Potential of 3D Printing of the Spare Parts Supply Chain in the Maritime Industry. In Safety of Sea Transportation; Informa UK Limited: London, UK, 2017; pp. 171–178. [Google Scholar]
- Cuoghi, F. From racetrack to orbit, an additive revolution. Reinf. Plast. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Jaiganesh, V.; Christopher, A.A.; Mugilan, E. Manufacturing of PMMA Cam Shaft by Rapid Prototyping. Procedia Eng. 2014, 97, 2127–2135. [Google Scholar] [CrossRef] [Green Version]
- Cilia, T.; Bertetta, D.; Gualeni, P.; Tani, G.; Viviani, M. Additive Manufacturing Application to a Ship Propeller Model for Experimental Activity in the Cavitation Tunnel. J. Ship Prod. Des. 2019, 35, 364–373. [Google Scholar] [CrossRef]
- De Moraes, C.C.; Santiago, R.C. AUV Scaled Model Prototyping using 3D Printing Techniques. In 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV); IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Husser, N.A.; Onas, A.S. An investigation of turbulence stimulation on 3D printed model propellers. SNAME Marit. Conv. SMC 2018, 2018, 2020. [Google Scholar]
- Chen, C.; Liu, L.; Xu, J. Application of metal additive manufacturing in shipbuilding and construction of marine engineering. Shipbuild. China 2016, 57, 215–225. [Google Scholar]
- Fu, Y.C.; Cao, X.P.; Li, Z. Printability of Magnesium Potassium Phosphate Cement with Different Mixing Proportion for Repairing Concrete Structures in Severe Environment. Key Eng. Mater. 2016, 711, 989–995. [Google Scholar] [CrossRef]
- Yuan, S.; Shen, F.; Chua, C.K.; Zhou, K. Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog. Polym. Sci. 2019, 91, 141–168. [Google Scholar] [CrossRef]
- Sarathchandra, D.; Subbu, S.K.; Venkaiah, N. Functionally graded materials and processing techniques: An art of review. Mater. Today Proc. 2018, 5, 21328–21334. [Google Scholar] [CrossRef]
- Srivastava, M.; Rathee, S.; Maheshwari, S.; Siddiquee, A.N.; Kundra, T.K. A Review on Recent Progress in Solid State Friction Based Metal Additive Manufacturing: Friction Stir Additive Techniques. Crit. Rev. Solid State Mater. Sci. 2018, 44, 345–377. [Google Scholar] [CrossRef]
- Jha, S. Emerging technologies: Impact on shipbuilding. Marit. Aff. J. Natl. Marit. Found. India 2016, 12, 78–88. [Google Scholar] [CrossRef]
- Jovanovic, V.; Bilgen, O.; Arcaute, K.; A Audette, M.; Dean, A. Active Duty Training for Support of Navy’s Additive Manufacturing Strategy. In 2017 ASEE Annual Conference & Exposition; American Society for Engineering Education: Washington, DC, USA, 2018; p. 2017. [Google Scholar]
- Wu, W.; Tor, S.B.; Leong, K.F.; Chua, C.K.; Merchant, A.A. State of the art review on selective laser melting of stainless steel for future applications in the marine industry. In Proceedings of the International Conference on Progress in Additive Manufacturing, Singapore, 16–19 May 2016; pp. 475–481. [Google Scholar]
- Toy, Y.C.; Mahouti, P.; Gunes, F.; Belen, M.A. Design and manufactering of an X-band horn antenna using 3-D printing technology. In Proceedings of the 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 19–22 June 2017; pp. 195–198. [Google Scholar]
- Giovannelli, A. Development of turbomachines for renewable energy systems and energy-saving applications. Energy Procedia 2018, 153, 10–15. [Google Scholar] [CrossRef]
- Casas, A.M.; Torims, T.; Rubert, S.C.G. Additive Manufacturing as a Technique for In Situ Repair and Renovation of Marine Crankshaft Journals. Key Eng. Mater. 2019, 799, 263–269. [Google Scholar] [CrossRef]
- Queguineur, A.; Rückert, G.; Cortial, F.; Hascoët, J.Y. Evaluation of wire arc additive manufacturing for large-sized components in naval applications. Weld. World 2017, 62, 259–266. [Google Scholar] [CrossRef]
- Abu Jadayil, W.; Serhan, D. The Effect of Heat Treatment and Alloying of Ni–Ti Alloy with Copper on Improving Its Fatigue Life. In Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019), Dearborn, MI, USA, 20–23 August 2019; pp. 413–420. [Google Scholar]
- Ding, D.; Pan, Z.; Van Duin, S.; Li, H.; Shen, C. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing. Materials 2016, 9, 652. [Google Scholar] [CrossRef] [Green Version]
- Asghar, A.; Allan, W.D.E.; LaViolette, M.; Stowe, R.; Alexander, D.; Ingram, G. S-Duct Diffuser Offset-to-Length Ratio Effect on Aerodynamic Performance of Propulsion-System Inlet of High Speed Aircraft. Proc. ASME Turbo EXPO 2018, 1, 1–15. [Google Scholar] [CrossRef]
- Kopperstad, K.; Lemu, H.G. Design and performance study of additive manufactured thrusters for remotely operated underwater vehicle. Proc. Int. Offshore Polar Eng. Conf. 2018, 2018, 379–386. [Google Scholar]
- Mohammadi, M.; Asgari, H. Achieving low surface roughness AlSi10Mg_200C parts using direct metal laser sintering. Addit. Manuf. 2018, 20, 23–32. [Google Scholar] [CrossRef]
- Wu, W.; Tor, S.B.; Chua, C.K.; Leong, K.F.; Merchant, A. Investigation on processing of ASTM A131 Eh36 high tensile strength steel using selective laser melting. Virtual Phys. Prototyp. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kenny, S.; Mohammadi, M. On Bending Performance of Additively Manufactured Steel Catenary Riser (SCR): Effect of Welding Residual Stress on Bending Strain Capacity. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Valentin, T.M.; Landauer, A.K.; Morales, L.C.; Dubois, E.M.; Shukla, S.; Liu, M.; Valentin, L.H.S.; Franck, C.; Chen, P.-Y.; Wong, I.Y.; et al. Alginate-graphene oxide hydrogels with enhanced ionic tunability and chemomechanical stability for light-directed 3D printing. Carbon 2019, 143, 447–456. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Mohammadi, M. Numerical tools to investigate mechanical and fatigue properties of additively manufactured MS1-H13 hybrid steels. Addit. Manuf. 2018, 23, 381–393. [Google Scholar] [CrossRef]
- Jing, W.; Wang, J.; Tan, X.; Liu, E.; Tor, S. Mechanical properties and fracture analysis of additively manufactured EH 36 steel parts by laser engineered net shaping process. Proc. Int. Conf. Prog. Addit. Manuf. 2018, 2018, 498–504. [Google Scholar]
- Arias-González, F.; Del Val, J.; Comesaña, R.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.; Riveiro, A. Processing of pure Ti by rapid prototyping based on laser cladding. In Proceedings of the 8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications, Porto, Portugal, 22–26 July 2013; p. 878546. [Google Scholar] [CrossRef]
- Rinoj, G.; Idapalapati, S.; Feih, S. Failure Mode Analysis of Kagome Lattice Structures. In Proceedings of the 2nd International Conference on Progress in Additive Manufacturing, Singapore, 16–19 May 2016; pp. 91–96. [Google Scholar]
- Staiano, G.; Gloria, A.; Ausanio, G.; Lanzotti, V.; Pensa, C.; Martorelli, M. Experimental study on hydrodynamic performances of naval propellers to adopt new additive manufacturing processes. Int. J. Interact. Des. Manuf. (IJIDeM) 2016, 12, 1–14. [Google Scholar] [CrossRef]
- Perera, L.P.; Mo, B. Marine Engine Operating Regions under Principal Component Analysis to evaluate Ship Performance and Navigation Behavior. IFAC-Papers On Line 2016, 49, 512–517. [Google Scholar] [CrossRef]
- Dominguez, A.G. Smart Ships: Mobile Applications, Cloud and Bigdata on Marine Traffic for Increased Safety and Optimized Costs Operations. In Proceedings of the 2014 2nd International Conference on Artificial Intelligence, Modelling and Simulation, Madrid, Spain, 18–20 November 2014; pp. 303–308. [Google Scholar]
- Park, S.-W.; Roh, M.-I.; Oh, M.-J.; Kim, S.-H. Association Analysis of Piping Materials of an Offshore Structure Using Big Data Technology. J. Ship Prod. Des. 2019, 35, 220–230. [Google Scholar] [CrossRef]
- Jia, S.; Ma, L.; Zhang, S. Big data prototype practice for unmanned surface vehicle. In Proceedings of the 4th International Conference on Communication and Information Processing-ICCIP ’18, Qingdao, China, 2–4 November 2018; pp. 43–47. [Google Scholar] [CrossRef]
- Tang, G.; Cao, Q.; Li, X. Analysis of Vessel Behaviors in Costal Waterways Using Big AIS Data. In Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 12–15 April 2019; pp. 290–294. [Google Scholar]
- An, J.; Qiao, T.; Yang, X.; Hong, H.; Cheng, N.; Bai, X. Design of a Visual Analysis Platform for Sea Route Based on AIS Data. In Proceedings of the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 25–28 May 2019; pp. 102–106. [Google Scholar]
- Nishizaki, C.; Terayama, M.; Okazaki, T.; Shoji, R. Development of Navigation Support System to Predict New Course of Ship. In Proceedings of the 2018 World Automation Congress (WAC), Stevenson, WA, USA, 3–6 June 2018. [Google Scholar] [CrossRef]
- Zaman, I.; Pazouki, K.; Norman, R.; Younessi, S.; Coleman, S. Challenges and Opportunities of Big Data Analytics for Upcoming Regulations and Future Transformation of the Shipping Industry. Procedia Eng. 2017, 194, 537–544. [Google Scholar] [CrossRef]
- Kim, K.-I.; Lee, K.M. Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction. Energies 2018, 11, 1273. [Google Scholar] [CrossRef] [Green Version]
- Anan, T.; Higuchi, H.; Hamada, N. New artificial intelligence technology improving fuel efficiency and reducing CO2 emissions of ships through use of operational big data. Fujitsu Sci. Tech. J. 2017, 53, 23–28. [Google Scholar]
- Zhou, C.H.; Huang, H.X.; Zhou, L.; Sui, Z.Y.; Wen, Y.Q.; Xiao, C.S. Main engine power estimation method for the inland ship based on big data. Dalian Haishi Daxue Xuebao J. Dalian Marit. Univ. 2019, 45, 44–49. [Google Scholar]
- Wang, G.; Hu, K. To establish ship performance assessment scheme in a dynamically challenging environment. In Proceedings of the PRADS, Copenhagen, Denmark, 4–8 September 2016; p. 2020. [Google Scholar]
- Hamedifar, H.; Spitzenberger, C.; Stahl, C.; Brown, A.; Nilberg, B.; DeMay, V.; Aspholm, O. Terminal and Transportation Risk Assessment for LNG Export in North America. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2015. [Google Scholar] [CrossRef]
- Wang, H.; Karlsen, A.; Engelseth, P. Big data for the Norwegian maritime industry. In Proceedings of the Network Security and Communication Engineering, Hong Kong, China, 25–26 December 2014; Informa UK Limited: London, UK, 2015; pp. 399–402. [Google Scholar]
- Casals-Torrens, P.; Bosch, R.; Diaz-Gonzalez, F.; Nicolas-Apruzzese, J.; Fuses, V. Challenges in the formation of marine engineers. Goals and opportunities in the education and training of marine technology. In Proceedings of the AGA 2018-19th Annual General Assembly (AGA) of the International Association of Maritime Universities (IAMU), Barcelona, Spain, 17–19 October 2018; pp. 61–70. [Google Scholar]
- Huang, Y.; Guo, C.; Sun, J.; Huo, Y.; Deng, Z. Cloud Model Based Intelligent Control for Marine Hydraulic Steering Gear System. Lect. Notes Electr. Eng. 2017, 458, 647–654. [Google Scholar] [CrossRef]
- Montella, R.; Ruggieri, M.; Kosta, S. A fast, secure, reliable, and resilient data transfer framework for pervasive IoT applications. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; pp. 710–715. [Google Scholar]
- Cui, K.; Sun, W.; Sun, W. Joint Computation Offloading and Resource Management for USVs Cluster of Fog-Cloud Computing Architecture. In Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2019; pp. 92–99. [Google Scholar]
- Xu, Y.; Liu, P.; Penesis, I.; He, G. Deployment of Batch Mode Scientific Workflow on a Computation-as-a-Service Private Cloud. In Proceedings of the 2018 5th International Conference on Soft Computing & Machine Intelligence (ISCMI), Nairobi, Kenya, 21–22 November 2018; pp. 123–128. [Google Scholar]
- Aguilar, E.; Radeva, P. Class-Conditional Data Augmentation Applied to Image Classification. In Proceedings of the Intelligent Tutoring Systems, Salerno, Italy, 3–5 September 2019; pp. 182–192. [Google Scholar]
- Riahi, M.; Krichen, S. A multi-objective decision support framework for virtual machine placement in cloud data centers: A real case study. J. Supercomput. 2018, 74, 2984–3015. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.-S.; Park, J.H.; Lee, J.-G. A model for a simulation-based shipbuilding system in a shipyard manufacturing process. Int. J. Comput. Integr. Manuf. 2005, 18, 427–441. [Google Scholar] [CrossRef]
- Jia, X. Application research of augmented reality technology in marine engineering. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2014, 32, 8791–8798. [Google Scholar]
- Snyder, J. A New Reality in Navigation; Marine Log: New York, NY, USA, 2004; Volume 109, pp. 31–34. [Google Scholar]
- Luis, C.E.M.; Mellado, R.C.; Díaz, B.A. PBL Methodologies with Embedded Augmented Reality in Higher Maritime Education: Augmented Project Definitions for Chemistry Practices. Procedia Comput. Sci. 2013, 25, 402–405. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Liu, Y.; Luo, W.; Shen, Z.; Guo, C. Virtual reality based marine engineering English learning environment simulation research. In Proceedings of the 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 18–20 December 2015; pp. 228–232. [Google Scholar]
- Luis, C.E.M.; Marrero, A.M.G. Real Object Mapping Technologies Applied to Marine Engineering Learning Process within a CBL Methodology. Procedia Comput. Sci. 2013, 25, 406–410. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, I.M.; Mohamedien, M.A.; Ibrahim, H.M.H.; Khalil, M.A.E.M. Proposed management system of marine works based on bim approach (Technology). J. Eng. Appl. Sci. 2019, 66, 771–790. [Google Scholar]
- Rowen, A.; Grabowski, M.; Rancy, J.-P. Through the Looking Glass(es): Impacts of Wearable Augmented Reality Displays on Operators in a Safety-Critical System. IEEE Trans. Hum. Mach. Syst. 2019, 49, 652–660. [Google Scholar] [CrossRef]
- Piciarelli, C.; Vernier, M.; Zanier, M.; Foresti, G.L. An augmented reality system for technical staff training. In Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, Portugal, 18–20 July 2018; pp. 899–904. [Google Scholar]
- Kai, A.T. Driving transformation in the age of experience. In RINA, Royal Institution of Naval Architects-International Conference on Computer Applications in Shipbuilding, ICCAS 2017; Royal Institution of Naval Architects: London, UK, 2017; pp. 20–23. [Google Scholar]
- Brito, C.J.D.S.; Almeida, M.W.S.; Vieira-E-Silva, A.L.B.; Teixeira, J.M.X.N.; Teichrieb, V. Screen Space Rendering Solution for Multiphase SPH Simulation. In Proceedings of the 2017 19th Symposium on Virtual and Augmented Reality (SVR), Curitiba, Brazil, 1–4 November 2017; pp. 309–318. [Google Scholar] [CrossRef]
- Bakalov, I. A Contemporary Concept in Troubleshooting and Fixing Malfunctions Using an Engine Room Simulator in Augmented Reality Environment. Univers. J. Mech. Eng. 2019, 7, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Moulis, G. Pluridisciplinary Development of an Innovative System Demonstrator Using Augmented Reality for 360° Awareness of French Navy Ships. In Ergo’IA ’18: Proceedings of the 16th Ergo’IA “Ergonomie Et Informatique Avancée” Conference; ACM Press: New York, NY, USA, 2018; pp. 1–10. Available online: http://dl.acm.org/citation.cfm?doid=3317326.3317331 (accessed on 10 June 2020).
- Popov, A.N.; Kondratiev, A.I.; Smirnov, I.O. The algorithm for fast forecasting of the collision danger degree with ships and surface objects in the e-navigation area. In Proceedings of the AGA 2018-19th Annual General Assembly (AGA) of the International Association of Maritime Universities (IAMU), Barcelona, Spain, 17–19 October 2018; pp. 442–449. [Google Scholar]
- Kim, J.H.; Lee, K.H.; Lee, J.M.; Lee, G. A study on 3D design model-based-visualization system to support pipe maintenance. In Proceedings of the International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011; pp. 142–146. [Google Scholar]
- Discenzo, F.M.; Chung, D.; Chen, S.L.; Behringer, R.; Sundareswaran, V.; Carnahan, D.; Wang, K.; Molineros, J.; McGee, J. Augmented reality supports real-time diagnosis and repair of shipboard systems. IFAC Proc. Vol. 2004, 37, 233–238. [Google Scholar] [CrossRef]
- Aromaa, S.; Aaltonen, I.; Kaasinen, E.; Elo, J.; Parkkinen, I. Use of wearable and augmented reality technologies in industrial maintenance work. In Proceedings of the 20th International Academic Mindtrek Conference on—AcademicMindtrek ’16, Tampere, Finland, 17–18 October 2016; pp. 235–242. [Google Scholar]
- Vasilijević, A.; Borović, B.; Vukić, Z. Primjene proširene stvarnosti u pomorstvu. Brodogradnja 2011, 62, 136–142. [Google Scholar]
- Von Lukas, U.F. Virtual and augmented reality for the maritime sector—Applications and requirements. IFAC Proc. Vol. 2010, 43, 196–200. [Google Scholar] [CrossRef]
- Grabowski, M. Research on Wearable, Immersive Augmented Reality (WIAR) Adoption in Maritime Navigation. J. Navig. 2015, 68, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Von Lukas, U.; Quarles, J.; Kaklis, P.; Dolereit, T. Underwater Mixed Environments. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018; Springer Science and Business Media: Berlin, Germany, 2015; Volume 8844, pp. 56–76. [Google Scholar]
- Morikawa, K.; Ando, T. Reduction of piping management person-hours through use of AR technology at shipbuilding sites. Fujitsu Sci. Tech. J. 2019, 55, 20–26. [Google Scholar]
- Butkiewicz, T. Designing augmented reality marine navigation AIDS using virtual reality. In OCEANS 2017-Anchorage; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 1–9. [Google Scholar]
- Morgere, J.C.; Diguet, J.-P.; Laurent, J. Mobile Augmented Reality System for Marine Navigation Assistance. In Proceedings of the 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing, Milano, Italy, 26–28 August 2014; pp. 287–292. [Google Scholar]
- Kazasidis, M.; Chionopoulos, S.; Pantelis, D. Experimental investigation of FCAW-G weldments of HSLA AH40-FCA (fatigue crack arrester) steel, used in marine applications. In Proceedings of the 18th Int Conf Ships Shipp Res NAV, Milan, Italy, 24–26 June 2015; pp. 417–426. [Google Scholar]
- Çevik, B.; Koç, M. The effects of welding speed on the microstructure and mechanical properties of marine-grade aluminium (AA5754) alloy joined using MIG welding. Kov. Mater. 2019, 57, 307–316. [Google Scholar]
- Bragagna, R. Automazione e robotka nella fabbricae di strutture saldate per il settore navale. Riv. Italia Della Saldatura 2010, 62, 37–41. [Google Scholar]
- Mišković, N.; Nad, D.; Vukić, Z. Guidance of laboratory marine platforms. In Proceedings of the MIPRO 2010-33rd International Convention on Information and Communication Technology, Electronics and Microelectronics, Opatija, Croatia, 24–28 May 2010; pp. 583–588. [Google Scholar]
- Serebrenniy, V.V.; Lapin, D.V.; Mokaeva, A.A. Concept of multifunctional modular mobile robotic complex for marine vessels maintenance. AIP Conf. Proc. 2019, 2171, 190003. [Google Scholar]
- Flickinger, W. Automated Construction System for Labour Saving; Ship Boat Int.: London, UK, 2007; pp. 1360–1366. [Google Scholar]
- Kwon, Y.; Park, S.; Lee, J. PID compensating model for design of ship’s autopilot. In Proceedings of the 2016 16th International Conference on Control, Automation and Systems (ICCAS), Gyeongju, Korea, 16–19 October 2016; pp. 1337–1339. [Google Scholar]
- Blintsov, V.; Aloba, L.T. Control automation of maritime unmanned complex with a group of autonomous underwater vehicles. EUREKA Phys. Eng. 2019, 4, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Blintsov, V.; Klochkov, O. Generalized method of designing unmanned remotely operated complexes based on the system approach. EUREKA Phys. Eng. 2019, 2, 43–51. [Google Scholar] [CrossRef]
- Pandey, J.; Hasegawa, K. Fuzzy Waypoint Guidance Controller for Underactuated Catamaran Wave Adaptive Modular Vessel. In Studies in Computational Intelligence; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 393–413. [Google Scholar]
- Zhuang, J.-Y.; Cao, J.; Wang, B.; Zhang, L.; Zhao, S.-Q.; Sun, H.-B. Radar-based collision avoidance for unmanned surface vehicles. China Ocean Eng. 2016, 30, 867–883. [Google Scholar] [CrossRef]
- Ji, X.; Zhuang, J.Y.; Su, Y.M. Marine Radar Target Detection for USV. Adv. Mater. Res. 2014, 1006, 863–869. [Google Scholar] [CrossRef]
- Miao, R.; Pang, S.; Jiang, D. Development of an Inexpensive Decentralized Autonomous Aquatic Craft Swarm System for Ocean Exploration. J. Mar. Sci. Appl. 2019, 18, 343–352. [Google Scholar] [CrossRef]
- Li, Z.; Bachmayer, R.; Vardy, A. Risk analysis of an Autonomous Surface Craft for operation in harsh ocean environments. In Autonomous Underwater Vehicles 2016; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 294–300. [Google Scholar]
- Farr, N.; Bowen, A.; Ware, J.; Pontbriand, C.; Tivey, M. An integrated, underwater optical/acoustic communications system. Ocean IEEE Syd. Ocean 2010, 2010, 2020. [Google Scholar]
- Thongpool, K.; Preeyanurak, T.; Poonpon, A.; Insuk, P. Application of Mini-ROV Technology for FSO Ballast Tank Inspection and Thickness Gauging. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Bali, Indonesia, 20–22 October 2015. Society of Petroleum Engineers (SPE). [Google Scholar]
- McGuyer, M.P. SCR flexjoint inspections/flexjoint cleaning tool. In Proceedings of the Underwater Intervention Conference 2014, New Orleans, LA, USA, 11–13 February 2014. [Google Scholar]
- Dawson, G. SCIMITAR-A New Approach to Underwater Cleaning and Inspection; Graham & Trotman: London, UK, 1989. [Google Scholar]
- Anderson, B.S. Cost Reduction in E&P, IMR, and Survey Operations Using Unmanned Surface Vehicles. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2018; pp. 4417–4426. [Google Scholar]
- Stewart, A.; Ryden, F.; Cox, R. An interactive interface for multi-pilot ROV intervention. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Sivcev, S.; Omerdic, E.; Dooly, G.; Coleman, J.; Toal, D. Towards Inspection of Marine Energy Devices Using ROVs: Floating Wind Turbine Motion Replication. In Advances in Intelligent Systems and Computing; Springer Science and Business Media LLC: Berlin, Germany, 2017; Volume 693, pp. 196–211. [Google Scholar]
- Stevens, M.A. Resident Vehicles: A New Directive for Subsea Operations. Mar. Technol. Soc. J. 2019, 53, 54–58. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Zhang, Q.; Zhang, Y.; Huo, L.; Wang, X. Construction and Research of an Underwater Autonomous Dual Manipulator Platform. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Quan, W.; Lin, M.; Wang, Z. Design and simulation of the rudder wing of Remote Operated Vehicle. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Korea, 28 June–1 July 2017; pp. 848–851. [Google Scholar]
- Mamunts, D.; Marley, V.E.; Kulakov, L.S.; Pastushok, E.; Makshanov, A.V. The use of authentication technology blockchain platform for the marine industry. In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 29 January–1 February 2018; pp. 69–72. [Google Scholar]
- Greiman, V. Navigating the Cyber Sea: Dangerous atolls ahead. In Proceedings of the 14th International Conference on Cyber Warfare and Security, Stellenbosch, South Africa, 28 February–1 March 2019; pp. 87–93. [Google Scholar]
- Reilly, G.; Jorgensen, J. Classification Consideration for Cyber Safety and Security in the Smart Era; RINA, Royal Institution of Naval Architects—Smart Ship Technology: Londen, UK, 2016; pp. 33–39. [Google Scholar]
- Lee, A.R.; Wogan, H.P. All at Sea: The Modern Seascape of Cybersecurity Threats of the Maritime Industry. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Heckman, M.R.; McCready, J.W.; Mayhew, D.; Callahan, W.L. Toward a maritime cyber security compliance regime. In SNAME Maritime Convention, SMC 2018; Society of Naval Architects and Marine Engineers: Alexandria, VA, USA, 2018. [Google Scholar]
- Csorba, M.J.; de Carvalho, C.R.; Boff, S. Plain Sailing? Observations of Cybersecurity and Network Health Problems in Control Systems at Sea. In Proceedings of the OTC Brasil, Rio de Janeiro, Brazil, 24–26 October 2017; pp. 802–813. [Google Scholar] [CrossRef]
- Koola, P.M. Cybersecurity: A Deep Dive Into the Abyss. Mar. Technol. Soc. J. 2018, 52, 31–43. [Google Scholar] [CrossRef]
- Semini, M.; Brett, P.O.; Hagen, A.; Kolsvik, J.; Alfnes, E.; Strandhagen, J.O. Offshoring Strategies in Norwegian Ship Production. J. Ship Prod. Des. 2018, 34, 59–71. [Google Scholar] [CrossRef]
- Arnold, A.J. Dependency, debt and shipbuilding in ‘palmer’s town’. North. Hist. 2012, 49, 99–118. [Google Scholar] [CrossRef]
- Halse, L. Global Value Chains in Shipbuilding: Governance and Knowledge Exchange. In Proceedings of the IFIP International Conference on Advances in Production Management Systems (APMS), Ajaccio, France, 20–24 September 2014. [Google Scholar]
- Stapran, D. Outsourcing vs vertical integration in oil & gas industry in Russia: A case of virtual organization? Int. J. Mech. Eng. Technol. 2018, 9, 993–1002. [Google Scholar]
- Wilson, V.; Wennberg, P.; DeGraw, K.; Fleischer, M. An Improved “Make versus Buy” Strategy for Future Material Acquisiton. J. Ship Prod. 2001, 17, 87–91. [Google Scholar]
- Dong, Y.; Frangopol, D.M.; Sabatino, S. A decision support system for mission-based ship routing considering multiple performance criteria. Reliab. Eng. Syst. Saf. 2016, 150, 190–201. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.M.D.L.C.; Almansa, J.A.; Giron-Sierra, J.M. Automática marina: Una revisión desde el punto de vista del control. Rev. Iberoam. Autom. Inform. Ind. 2012, 9, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Martelli, M.; Vernengo, G.; Bruzzone, D.; Notti, E. Holistic Modeling of the Global Propulsion Energy Index in Waves for Small Craft. Int. J. Offshore Polar Eng. 2017, 27, 442–447. [Google Scholar] [CrossRef]
- Witt, N. Mathematical and scale model platforms for ship guidance trials. IEE Colloq. Phys. Model. Basis Control 1996, 1996, 8. [Google Scholar] [CrossRef]
- Fışkın, R.; Kişi, H.; Nasibov, E. A Research on Techniques, Models and Methods Proposed for Ship Collision Avoidance Path Planning Problem. Int. J. Marit. Eng. 2018, 160, 187–205. [Google Scholar] [CrossRef]
- Gougoulidis, G. The Utilization of Artificial Neural Networks in Marine Applications: An Overview. Nav. Eng. J. 2008, 120, 19–26. [Google Scholar] [CrossRef]
- Muñoz, J.A.; Ramirez, A. Achieving the digital ship: From design to operation. In RINA, Royal Institution of Naval Architects-19th International Conference on Computer Applications in Shipbuilding, ICCAS 2019; Royal Institution of Naval Architects: London, UK, 2019. [Google Scholar]
- Sharma, R.; Sha, O.P. Development of an integrated market forecasting model for shipping, and shipbuilding parameters. In Proceedings of the RINA—International Conference on Computer Applications in Shipbuilding, Portsmouth, UK, 18–20 September 2007; pp. 127–142. [Google Scholar]
- Ramazani, M.R.; Sewell, P.; Noroozi, S.; Koohgilani, M.; Cripps, B. In-Service Transient Load Measurement on a Large Composite Panel. Appl. Mech. Mater. 2012, 248, 204–211. [Google Scholar] [CrossRef]
- Hiekata, K.; Mitsuyuki, T.; Ueno, R.; Wada, R.; Moser, B. A Study on decision support methodology for evaluating iot technologies using systems approach. RINA R Inst. Nav. Arch. 2017, 3, 46–55. [Google Scholar]
- Cristea, O.; Popescu, M.-O.; Calinciuc, A.S. A correlation between simulated and real PV system in naval conditions. In Proceedings of the 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 28–29 November 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Flay, R.G.J.; Jackson, P. Flow simulations for wind-tunnel studies of sail aerodynamics. J. Wind. Eng. Ind. Aerodyn. 1992, 44, 2703–2714. [Google Scholar] [CrossRef]
- Rafiee, A.; Thioagarajan, K.P.; Monaghan, J.J. SPH Simulation of 2D Sloshing Flow in a Rectangular Tank. In Proceedings of the The Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 July 2009; pp. 205–212. [Google Scholar]
- Yang, K.; Kim, Y.; Hu, C. A comparative study on the numerical simulation of 2-D violent sloshing flows by CCUP and SPH. In Proceedings of the International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 July 2009. [Google Scholar]
- Ryu, M.C.; Hwang, Y.S.; Jung, J.H.; Jeon, S.S.; Kim, Y.S.; Lee, J.H.; Lee, Y.M. Sloshing load assessment for LNG offshore units with a two-row tank arrangement. In Proceedings of the International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 July 2009; pp. 284–294. [Google Scholar]
- Podder, D.; Gadagi, A.; Mandal, N.R.; Kumar, S.; Singh, L.; Das, S.; Debabrata, P.; Amith, G.; Ranjan, M.N.; Sharat, K.; et al. Numerical Investigation on the Effect of Thermo-mechanical Tensioning on the Residual Stresses in Thin Stiffened Panels. J. Ship Prod. Des. 2017, 33, 1–11. [Google Scholar] [CrossRef]
- Wemmenhove, R.; Iwanowski, B.; Lefranc, M.; Veldman, A.E.P.; Luppes, R.; Bunnik, T. Simulation of sloshing dynamics in a tank by an improved volume-of-fluid method. In Proceedings of the International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 July 2009; pp. 231–238. [Google Scholar]
- Ando, J.; Nakatake, K.; Maita, S. A Simple Surface Panel Method to Predict Steady Marine Propeller Performance. J. Soc. Nav. Arch. Jpn. 1995, 1995, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.J.; Lee, S.K.; Choi, H.S. Risk evaluation of ship dynamic stability in regular waves. J. Mar. Sci. Technol. 2010, 18, 530–536. [Google Scholar]
- Rahmati, M.T. A RANS code for flow simulation of Marine propellers. RINA Int. Conf. Comput. Appl. Shipbuild. 2007, 2, 115–122. [Google Scholar]
- Aquelet, N.; Souli, M. Fluid-Structure Coupling in a Water-Wedge Impact Problem. In Proceedings of the ASME/JSME 2004 Pressure Vessels and Piping Conference, San Diego, CA, USA, 25–29 July 2004; pp. 91–99. [Google Scholar]
- Elkafas, A.G.; Elgohary, M.M.; Zeid, A. Numerical study on the hydrodynamic drag force of a container ship model. Alex. Eng. J. 2019, 58, 849–859. [Google Scholar] [CrossRef]
- Islam, H.; Rahman, M.; Islam, M.R.; Akimoto, H.; Afroz, L. Comparative Study of RaNS and PF based Solver for Predicting Added Resistance of a Very Large Crude Carrier. Procedia Eng. 2017, 194, 74–81. [Google Scholar] [CrossRef]
- Zhou, B.; Han, X.; Tan, S.K.; Liu, Z.C. Study on plate forming using the line heating process of multiple-torch. J. Ship Prod. Des. 2014, 30, 142–151. [Google Scholar] [CrossRef]
- Liu, P.; Yang, R.; Xu, J. Virtual display of ship movements in marine environments. In RINA, Royal Institution of Naval Architects-International Conference on Computer Applications in Shipbuilding 2009; ICCAS: London, UK, 2009; pp. 719–723. [Google Scholar]
- Aquelet, N.; Souli, M. Explicit Coupling Methods in Hydrodynamic Impacts. In Proceedings of the ASME 2005 Pressure Vessels and Piping Conference, Denver, CO, USA, 17–21 July 2005; Volume 4, pp. 257–266. [Google Scholar] [CrossRef]
- Zhou, W. Simulation of Hydraulic System Faults for Marine Machinery Based on AMESim. J. Coast. Res. 2019, 94, 357–361. [Google Scholar] [CrossRef]
- Hui, Z.; Tianming, F.; Wei, G.; Shengwen, Z.; Zhipeng, J.; Weikang, T. Research on visual 3D assembly process design and simulation for marine diesel engine. Clust. Comput. 2017, 22, 5505–5519. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Park, S.-I.; Lee, J.B.; Kwon, S.; Hwang, Y. A Preliminary Investigation on the Risk Arising From the Use of High Pressure Fuel Gas Supply System in LNGC by Analyzing Risk Contributors Comparatively. J. Offshore Mech. Arct. Eng. 2018, 141, 011303. [Google Scholar] [CrossRef]
- Du, J.; Li, R.N.; Wu, X.; Zhang, Y. Study on Optimization Simulation of Scr Denitration System for Marine Diesel Engine. Pol. Marit. Res. 2018, 25, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Bagaev, D.; Yegorov, S.; Lobachev, M.; Rudnichenko, A.; Taranov, A. Numerical simulation of cavitating flows in shipbuilding. AIP Conf. Proc. 2018, 1959, 050003. [Google Scholar] [CrossRef]
- Ferrier, B.; Duncan, J.; Belmont, M.R.; Christmas, J.T.; Duncan, J. All weather ship operational prediction using simulation-technology developments and results from a dedicated royal navy and related sea trials. In Proceedings of the RINA, Royal Institution of Naval Architects-International Conference on Computer Applications in Shipbuilding, ICCAS 2017, Singapore, 26–28 September 2017; pp. 15–24. [Google Scholar]
- Zeid, M. Marine propulsion shafting simulation interfaces. In Proceedings of the RINA, Royal Institution of Naval Architects-International Conference on Computer Applications in Shipbuilding, ICCAS 2017, Singapore, 26–28 September 2017; pp. 108–115. [Google Scholar]
- Liang, S.; Yang, J.; Wang, Y.; Wang, M. Fuzzy neural network in condition maintenance for marine electric propulsion system. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–5. [Google Scholar]
- Daley, C.G.; Colbourne, B. STePS2-A ship structures research program. Trans-Soc. Nav. Arch. Mar. Eng. 2014, 122, 445–455. [Google Scholar]
- Gutierrez, J.; Breuillard, A.; Marquis, D.; Chivas-Joly, C. Fire safety engineering applied to the evaluation of the safety level of marine composite structures. In Proceedings of the Fire and Materials 2013-13th International Conference and Exhibition, San Francisco, CA, USA, 28–30 January 2013; pp. 525–538. [Google Scholar]
- Brar, G.S.; Kumar, R. Finite Element Analysis of Residual Stresses in Butt Welding of Stainless Steel Plates by GTAW. Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP 2010, 1, 1045–1048. [Google Scholar] [CrossRef]
- Paik, B.G.; Kim, K.Y.; Kim, K.S.; Kim, T.G.; Kim, K.R.; Jang, Y.H.; Lee, S.U. Cavitation erosion tests of marine coatings in model scale. In Proceedings of the International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010; pp. 766–772. [Google Scholar]
- Nakai, T.; Uraguchi, Y.; Arima, T.; Harada, S.; Rahim, M.A. Trial application of FE simulation on ships collision within the risk assessment on oil spills from oil tankers. RINA-Int. Conf. Comput. Appl. Shipbuild. 2007, 2, 221–226. [Google Scholar]
- Zhu, T.; Shigemi, T.; Miyake, R.; Kumano, A.; Abdul Rahim, M. Comprehensive studies on the wave load analysis and structural strength assessment of container ships. In Proceedings of the RINA, Royal Institution of Naval Architects International Conference-Design and Operation of Container Ship, London, UK, 22–23 November 2006; pp. 75–94. [Google Scholar]
- Xu, X.; He, M.; Yu, W.; Zheng, H. Simulation Research on Applying Fault Tolerant Control 2 Mathematical Model of Main Diesel Engine System; Springer: Berlin, Germany, 2006; pp. 1062–1067. [Google Scholar]
- Carlebur, A. Full-scale collision tests. Saf. Sci. 1995, 19, 171–178. [Google Scholar] [CrossRef]
- Nerheim, L.M.; Nordrik, R. Design and development of the new Rolls-Royce Bergen “C” engine series. Power Eng. 2003, 7, 5–20. [Google Scholar]
- Itoh, Y.; Numano, M.; Tanaka, K.; Hukuto, J.; Miyazaki, K.; Kiriya, N. A Study on a Method of Safety Assessment by Using a Simulator for a High-Speed Vessel. Senpaku Gijutsu Kenkyusho Hokoku 1998, 5, 23–64. [Google Scholar]
- Soininen, H.; Veitch, B. Propeller-ice interaction. Joint research project arrangement #6 (JRPA #6). Joint conclusion report. In VTT Tied-Valt Tek Tutkimusk; VTT: Espoo, Finland, 1996. [Google Scholar]
- Bjorkman, A. Double-Hull Tankers in Grounding Accidents; Royal Institution of Naval Architects: London, UK, 1996; pp. 50–51. [Google Scholar]
- Wake, M. Fast Ship and Maestro Merge; The Royal Institution of Naval Architects: London, UK, 1995; pp. 226–228. [Google Scholar]
- Stieren, D.C.; Caskey, G.; McLean, C.; Neyhart, T. Knowledge-Based Modular Repair: Advanced Technology Applications for Ship Repair and Conversion. J. Ship Prod. 2001, 17, 103–117. [Google Scholar]
- Sandvik, E.; Gutsch, M.; Asbjørnslett, B.E. A simulation-based ship design methodology for evaluating susceptibility to weather-induced delays during marine operations. Ship Technol. Res. 2018, 65, 1–16. [Google Scholar] [CrossRef]
- Polach, R.U.F.V.B.U.; Tõns, T.; Erceg, S. Ice Resistance Calculation Methods and Their Economic Impact on Ship Design. In Volume 9: Ocean Renewable Energy; ASME International: New York, NY, USA, 2015. [Google Scholar]
- Dong, C.; Yuan, C.; Liu, Z.; Yan, X. Study on fatigue life evaluation of water lubricated rubber stern tube bearing. In Proceedings of the 2011 Prognostics and System Health Managment Confernece, Shenzhen, China, 24–25 May 2011; Volume 2020, pp. 1–4. [Google Scholar] [CrossRef]
- Liu, K.; Liu, B.; Villavicencio, R.; Wang, Z.; Soares, C.G. Assessment of material strain rate effects on square steel plates under lateral dynamic impact loads. Ships Offshore Struct. 2017, 13, 217–225. [Google Scholar] [CrossRef]
- Calle, M.A.G.; Verleysen, P.; Alves, M. Benchmark study of failure criteria for ship collision modeling using purpose-designed tensile specimen geometries. Mar. Struct. 2017, 53, 68–85. [Google Scholar] [CrossRef]
- Kurata, M.; Kim, J.-H.; Lynch, J.P.; Law, K.H.; Salvino, L.W. A Probabilistic Model Updating Algorithm for Fatigue Damage Detection in Aluminum Hull Structures. In Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Philadelphia, PA, USA, 28 September–1 October 2010; pp. 741–750. [Google Scholar]
- Prabowo, A.R.; Muttaqie, T.; Sohn, J.M.; Harsritanto, B.I.R. Investigation on structural component behaviours of double bottom arrangement under grounding accidents. Theor. Appl. Mech. Lett. 2019, 9, 50–59. [Google Scholar] [CrossRef]
- Altosole, M.; Campora, U.; Martelli, M.; Figari, M. Performance Decay Analysis of a Marine Gas Turbine Propulsion System. J. Ship Res. 2014, 58, 117–129. [Google Scholar] [CrossRef]
- Polezhayeva, H.; Kang, J.K.; Lee, J.H.; Yang, Y.S.; Kudryavtsev, Y. A study on residual stress distribution and relaxation in welded components. In Proceedings of the International Offshore and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2010; pp. 282–289. [Google Scholar]
- Podder, D.; Das, S.; Mandal, N.R. Distortions in Large Stiffened Ship Panels Caused by Welding: An Experimental Study. J. Ship Prod. Des. 2019, 35, 250–262. [Google Scholar] [CrossRef]
- Ischenko, D.; Ibrahim, R. Development of New Welding Pattern in Order to Minimise Distortions in Marine Structure. Key Eng. Mater. 1997, 145, 859–864. [Google Scholar] [CrossRef]
- Kim, K.; Sutoh, T.; Ura, T.; Obara, T. Route keeping control of AUV under current by using dynamics model via CFD analysis. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey, Honolulu, HI, USA, 5–8 November 2001; Conference Proceedings (IEEE Cat. No.01CH37295). Volume 1, pp. 417–422. [Google Scholar] [CrossRef]
- Dupuis, R.; Neilson, J. Dynamic Analysis: Sail the Ship Before It’s Built. Nav. Eng. J. 1997, 109, 83–91. [Google Scholar] [CrossRef]
- Dev, A.K.; Fung, Z.K. Simulation of Hull Panel Logistics Improvements in a Shipyard. In RINA, R Inst Nav Archit-19th Int Conf Comput Appl Shipbuilding, ICCAS 2019; RINA, Royal Institution of Naval Architects: London, UK, 2019; Volume 1. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, P.; Woo, J.H. Shipyard Block Logistics Simulation Using Process-centric Discrete Event Simulation Method. J. Ship Prod. Des. 2018, 34, 168–179. [Google Scholar] [CrossRef]
- Wu, Y.H.; Huang, M.X.; Shaw, H.J. Research the virtual assembly multimedia ship construction information system. Mar. Technol. 2007, 44, 203–211. [Google Scholar]
- Li, P.; Cui, J.; Gao, F.; Wang, C.; Mao, Y.; Liao, G. Research on the assembly sequence of a ship block based on the disassembly interference matrix. J. Ship Prod. Des. 2015, 31, 230–240. [Google Scholar]
- Shin, J.G.; Kim, Y.; Jeong, Y.; Woo, J.H.; Ryu, C. Model-Based Computational Shipyard Dynamics and Its Applications. J. Ship Prod. Des. 2019. [Google Scholar] [CrossRef]
- Andrews, D. Does one size fit all? Or do different warship designs require different ship design methods? In RINA, R Inst Nav Archit-Warsh 2016 Adv Technol Nav Des Constr Oper; RINA, Royal Institution of Naval Architects: London, UK, 2016; p. 33052. [Google Scholar]
- Polmi, M.; Hulkkonen, T. Model reuse-the link between 3D models for basic design and 3D models for detailed and production design. In RINA, Royal Institution of Naval Architects-International Conference on Computer Applications in Shipbuilding 2015, ICCAS 2015-Papers. Royal Institution of Naval Architects; RINA, Royal Institution of Naval Architects: London, UK, 2015; pp. 51–66. [Google Scholar]
- Bertram, V.; Hochkirch, K. Optimization for Ship Hulls-Design, Refit and Operation. Mar 2015-Comput Methods Mar Eng VI; International Centre for Numerical Methods in Engineering: Barcelona, Spain, 2015; pp. 210–217. [Google Scholar]
- Jiang, X.; Guo, L.; Niu, S. Design of Marine Elevator Car Frame. In Lecture Notes in Electrical Engineering; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 583–591. [Google Scholar]
- Korbetis, G.; Chatzimoisiadis, S.; Drougkas, D. Automated interoperability from concept design to multidisciplinary fe analysis. R Inst. Nav. Archit-Int. Conf. Comput. Appl. Shipbuild 2015, 3, 71–76. [Google Scholar]
- Vasconcellos, J.M. Multi-objective optimization as decision tool for ship design. In 11th International Symposium on Practical Design of Ships and Other Floating Structures, PRADS 2010; COPPE-URRJ: Rio de Janeiro, Brazil, 2010; pp. 783–789. [Google Scholar]
- Kaeding, P.; Thieme, C.; Ballé, J.; Jürgens, D. Practical Application of Viscous CFD in Ship Design-Integration study of a Submerged Waterjet. In Proceedings of the 9th International Naval Engineering Conference and Exhibition, Hamburg, Germany, 1–3 April 2008; p. 2020. [Google Scholar]
- Parker, S. European Yards Deliver New Ferry Designs; Reed Business Publishing Ltd.: Sutton, UK, 1995. [Google Scholar]
- Wei-Ming, P.; Xian-Fu, W. A study of application of circulation control wing on sail assisted ship. J. Wind. Eng. Ind. Aerodyn. 1992, 44, 2701–2702. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Peña, M.; Abad Fraga, F.J.; Salguero, J.; Batista, M. Assessing Sustainability in the Shipbuilding Supply Chain 4.0: A Systematic Review. Sustainability 2020, 12, 6373. https://doi.org/10.3390/su12166373
Ramirez-Peña M, Abad Fraga FJ, Salguero J, Batista M. Assessing Sustainability in the Shipbuilding Supply Chain 4.0: A Systematic Review. Sustainability. 2020; 12(16):6373. https://doi.org/10.3390/su12166373
Chicago/Turabian StyleRamirez-Peña, Magdalena, Francisco J. Abad Fraga, Jorge Salguero, and Moises Batista. 2020. "Assessing Sustainability in the Shipbuilding Supply Chain 4.0: A Systematic Review" Sustainability 12, no. 16: 6373. https://doi.org/10.3390/su12166373
APA StyleRamirez-Peña, M., Abad Fraga, F. J., Salguero, J., & Batista, M. (2020). Assessing Sustainability in the Shipbuilding Supply Chain 4.0: A Systematic Review. Sustainability, 12(16), 6373. https://doi.org/10.3390/su12166373