Characteristics of Soil Moisture and Evaporation under the Activities of Earthworms in Typical Anthrosols in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location and Soil Preparation
2.2. Experimental Design and Source of Test Earthworms
2.3. Measurements of Evaporation, SWC and Temperature
2.4. Statistical Analysis
3. Results
3.1. Variation of SWC with Earthworm Density
3.2. Variation of Soil Temperature with Earthworm Density
3.3. Variation of Evaporation Rates and Cumulative Evaporation with Earthworm Density
3.4. The Relationship between Soil Evaporation and Earthworm Treatments
4. Discussion
4.1. Impact of Earthworm on Temperature and Evaporation
4.2. Impact of Earthworms on SWC
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 153. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Nord. Soc. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Evans, T.A.; Dawes, T.Z.; Ward, P.R.; Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2011, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, T.C.; Shao, M.A.; Jia, Y.H. Characteristics of Soil Evaporation and Temperature under Aggregate Mulches Created by Burrowing Ants (Camponotus japonicus). Soil Sci. Soc. Am. J. 2017, 81, 259–267. [Google Scholar] [CrossRef]
- Beven, K.; German, P. Macropores and water flow in soils. Water Resour. Res. 1982, 8, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; Deyn, G.B.D.; Van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [Green Version]
- Leitea, P.A.M.; Carvalhob, M.C.; Wilcox, B.P. Good ant, bad ant? Soil engineering by ants in the Brazilian Caatinga differs by species. Geoderma 2018, 323, 65–73. [Google Scholar] [CrossRef]
- Lavelle, P.; Decaens, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, 3–15. [Google Scholar] [CrossRef]
- Hallam, J.; Berdeni, D.; Grayson, R.; Guest, E.; Holden, J.; Lappage, M.; Prendergast, M.M.; Robinson, D.; Turner, A.; Leake, J.; et al. Effect of earthworms on soil physic-hydraulic and chemical properties, herbage production, and wheat growth on arable land converted to ley. Sci. Total Environ. 2020, 713, 136491. [Google Scholar] [CrossRef]
- Römbke, J.; Jänsch, S.; Didden, W. The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol. Environ. Saf. 2005, 62, 249–265. [Google Scholar] [CrossRef]
- Bossuyt, H.; Six, J.; Hendrix, P.F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 2005, 37, 251–258. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J. A review of earthworm impacts on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Pagenkemper, S.K.; Athmann, M.; Uteau, D.; Kautz, T.; Peth, S.; Horn, R. The effect of earthworm activity on soil bioporosity—Investigated with X-ray computed tomography and endoscopy. Soil Tillage Res. 2018, 146, 79–88. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Kyoshima, T.; Kaneko, N. Mineral nitrogen dynamics in the casts of epigeic earthworms (Metaphire hilgendorifi: Megascolecidae. Soil Sci. Plant Nutr. 2011, 57, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Arai, M.; Tayasu, I.; Komatsuzaki, M.; Uchida, M.; Shibata, Y.; Kaneko, N. Changes in soil aggregate carbon dynamics under no-tillage with respect to earthworm biomass revealed by radiocarbon analysis. Soil Tillage Res. 2013, 126, 42–49. [Google Scholar] [CrossRef]
- Lin, Z.; Zhen, Z.; Wu, Z.H.; Yang, J.W.; Zhong, L.Y.; Hu, H.Q.; Luo, C.L.; Bai, J.; Li, Y.T.; Zhang, D.Y. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils. J. Hazard. Mater. 2015, 301, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.L.; Tang, H.; Matthew, C.; Qiu, J.P.; Li, Y.A. Sodium arsenite modified burrowing behavior of earthworm species metaphire californica and Eisenia fetida in a farm soil. Geoderma 2019, 335, 88–93. [Google Scholar] [CrossRef]
- Huang, K.; Xia, H.; Wu, Y.; Chen, J.Y.; Cui, G.Y.; Li, F.S.; Chen, Y.Z.; Wu, N. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour. Technol. 2018, 259, 32–39. [Google Scholar] [CrossRef]
- Blanchart, E.; Lavelle, P.; Braudeau, E.; Le Bissonnais, Y.; Valentin, C. Regulation of soil structure by geophagous earthworm activities in humid savannas of Cote d’Ivoire. Soil Biol. Biochem. 1997, 29, 431–439. [Google Scholar] [CrossRef]
- Lee, K.E. Earthworms: Their Ecology and Relationships with Soils and Land Use; Academic Press Inc.: Sydney, Australia, 1985. [Google Scholar] [CrossRef] [Green Version]
- Edwards, C.A. The Importance of Earthworms as Key Representatives of the Soil Fauna. In Earthworm Ecology; Edwards, C.A., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2004; pp. 3–11. [Google Scholar]
- Ehlers, W. Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Sci. 1975, 119, 242–249. [Google Scholar] [CrossRef]
- Emmerling, C.; Rassier, K.M.; Schneider, R. A simple and effective method for linking field investigations of earthworms and water infiltration rate into soil at pedon-scale. J. Plant Nutr. Soil Sci. 2015, 178, 841–847. [Google Scholar] [CrossRef]
- Capowiez, Y.; Sammartino, S.; Michel, E. Burrow systems of endogeic earthworms: Effects of earthworm abundance and consequences for soil water infiltration. Pedobiologia 2014, 57, 303–309. [Google Scholar] [CrossRef]
- Amossé, J.; Turberg, P.; Roxane, K.M.; Gobat, J.M. Effects of endogeic earthworms on the soil organic matter dynamics and the soil structure in urban and alluvial soil materials. Geoderma 2015, 243, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Chapuis-Lardy, L.; Razafimbelo, T. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. Int. Soc. Microb. Ecol. 2012, 6, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallam, J.; Hodson, M.E. Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biol. Fertil. Soils 2020, 56, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Stamford, N.P.; Felix, F.; Oliveira, W.; Silva, E.; Carolina, S.; Arnaud, T.; Freitas, A.D. Interactive effectiveness of microbial fertilizer enriched in N on lettuce growth and on characteristics of an ultisol of the rainforest region. Sci. Hortic. 2019, 247, 242–246. [Google Scholar] [CrossRef]
- Li, Y.P.; Shao, M.A.; Wang, J.; Li, T.C. Effects of earthworm cast application on water evaporation and storage in loess soil column experiments. Sustainability 2020, 12, 3112. [Google Scholar] [CrossRef]
- Jules, P. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B 2008, 363, 447–465. [Google Scholar] [CrossRef] [Green Version]
- Bottinelli, N.; Hedde, M.; Jouquet, P.; Capowiez, Y. An explicit definition of earthworm ecological categories—Marcel Bouché’s triangle revisited. Geoderma 2020, 372, 114361. [Google Scholar] [CrossRef]
- Holden, J.; Grayson, R.P.; Berdeni, D.; Bird, S.; Chapman, P.J.; Edmondson, J.L.; Firbank, L.G.; Helgason, T.; Hodson, M.E.; Hunt, S.F.P.; et al. The role of hedgerows in soil functioning within agricultural landscapes. Agric. Ecosyst. Environ. 2019, 273, 1–12. [Google Scholar] [CrossRef]
- Gan, Y.T.; Kadambot, H.M.S.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Ynag, C.; Liu, L.P.; Chai, Q. Chapter seven—Ridge-furrow mulching systems—Aninnovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar]
- Fan, Y.Q.; Ding, R.S.; Kang, S.Z.; Hao, X.M.; Du, T.S.; Tong, L.; Li, S. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manag. 2016, 42, 173–187. [Google Scholar] [CrossRef]
- Bottinelli, N.; Henry-des-Tureaux, T.; Hallaire, V.; Mathieu, J.; Benard, Y.; Tran, T.D.; Jouquet, P. Earthworms accelerate soil porosity turnover under watering conditions. Geoderma 2010, 156, 43–47. [Google Scholar] [CrossRef]
- Vandenbygaart, A.J.; Fox, C.A.; Fallow, D.J.; Protz, R. Estimating earthworm-influenced soil structure by morphometric image analysis. Soil Sci. Soc. Am. J. 2000, 64, 982–988. [Google Scholar] [CrossRef]
- Larink, O.; Werner, D.; Langmmaack, M.; Schrader, S. Regeneration of compacted soil aggregates by earthworm activity. Biol. Fertil. Soils 2001, 33, 395–401. [Google Scholar] [CrossRef]
- Ernst, G.; Felten, D.; Vohland, M.; Emmerling, C. Impact of ecologically different earthworm species on soil water characteristics. Eur. J. Soil Biol. 2009, 45, 207–213. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Malhi, S.S.; Vera, C.L.; Zhang, Y. Gravel-sand mulch thickness effects on soil temperature, evaporation, water use efficiency and yield of watermelon in semi-arid Loess Plateau, China. Acta Ecol. Sin. 2014, 34, 261–265. [Google Scholar] [CrossRef]
- Qi, Y.B.; Chang, Q.R.; Huang, Y.; Liu, M. Review on genetic characteristic and classification of Lou Soil in Guanzhong area. Soils 2019, 51, 211–216. [Google Scholar] [CrossRef]
- Capowiez, Y.; Bottinelli, N.; Sammartino, S.; Michel, E.; Jouquet, P. Morphological and functional characterisation of the burrow systems of six earthworm species (Lumbricidae). Biol. Fertil. Soils 2015, 51, 869–877. [Google Scholar] [CrossRef]
- Wang, X.; Hu, P.; Li, H.X. Contribution of earthworm activity to the infiltration of nitrogen in a wheat agroecosystem. Biol. Fertil. Soils 2005, 41, 284–287. [Google Scholar] [CrossRef]
- Bottinelli, N.; Zhou, H.; Capowiez, Y.; Zhang, J.Q.; Jouquet, P.; Peng, X.H. Earthworm burrowing activity of two non-Lumbricidae earthworm species incubated in soils with contrasting organic carbon content (Vertisol vs. Ultisol). Biol. Fertil. Soils 2017, 53, 951–955. [Google Scholar] [CrossRef]
- Shipitalo, M.J.; Nuutinen, V.; Butt, K.R. Interaction of earthworm burrows and cracks in a clayey, subsurface-drained, soil. Appl. Soil Ecol. 2004, 26, 209–217. [Google Scholar] [CrossRef]
- Fan, R.Q.; Zhang, X.P.; Yang, X.M.; Liang, A.; Jia, S.X.; Chen, X.W. Effects of tillage management on infiltration and preferential flow in a black soil, northeast china. Chin. Geogr. Sci. 2013, 23, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Alexis, L.C.; Cédric, W.; Vincent, H.; Guénola, P. Burrowing and casting activities of three endogeic earthworm species affected by organic matter location. Pedobiologia 2015, 58, 97–103. [Google Scholar]
- Gilot, C. Effects of a tropical geophageous earthworm, M. anomala (Megascolecidae), on soil characteristics and production of a yam crop in Ivory Coast. Soil Biol. Biochem. 1997, 29, 353–359. [Google Scholar] [CrossRef]
- Arai, M.; Miura, T.; Tsuzura, H.; Minamiya, Y.; Kaneko, N. Two year responses of earthworm abundance, soil aggregates, and soil carbon to no-tillage and fertilization. Geoderma 2017. [Google Scholar] [CrossRef]
Treatment | Fitted Equation | R2 | RMSE |
---|---|---|---|
CK | Ec = 33.673 ln(t)–35.338 | 0.948 | 7.61 |
LDE | Ec = 31.784 ln(t)–34.821 | 0.943 | 7.55 |
MDE | Ec = 31.319 ln(t)–36.373 | 0.934 | 8.04 |
HDE | Ec = −26.212 ln(t)–26.722 | 0.948 | 5.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Shao, M.; Li, T. Characteristics of Soil Moisture and Evaporation under the Activities of Earthworms in Typical Anthrosols in China. Sustainability 2020, 12, 6603. https://doi.org/10.3390/su12166603
Ma L, Shao M, Li T. Characteristics of Soil Moisture and Evaporation under the Activities of Earthworms in Typical Anthrosols in China. Sustainability. 2020; 12(16):6603. https://doi.org/10.3390/su12166603
Chicago/Turabian StyleMa, Li, Ming’an Shao, and Tongchuan Li. 2020. "Characteristics of Soil Moisture and Evaporation under the Activities of Earthworms in Typical Anthrosols in China" Sustainability 12, no. 16: 6603. https://doi.org/10.3390/su12166603
APA StyleMa, L., Shao, M., & Li, T. (2020). Characteristics of Soil Moisture and Evaporation under the Activities of Earthworms in Typical Anthrosols in China. Sustainability, 12(16), 6603. https://doi.org/10.3390/su12166603