Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Sample Collection
2.2. Proximate and Ultimate Analysis
2.3. Higher Heat Value Determination
2.4. Analysis of Micro- and Macro- Nutrients of the Biomass
2.5. Compositional Analysis
3. Results
3.1. Chemical Composition of Biomasses
3.2. Proximate and Ultimate Analysis Results
3.3. Micro and Macro Nutrient Composition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patel, M.; Zhang, X.; Kumar, A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renew. Sustain. Energy Rev. 2016, 53, 1486–1499. [Google Scholar] [CrossRef]
- Cotana, F.; Cavalaglio, G.; Coccia, V.; Petrozzi, A. Energy opportunities from lignocellulosic biomass for a biorefinery case study. Energies 2016, 9, 748. [Google Scholar] [CrossRef]
- Pedrazzi, S.; Allesina, G.; Morselli, N.; Puglia, M.; Barbieri, L.; Lancellotti, I.; Ceotto, E.; Cappelli, G.A.; Ginaldi, F.; Giorgini, L. The energetic recover of biomass from river maintenance: The REBAF project. In Proceedings of the 25th European Biomass Conference and Exhibition, Stockholm, Sweden, 12–15 July 2017; pp. 12–15. [Google Scholar]
- Lgs, D. 152/2006. Decreto Legislativo; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 2006. [Google Scholar]
- Vakalis, S.; Baratieri, M. Calculating the overall efficiency of polygeneration plants–introducing an integrated thermodynamic decision tool for biomass gasification. In Proceedings of the Symbiosis International Conference 2014, Athens, Greece, 19–21 June 2014. [Google Scholar]
- Maraver, D.; Sin, A.; Royo, J.; Sebastián, F. Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters. Appl. Energy 2013, 102, 1303–1313. [Google Scholar] [CrossRef]
- Torquati, B.; Marino, D.; Venanzi, S.; Porceddu, P.; Chiorri, M. Using tree crop pruning residues for energy purposes: A spatial analysis and an evaluation of the economic and environmental sustainability. Biomass Bioenergy 2016, 95, 124–131. [Google Scholar] [CrossRef]
- Cavalaglio, G.; Cotana, S. Recovery of vineyards pruning residues in an agro-energetic chain. Peach 2007, 2, 6. [Google Scholar]
- Angelini, L.G.; Ceccarini, L.; o Di Nasso, N.N.; Bonari, E. Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use. Biomass Bioenergy 2009, 33, 810–816. [Google Scholar] [CrossRef]
- Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, A.; Sluiter, J.; Templeton, D. Preparation of samples for compositional analysis. Lab. Anal. Proced. (LAP) 2008, 1617, 1–10. [Google Scholar]
- ASTM International. D5373-93 (1997): Standard Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 1993. [Google Scholar]
- Zhang, L.; Xu, C.C.; Champagne, P. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresour. Technol. 2010, 101, 2713–2721. [Google Scholar] [CrossRef] [PubMed]
- Telmo, C.; Lousada, J.; Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Singh, Y.D.; Mahanta, P.; Bora, U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy 2017, 103, 490–500. [Google Scholar] [CrossRef]
- Vergara, P.; Ladero, M.; García-Ochoa, F.; Villar, J.C. Pre-treatment of corn stover, Cynara cardunculus L. stems and wheat straw by ethanol-water and diluted sulfuric acid: Comparison under different energy input conditions. Bioresour. Technol. 2018, 270, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Iyer, P.V.; Wu, Z.-W.; Kim, S.B.; Lee, Y.Y. Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl. Biochem. Biotechnol. 1996, 57, 121. [Google Scholar] [CrossRef]
- Dos Santos, L.C.; Adarme, O.F.H.; Baêta, B.E.L.; Gurgel, L.V.A.; de Aquino, S.F. Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresour. Technol. 2018, 263, 601–612. [Google Scholar] [CrossRef]
- Conde, E.; Cara, C.; Moure, A.; Ruiz, E.; Castro, E.; Domínguez, H. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem. 2009, 114, 806–812. [Google Scholar] [CrossRef]
- Grandesso, E.; Gullett, B.; Touati, A.; Tabor, D. Effect of moisture, charge size, and chlorine concentration on PCDD/F emissions from simulated open burning of forest biomass. Environ. Sci. Technol. 2011, 45, 3887–3894. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Haykırı-Açma, H. Combustion characteristics of different biomass materials. Energy Convers. Manag. 2003, 44, 155–162. [Google Scholar] [CrossRef]
- Coulson, M.; Dahl, J.; Gansekoele, E.; Bridgwater, A.; Obernberger, I.; Van de Beld, L. Ash characteristics of perennial energy crops and their influence on thermal processing. In Proceedings of the 2nd World Biomass Conference, Rome, Italy, 10–14 May 2004; pp. 359–362. [Google Scholar]
- Thomas, K.M. The release of nitrogen oxides during char combustion. Fuel 1997, 76, 457–473. [Google Scholar] [CrossRef]
- Demirbas, A. Relationships between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels. Energy Explor. Exploit. 2002, 20, 105–111. [Google Scholar] [CrossRef]
- Demirbaş, A. Heavy metal contents of fly ashes from selected biomass samples. Energy Sources 2005, 27, 1269–1276. [Google Scholar] [CrossRef]
Metal | Wavelength (nm) |
---|---|
P | 21.914 |
Mg | 285.213 |
Na | 589.592 |
K | 766.490 |
Ca | 315.887 |
Fe | 238.204 |
Cu | 327.393 |
Al | 308.215 |
Cellulose | Hemicellulose | Acetyls | Lignin | Extractives | |
---|---|---|---|---|---|
Cardoon | 37.65% | 16.70% | 3.96% | 17.51% | 5.55% |
Grapevine prunings | 30.70% | 16.32% | 5.43% | 28.67% | 7.33% |
Olive prunings | 29.70% | 15.58% | 3.42% | 17.22% | 18.12% |
River bank residues | 35.56% | 15.19% | 4.29% | 28.01% | 7.34% |
Moisture | Volatile Matter | Ash | Fixed Carbon | Dry Volatile Matter | Dry Ash | Dry Fixed Carbon | |
---|---|---|---|---|---|---|---|
cardoon | 8.38% | 68.17% | 9.12% | 14.67% | 74.14% | 9.91% | 15.95% |
grapevine pruning | 7.22% | 71.45% | 2.68% | 18.98% | 76.73% | 2.87% | 20.39% |
olive pruning | 5.56% | 74.63% | 1.94% | 17.87% | 79.03% | 2.05% | 18.93% |
River bank residues | 6.19% | 73.25% | 2.25% | 18.31% | 78.09% | 2.40% | 19.42% |
Sample | HHV (MJ/kg) |
---|---|
Cardoon | 14.73 |
Grapevine pruning | 19.24 |
Olive pruning | 18.62 |
Turkey oak | 19.22 |
Element | Concentration (mg/kg) | |||
---|---|---|---|---|
Cardoon | Grapevine | Olive | Turkey Oak | |
P | 11,387.7 | 21,159.5 | 12,752.7 | 437.278 |
Mg | 7335.04 | 26,909.6 | 8665.55 | 493.107 |
Na | 51,214 | 510,229 | 1503.85 | 0.57956 |
K | 186,355 | 85,429.5 | 41,801.30 | 3145.38 |
Ca | 182,968 | 150,563 | 110,200 | 6654.87 |
Fe | 263,604 | 8161.5 | 5237.33 | 111.909 |
Cu | 445,788 | 458,507 | 131,914 | 2.94479 |
Al | 3323.22 | 11,476.9 | 729,483 | 91.1731 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalaglio, G.; Cotana, F.; Nicolini, A.; Coccia, V.; Petrozzi, A.; Formica, A.; Bertini, A. Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project. Sustainability 2020, 12, 6678. https://doi.org/10.3390/su12166678
Cavalaglio G, Cotana F, Nicolini A, Coccia V, Petrozzi A, Formica A, Bertini A. Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project. Sustainability. 2020; 12(16):6678. https://doi.org/10.3390/su12166678
Chicago/Turabian StyleCavalaglio, Gianluca, Franco Cotana, Andrea Nicolini, Valentina Coccia, Alessandro Petrozzi, Alessandro Formica, and Alessandro Bertini. 2020. "Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project" Sustainability 12, no. 16: 6678. https://doi.org/10.3390/su12166678
APA StyleCavalaglio, G., Cotana, F., Nicolini, A., Coccia, V., Petrozzi, A., Formica, A., & Bertini, A. (2020). Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project. Sustainability, 12(16), 6678. https://doi.org/10.3390/su12166678