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Abstract: Finding the correct pricing strategy for a product with multiple versions is an issue for
retailers from various industries. In this paper, joint pricing and ordering problem is considered
for a product that has two versions at each selling period. Two models, namely with or without
the donation option, are analyzed and optimality conditions and monotonicity properties of the
decision variables are characterized. When demands of products depend on prices of both versions,
donating part of old product inventory would be more profitable for the retailer. Moreover,
the donation model would result in less wasted inventory, contributing to sustainability and goals of
green economy. Analytical results are supported with numerical analysis of a realistic case.

Keywords: joint pricing and ordering; dynamic programming; donations; sustainability; circular
economy

1. Introduction

Pricing problem of the same good at different quality levels/with different versions is an
important issue for retailers from various industries. The demand values for both old and new
(versions of the) products often depend on the prices of both versions and the implemented pricing
strategies have a significant impact on the profit levels. Especially when perishable goods are
considered, incorrect pricing strategies might result in significant rises of wasted inventory, leading to
escalated environmental damages and a huge loss in terms of social welfare in addition to economic
losses. FAO (Food and Agriculture Organization of the United Nations) indicates that approximately
1.3 billion tons of food (one-third of the total produced) is wasted globally every year ([1]). Meanwhile,
there are millions of people who are on the verge of starvation and rely on food-banks to maintain a
healthy diet ([2]). This issue has been worsened with the increasing unemployment rates and increasing
food prices in a post-COVID world. Moreover, any excess food that is sent to landfill, rather than food
banks, generates CO2 and methane emissions during the disposition process and results in wasting
drinkable water and energy during this process ([3]).

The problem is also pertinent in the sector of technological goods. When new versions of products
enter the market, old versions of products are offered at discounted prices, as is prevalent in electronics
and automobile industries ([4]). High-tech products can also be considered to be perishable as they have
short product life cycles because of rapid technological innovation and shifts in customer preferences.
In this case, product life cycles of new and old products are overlapped, and old and new products
are sold at the same period. Thus, companies need to determine the order (or production) quantity
for new products and often adjust the prices of old products by taking into account the inventory
level of existing products ([4]). The unsold items are again sent to waste disposal, leading to several
environmental concerns as they involve heavy metals. Awasthi et al. [5] draws attention to the fact that
electronic waste is the fastest growing category of hazardous solid waste in the world, and the problem
is exacerbated by illegal trading and rudimentary processing of e-waste. The latter occurs in many
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parts of the world, especially in emerging market economy countries such as China, Ghana, India and
Nigeria, and the process generates toxic residues and emissions to air, soil and water. Although there
can also be donation opportunities in the high-tech sector (e.g., donating technological products to
public schools), these options are not entertained at desirable levels.

Despite a broad range of pricing strategies proposed to tackle with the issue of wasted products,
the “donation strategy” is not considered widely by either the practitioners or researchers. The donation
strategy would refer to donating some of the older (version) product to the people who cannot afford it,
or to foundations who could transfer these products to low-income people. Healthcare and consumer
staples are the leading industries in terms of the percentage they give in non-cash contributions ([6,7]).
Furthermore, in many countries (e.g., Italy, UK, USA, and Austria, to name a few), there are laws
encouraging donations by providing tax subsidies to donors ([8]). However, the employment of this
strategy, in particular by large grocery chains or other perishable good vendors, is still not at the
desired levels.

One concern for the firms towards adopting donation strategy is that this practice could
cannibalize some of their demand and hurt their profits. Some of the existing research shows that this
might indeed be the case ([9–11]). However, as Ozbilge et al. [12] argue, incorporating donation can
improve inventory management practices and reduce waste, leading to higher profit levels for the
firm. Similarly, in this paper, it is shown that donation could enable a firm to manage the inventories
of old and new products better, leading to higher levels of profit than the case without donations. Plus,
the increased social welfare and decreased environmental emissions are the side benefits.

That is, donations are only considered to be “good samaritan work” by retailers in practice, and it
is mainly recognized as a way to reduce waste by researchers in the academic field. However,
donations could also work as a useful tool towards increasing the profits of the seller while
simultaneously reducing waste. Hence, donations would not only benefit the stakeholders in a
social manner, but would also improve the viability of profit-maximizing firms. This paper aims to
show that it is possible to achieve both profit increase and waste reduction, thus create more sustainable
socio-economic systems, by adopting donations.

To this end, a mathematical model is formulated in this paper for a monopolist retailer who sells
the old and new versions of the same good simultaneously. The retailer needs to determine the order
quantity for the new product and the price for the old product. The assumption is that the price of new
product is exogenous while the retailer can freely set the price for the old product (as is the case in
various settings, i.e., online technology stores selling the newest version of the good at a predetermined
price while the price of older versions can change from one store to another; sellers in a farmer’s
market selling their high-quality product at the price other sellers are offering while they can set the
price for crushed/yesterday’s leftover produce at any price they find fit, etc.). The demand for each
version of the good depends both on its own price and the other version’s price. First, the optimal
order quantity and pricing decision for the retailer is explored in a setting without donation, and next
the optimal order quantity, price, and donated amount are characterized when there is a donation
option. Under the assumptions of the model, it is shown that donation option is always more profitable,
and leads to a lower amount of product salvage. Note that Murray et al. [13] define “Circular Economy”
as “an economic model wherein planning, resourcing, procurement, production and reprocessing are
designed and managed, as both process and output, to maximize ecosystem functioning and human
well-being”. Therefore, the model developed here can be a good example of the business models that
are compatible with Circular Economy concepts, as resource efficiency and competitive advantage are
achieved simultaneously.

The remainder of paper is as follows: In Section 2, the relevant literature on joint pricing and
quantity setting and on donations is presented. In Section 3, the mathematical model and the main
findings of the paper are discussed. Next, the problem is numerically analyzed in Section 4 for a
realistic setting to obtain further insights. Finally, Section 5 concludes the paper by stating limitations
and discussing practical implications.
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2. Literature Review

The joint pricing and ordering problem has been analyzed for more than seven decades, starting
with Whitin [14], who defines the problem in a newsvendor setting. The majority of models focus on
pricing and ordering of a single item ([15–17]). Petruzzi and Dada [18] account for several demand
models to jointly determine quantity and price in newsvendor setting.

The joint pricing and inventory management problem for perishable products has also attracted
attention of many researchers. Chen et al. [19] consider this problem in a setting where pricing is
sequential, i.e., there is no replenishment, hence the products at different quality levels do not coexist,
leading to the result that pricing decisions for the same product at its various lifetime stages are made
in respective periods. Wang and Lee [20] propose a discrete pricing model for perishable goods in
which the quality is dynamically traced using tracking technologies. Specifically, the authors compare
single price and multiple markdown policies, and find that the timing of markdown impacts the
firm’s profits considerably. Moreover, multiple price markdowns are more appropriate for products
that have longer shelf lives. Banerjee and Turner [21] develop a solvable set of differential equations
whose solutions characterize the optimal pricing strategy for perishable assets. They incorporate group
arrivals of customers into their model and investigate their impact on the prices and stock levels of
the firm. The impact of using the optimal pricing policy becomes substantial especially in the group
arrivals case. Chew et al. [4] consider a perishable product with multiple period-lifetime and decide
the order quantity and the prices simultaneously. For the two-period problem, given the inventory
level for the old product, the expected profit is a concave function of the order quantity, the price
of the new product and the discounted price of the old product. Clearly, this paper differs from the
model discussed in Chew et al.’s [4] work, as the donation factor is incorporated here, and the new
product price is exogenous in the current setting. Li et al. [10] consider the same problem when a
retailer does not sell new and old inventory at the same time. At the beginning of a period, the retailer
makes replenishment and pricing decisions, and at the end of a period, the retailer decides whether to
dispose of ending inventory or carry it forward to the next period. They find that dynamic pricing
aids extending shelf life and when disposal incurs a lower cost (or positive salvage value), the retailer
is induced to dispose earlier. Chen et al. [11], on the other hand, focus on the problem of a vendor who
sells the same product at various stages of its life cycle and analyze joint replenishment and pricing
decisions. Differently from he model of this work, in both papers, there is a single price in each period
applicable to all versions of the same product. Kaya and Polat [22] investigate the problem for a
deterministic perishable inventory system in which demand is time and price dependent. The seller
has the opportunity to adjust prices for a discrete number of times at a certain cost during the sales
season to influence demand and to improve revenues. The authors develop a mathematical model
to find the optimal times to change the prices and analyze the efficiency of multiple pricing strategy
by comparing the profits obtained by single pricing. However, inventory is replenished only at the
beginning of a sales period in their model.

In durable goods literature, Dhebar [23], Fudenberg and Tirole [24], Kornish [25] investigate
the pricing problem for sequential versions of the product, but neither of them analyzes pricing and
ordering together. Jia and Zhang [26] consider the dynamic pricing and ordering decisions for a
durable product with multiple generations in a supply chain with one manufacturer and one retailer.
Demands for the product are quality- and price-sensitive. They show that the retailer’s optimal pricing
strategy exists and depends only on the consumer’s quality- and price-sensitivities for a given product
quality. Their work is different from this paper again by being modeled as a sequential game between
a retailer and a wholesaler.

In short, in both perishable and durable goods literature, joint pricing and inventory management
models almost never considered donation strategies as a viable option. Coming to the literature
on donation models, Aiello et al. [8] focus on the food losses in the food supply chains and,
drawing attention to the existence of undernourished people, propose a model to determine the
optimal time to withdraw products from the shelves as well as the quantities to be donated to
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the non-profit organizations with an objective of maximizing the retailer profit. The authors do
not consider pricing in their model and assume exogenous prices. Another research paper on the
operational planning of charitable donations is that of Chu et al. [27]. The paper analyzes the
impact of tax deductions arising from donations for a profit-maximizing firm. The mathematical
model involves a two-period problem, where the firm sets the prices, the production quantity, and the
donation quantities sequentially in each period. The authors find that two factors are prevalent in
determining the firm’s optimal donation behavior, namely fixed cost of production and uncertainty
in demand distribution. The model differs from the model of this paper in several aspects; such as
sequentiality in pricing decisions in two periods, no quality difference within the same product,
a unique production/ordering decision (i.e., a newsvendor model with price markdowns), a fixed cost
of production, to name a few. Along the same line of research, Ozbilge et al. [12] make use of condition
tracking technologies in order to better manage inventory and reduce food waste across an agrifood
supply chain. To this end, they define a quality-dependent newsvendor problem and study two
mathematical models. In the former model, the firm performs joint pricing and ordering; whereas in
the latter, donation and repricing is considered. Assuming both price- and quality-sensitive customers,
they find that donations can improve the firm’s profit and contribute to its social responsibility
dimension. In their work, the product is at a homogeneous quality level at all times, which is the basic
difference of their model from the model of this paper.

This work can be regarded as in the intersection of joint pricing and ordering literature and
donation models. Although joint pricing and ordering has been analyzed extensively before, the impact
of donation strategies on profitability levels has not been properly analyzed. Moreover, most of
the previous work involve sequential pricing decisions, or do not consider co-existence of several
versions/quality levels of the same product. This paper could also be helpful for understanding the
dynamics of optimal pricing and inventory management practices of retailers when two versions
of the same product co-exist. The donation argument elevates this discussion one more level,
contributing to developing more socially responsible and sustainable strategies which would be
beneficial to all stakeholders.

3. Mathematical Model

The problem involves a profit-maximizing vendor who wants to determine the ordering quantity
(for the new version) and the price (for the old version) simultaneously for a product which has old
and new versions. At each period t, the vendor sells both new and old products, and the selling
season is comprised of T periods. Each newly ordered product can be sold in two consecutive periods,
being new in the first period that it is acquired, and as an old product in the second period after
replenishment. The products that cannot be sold in two consecutive periods are salvaged. The price
for the new product is exogenous and determined by market dynamics. However, the vendor should
decide the price for the old product himself/herself. The demands for both versions of the product are
stochastic and dependent on the prices of both. Below, all the parameters and decision variables of the
problem are defined.

Model parameters:

p1t : price of the new (version of) product in period t; t ∈ {1, 2, . . . T}, p1t ∈ {P1} it is determined
by industry/competitors.

p2t : price of the old (version of) product in period t; t ∈ {1, 2, . . . T}, p2t ∈ {P2}
D1(p1t, p2t) : stochastic demand of the new product in period t; it is decreasing in p1t and increasing

in p2t.
D2(p1t, p2t) : stochastic demand of the old product in period t; it is decreasing in p2t and increasing in p1t.
x2t : the inventory level of old product at the beginning of t
yt : the amount of new order (of new product) in period t
c : ordering cost
h : holding cost
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s : salvage cost

Although it is assumed that s ≥ 0, the results continue to hold for a positive “salvage value”,
i.e., s < 0 in the revenue model provided that p2t + s ≥ 0 for the given price range ∀t. The ordering,
holding and salvage costs might vary from one selling period to another in real life, but they are
assumed to be constant during the entire selling horizon in order to keep the formulations as simple
as possible.

A linear stochastic demand is assumed, i.e., D1(p1t, p2t) and D2(p1t, p2t) can be defined as:
D1t(p1t, p2t) = µ1t(p1t, p2t) + ε1t = a1t − b11t p1t + b12t p2t + ε1t, D2t(p1t, p2t) = µ2t(p1t, p2t) + ε1t =

a2t + b21t p1t − b22t p2t + ε2t, where ait, biit, bijt > 0 i, j ∈ {1, 2}, p2 ∈ P2 := {pmin, pmax} such that P2

allows only for nonnegative demand, and εit is a random variable with pdf fit(.) and cdf Fit(.) on the
support [εmin, εmax], i = 1, 2. Although in real life demand of a product might not be linear in prices,
or other factors might be prevalent in the demand function, this form of demand function is frequently
used in retail settings with multiple products to sell ([4,12]).

The pricing and ordering problem of the vendor will be analyzed in two settings: In the first,
no donation options are available, while in the latter, the vendor can choose to donate some of the old
products at a predetermined price at the beginning of each selling period.

3.1. Case 1: No Donations

In this section, a dynamic programming model that computes seller’s expected revenue for T
periods is developed and analyzed.

Maximum expected profit for the remaining periods starting in period t with an inventory of x2t
can be formulated as:

Vt(x2t) = max
p2t∈P2 ,yt

[Jt(x2t, yt, p2t)]] ,

= max
p2t∈P2 ,yt

[
φt(x2t, yt, p2t) + E[Vt+1((yt − D1t(p1t, p2t))

+)]
]

(1)

for t ∈ {1, 2, . . . T}, where Jt(x2t, yt, p2t) is the expected profit for the remaining periods starting in
period t and φt is the net revenue function in period t defined as:

φt(x2t, yt, p2t) = p1tE[min{D1t(p1t, p2t), yt}]− cyt − hE[yt − D1t(p1t, p2t)]
+

+ p2tE[min{D2t(p1t, p2t), x2t}]− sE[x2t − D2t(p1t, p2t)]
+ (2)

To obtain a revenue function that is unimodal in the given range, it will be assumed that:

F2t(x2t − µ2t)(1− F2t(x2t − µ2t))

f2t(x2t − µ2t)
≤ E[min{D2t, x2t}] + b12t(p1t − c)

holds for all p2t ∈ {pmin, pmax} ∀t, for the given parameters. This assumption is easily satisfied in
many settings considering 1− F(.) ≤ 1 and F(.) ≤ 1, and simply requires p1t to be relatively large
with respect to c, which is often the case. The following Theorem states the concavity of multiple
period problem and characterizes the monotonic properties of the optimal prices and ordered amounts
in each period.

Theorem 1. Jt(x2t, yt, p2t) is jointly concave with respect to (yt, p2t) given an inventory level x2t; and Vt(x2t)

is concave in x2t, ∀t ∈ {1, 2 . . . T}. Moreover, the following monotonic properties hold for the optimal price and
ordering values:

1. p∗2t is a non-increasing function of x2t and a non-decreasing function of p1t.
2. y∗t is a non-increasing function of x2t and p1t.
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The proof of Theorem 1 can be found in Appendix A. Theorem 1 states that the solution for joint
pricing and ordering problem is easy to solve due to joint concavity property. Moreover, the theorem
results are mainly intuitive, stating that price of the old product decreases in the inventory level of
the old product and increases in the new product price. Similarly, the order quantity decreases in the
inventory level of the old product and the new product price. The expected profit function is concave
in the current inventory level; namely it is desirable to have some inventory of old product at the start
of the new selling season to obtain higher revenues. In the next subsection, the structure of the profit
function and resulting monotonic properties of the decision variables will be stated for the donation
model, and the two models will be compared in certain aspects.

3.2. Case 2: With Donations

In this setting, the firm can choose to donate a certain amount, qt (≤x2t), of the inventory on hand
in period t before ordering new product. The firm obtains a revenue d (e.g., tax deduction or direct
monetary benefits) per unit donated. As in Case 1, a dynamic programming model that computes the
expected revenue for T periods is developed.

Maximum expected profit for the remaining periods starting in period t with an inventory of
x2t becomes:

VDt(x2t) = max
p2t∈P2 ,qtyt

[JDt(x2t, yt, qt, p2t)]]

= max
p2t∈P2 ,qt ,yt

[
ψt(x2t, yt, qt, p2t) + E[VDt+1((yt − D1t(p1t, p2t))

+)]
]

(3)

where JDt(x2t, yt, qt, p2t) is the expected profit for the remaining periods starting in period t, and ψt is
the net revenue function in period t defined as:

ψt(x2t, yt, qt, p2t) = p1tE[min{D1t(p1t, p2t), yt}]− cyt − hE[yt − D1t(p1t, p2t)]
+

+p2tE[min{D2t(p1t, p2t), x2t − qt}] + dqt − sE[x2t − D2t(p1t, p2t)− qt]
+ (4)

The main contribution of this paper is stated as in the following Theorem, proving that multiple
period problem with donations is still concave, and stating the monotonic properties of the optimal
prices and ordered amounts in each period in terms of the problem parameters including donation
coefficient d.

Theorem 2. JDt(x2t, yt, qt, p2t) is jointly concave with respect to (yt, qt, p2t) given an inventory level x2t;
and VDt(x2t) is concave in x2t, ∀t ∈ {1, 2 . . . T}.

Moreover, the following monotonic properties hold for the optimal price and ordering values:

1. p∗2t is a non-increasing function of x2t and a non-decreasing function of p1t and d.
2. y∗t is a non-increasing function of x2t and p1t, and a non-decreasing function of d.
3. q∗t is a non-decreasing function of x2t and d, and a non-increasing function of p1t.

The proof of Theorem 2 can be found in Appendix A.
It is a nice observation to see that the expected net revenue function is still concave despite

adding a new dimension. Moreover, the monotonic properties of decision variables still hold with
an addition of the new dimension regarding parameter d. A nice corollary of the above Theorem
follows from observing that ∂VDT(x2T)

∂x2T
= ∂ψt(x2t)

∂x2t
= d. That is, no matter how much inventory is left

from the previous period, this would only contribute positively to this period’s revenue, since the
seller could donate as much as he/she wants and keep the quantity and price for the lower-quality
product at a desired level. Even if an upper limit were to be brought on the amount of donations,
the donation model would adjust accordingly and still be more efficient than the non-donation model.
This observation is the key point in the analysis, letting the seller obtain more revenue under the
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donation model in all cases, due to the concavity of V(.) and VD(.) functions. This result is stated
without proof.

Corollary 1. VDt(x2t) ≥ Vt(x2t), ∀t, ∀x2t.

Finally, the donation model also results in less product waste, i.e., E[x2t −D2t(p1t, p2t)]
+ is higher

in the first model than E[x2t − D2t(p1t, p2t) − qt]+ in the second model. This result is stated and
proved below.

Corollary 2. Letting p∗2t,ND be the optimal price value maximizing Vt(x2t) and p∗2t,D be the optimal price value
maximizing VDt(x2t). Then:

E[x2t − D2t(p1t, p∗2t,ND)]
+ ≥ E[x2t − D2t(p1t, p∗2t,D)− q∗t ]

+

Proof. The above claim will be proved for t = T. The rest of proof follows from induction. First,
assume that optimal prices are found at the FOC (first order condition), i.e.,

∂φT
∂p2T

= b12T(p1T + h)F1T(y∗T,ND − µ1T,ND)− b22T(p∗2T,ND + s)F2T(x2T − µ2T,ND) +

E[min{D2T(p1T , p∗2T,ND), x2T}] = 0
∂ψT
∂p2T

= b12T(p1T + h)F1T(y∗T,D − µ1T,D)− b22T(p∗2T,D + s)F2T(x2T − µ2T,ND − q∗T) +

E[min{D2T(p1T , p∗2T,D), x2T − q∗T}] = 0

(If this is not the case, i.e., if p∗2t,ND = p∗2t,D = pmin or p∗2t,ND = p∗2t,D = pmax, the result becomes
trivial.)

As p∗2t decreases in x2t and q∗t ≥ 0 for all t, it is clear that p∗2T,D ≥ p∗2T,ND. Therefore,
D2T(p1T , p∗2T,D) ≤ D2T(p1T , p∗2T,ND), meaning that:

E[min{D2T(p1T , p∗2T,D), x2T − q∗T}] ≤ E[min{D2T(p1T , p∗2T,ND), x2T}].

The first terms in both models are the same (Given that p∗2T,D ≥ p∗2T,ND, µ1T,ND ≤ µ1T,D and
y∗T,ND ≤ y∗T,D; and comparing the derivatives, the differences should be the same, i.e., y∗T,ND −
µ1T,ND = y∗T,D − µ1T,D making the two first terms equal.) Combining these results:

b22T(p∗2T,ND + s)F2T(x2T − µ2T,ND) ≥ b22T(p∗2T,D + s)F2T(x2T − µ2T,D − q∗T)

⇒ x2T − µ2T,ND ≥ x2T − µ2T,D − q∗T

which then leads to E[x2T − D2T(p1T , p∗2T,ND)]
+ ≥ E[x2T − D2T(p1T , p∗2T,D)− q∗T ]

+. The same result
can be proved for all t by induction, as φt(.) and ψt(.) have the same structure as φT(.) and ψT(.)
respectively, and p∗2t,D ≥ p∗2t,ND, ∀t.

The above corollaries indicate that in addition to improving the welfare of seller and low-income
citizens, the donation policy could also improve the system sustainability by reducing waste and
associated CO2 emissions. Hence, adopting a donation model could create a win-win situation for all
stakeholders including the seller, donees and the environment.

4. Numerical Analysis

In this section, the impact of varying parameters on seller revenues, optimal prices, order sizes
and other variables of interest will be analyzed for both non-donation and donation models. To this
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end, similar values for parameters such as demand function coefficients, holding, salvage and ordering
costs are used as in [4], slightly tailored to reflect the requirements of current setting while remaining
consistent with existing literature. The parameters are stated in Table 1.

Table 1. Numerical Analysis Parameters.

Parameters Values Parameters Values

a1 200 a2 100
b11, b22 5 b12, b21 3

h 5 c 10
p1 50 s 15

The stochastic component of demand is assumed to be uniformly distributed, i.e., ε ∼ U[−60, 60],
for all periods and for both old and new product demand functions. The price range P2 := {pmin, pmax}
is {0, p1}. Finally, it is assumed that d = 12, which is lower than the optimal old product price in
all cases, as expected in practice, in order not to make donations too appealing (The runs with d =
6 were also conducted, and although the results were less drastic (i.e., net revenue increases were
usually within 1–4% range), the structures observed were similar). Tests are run for T = 2, since two
periods are sufficient to capture the dynamic nature of the problem and also to allow for time efficient
computation. The backward DP algorithm for both cases are coded and run in MATLAB R2019B on a
computer with 16 GB RAM. Each individual run lasts less than three minutes.

First, one would like to understand how the initial inventory value might affect the optimal prices
p2 and the profit levels under no-donation and donation settings. Table 2 provides the net revenues,
first period optimal ordering quantity (y∗1), first period optimal price for the old product (p∗21) and
salvage and donation values for varying starting inventory levels.

Table 2. Optimal Expected Profits and Optimal Values of Decision Variables at Different Starting
Inventory Levels (of the Old Product).

No Donation Donation Profit Increase

I0 V1 (×103) p∗21 y∗1 salvage VD1 (×103) p∗21 y∗1 salvage q∗1
0 5.429 47 132.37 8.44 5.914 47 127.97 8.44 0 8.9 %

20 5.858 44 122.12 10.42 6.154 44 118.97 10.42 0 5 %
40 6.177 42 115.27 15 6.394 42 112.97 15 0 3.5 %
60 6.388 40 108.42 20.42 6.634 42 112.97 16.62 16.84 3.8 %
80 6.496 38 101.56 26.67 6.874 42 112.97 16.62 36.84 5.8 %

100 6.506 36 94.69 33.75 7.114 42 112.97 16.62 56.84 9.3 %
120 6.424 34 87.81 41.67 7.354 42 112.97 16.62 76.84 14.5 %
140 6.253 32 80.92 50.42 7.594 42 112.97 16.62 96.84 21.5 %
160 5.999 30 74.03 60 7.834 42 112.97 16.62 116.84 30.6 %
180 5.667 28 67.12 70.42 8.074 42 112.97 16.62 136.84 42.5 %
200 5.263 26 60.21 81.67 8.314 42 112.97 16.62 156.84 57.9 %

As evident from the results, the donation model brings higher profits particularly as the starting
inventory levels increase. Since no upper limit was imposed on the maximum allowable donations,
it is no wonder that expected profits increase with increasing starting inventory, since the unnecessary
amount can immediately be donated. While the non-donation model tries to deal with extra inventory
by decreasing the old product’s price and the ordered amount of new product, the donation model
stabilizes after a particular initial inventory level by always picking the same optimal old product price
and order amount and donating the extra inventory. Even if there was a constraint limiting maximum
amount of donations, it is easy to predict that donation model would perform better by setting the
donation amount to the largest possible allowable value and adjusting p2 accordingly, for large values
of starting inventory. The expected salvaged amount is therefore low under donation model in all
cases while a significant portion of initial inventory is wasted and a resulting profit loss occurs under
the non-donation case.
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Next, it is possible to analyze the effect of exogenous new product price, p1, on the optimal
solution and optimal values of decision variables. Table 3 displays the results for various values of p1.
The starting inventory is assumed to be 100 at the beginning of first selling period.

Table 3. Optimal Expected Profits and Optimal Values of Decision Variables at Different Price p1 values.

No Donation Donation Profit Increase

p1 V1 (×103) p∗21 y∗1 salvage VD1 (×103) p∗21 y∗1 salvage q∗1
30 5.516 23 131.69 30.10 6.106 29 153.19 8.96 68.63 10.7 %
35 6.219 26 123.49 30.10 6.768 32 144.33 10.86 63.94 8.8 %
40 6.617 29 113.72 30.10 7.130 35 133.89 12.7 59.8 7.7 %
45 6.715 33 106.33 33.75 7.193 38 122.33 14.44 56.13 7.1 %
50 6.506 36 94.69 33.75 7.114 42 112.97 16.62 56.84 9.3 %
55 5.986 39 82.45 33.75 6.406 45 100 18.15 54 7 %
60 5.154 42 69.75 33.75 5.550 48 86.56 19.59 51.43 7.7 %
65 4.008 45 56.69 33.75 4.383 51 72.76 20.95 49.09 9.4 %
70 2.546 48 43.33 33.75 2.903 54 58.67 22.23 46.96 14 %
75 1.005 52 33.11 37.60 1.452 57 44.33 23.44 45 44.4 %

As expected, the prices for old product p2 increase and the order quantities y decrease with
increasing p1 in both models. However, donation model always allows for higher old-product prices,
brings higher profits and lower salvage values compared to the non-donation model. The improvement
over profits is larger at extremely low or extremely high values of p1, while the relative gap is becoming
smaller at moderate new product prices. That is, donation option could be even more beneficial under
extreme market conditions when new product prices are expected to increase substantially or decrease
almost to the level of average old-product prices.

Next, it will be explored how the volatility in demand affects the two models. Table 4 displays
results for various ε ranges. The results are interesting in several dimensions: In the non-donation
model, the optimal price for the old product tends to increase with volatility, whereas in the donation
model, it is the opposite case. Order quantities increase in both settings, although at a faster pace
in the non-donation case. A possible explanation could be the retailer under non-donation model
trying to increase expected revenues by capturing more of the new product demand by increasing
product availability and attractiveness of new product option, while the retailer who has donation
option trying rather to balance the two demand streams. Still, the expected profits decrease in both
cases as the uncertainty in demand increases.

Table 4. Optimal Expected Profits and Optimal Values of Decision Variables at Different Demand Ranges.

No Donation Donation Profit Increase

[εmin, εmax] V1 (×103) p∗21 y∗1 salvage VD1 (×103) p∗21 y∗1 salvage q∗1
−20, 20 8.081 33 64.89 15.31 8.705 43 100.56 5.71 63.62 7.7 %
−30, 30 7.725 34 73.46 20.83 8.272 42 100.55 8.31 58.42 7.1 %
−40, 40 7.341 35 81.78 26.40 7.833 42 104.45 11.08 57.89 6.7 %
−50, 50 6.931 35 86.55 28.12 7.392 42 108.65 13.85 57.37 6.7 %
−60, 60 6.506 36 94.69 33.75 7.114 42 112.97 16.62 56.84 9.3 %
−70, 70 6.067 36 99.35 35.71 6.515 41 114.36 18.77 52.50 7.4 %
−80, 80 5.615 36 103.98 37.81 6.080 41 118.79 21.45 52.14 8.3 %
−90, 90 5.158 37 112.05 43.40 5.646 41 123.26 24.14 51.78 9.5 %
−100, 100 4.693 37 116.65 45.56 5.213 41 127.73 26.82 51.43 11.1 %
−110, 110 4.224 37 121.24 47.78 4.782 40 129.73 28.51 48 13.2 %

Finally, it is possible to analyze how the price elasticity and demand correlation parameters,
i.e., bij and bii, i 6= j, i, j ∈ {1, 2}, affect the results. First, the values of bii are varied keeping bij
fixed, and then the opposite is performed. Results (displayed in Table 5) indicate that if the effect of
competing product’s price on the other product’s demand increases, prices for the old product increase
in both models; the rationale probably being that it is possible to capture higher revenues by setting
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both prices high in that case. On the other hand, prices for old product are set lower and the order
quantity for new products are also lower when each product’s demand is not seriously affected by the
other’s price. In this case, the models find it more profitable to shift attention to selling more of the
old product at lower prices, which also means a decrease in the sales of the new product. Comparing
the two models, donation model again sets higher p2, orders higher y, and salvages less in all cases.
The benefit of donation option is more evident in cases where demand elasticity is high, namely when
demand decreases faster with its own price.

Table 5. Optimal Expected Profits and Optimal Values of Decision Variables at Different Demand Parameters.

No Donation Donation Profit Increase

bii, bij, j = 1, 2 V1 (×103) p∗21 y∗1 salvage VD1 (×103) p∗21 y∗1 salvage q∗1
4, 3 13.466 46 178.96 36.82 13.661 50 186.97 20.51 39.85 1.4 %

4.5, 3 9.897 40 133.42 33.75 10.253 46 149.97 18.64 50.12 3.6 %
5, 3 6.506 36 94.69 33.75 7.114 42 112.97 16.62 56.84 9.3 %

5.5, 3 3.360 32 55.92 30.82 3.889 38 75.97 14.44 60.13 15.7 %
6, 3 0.606 29 20.58 29.40 1.256 35 41.97 12.70 64.80 107 %

5, 2 0.945 26 34.21 33.75 1.671 32 50.97 10.86 68.94 76.8 %
5, 2.5 3.495 31 61.98 33.75 4.066 37 79.47 13.86 62.31 16.3 %
5, 3 6.506 36 94.68 33.75 7.114 42 112.97 16.62 56.84 9.3 %

5, 3.5 9.902 41 132.35 33.75 10.236 46 147.97 18.64 48.11 3.4 %
5, 4 13.501 46 174.96 33.75 13.661 50 186.97 20.65 39.85 1.2 %

5. Discussion and Conclusions

This paper shows that retailers or sellers of perishable inventory could improve their profits by
adopting a donation model while also helping low-income citizens and reducing environmental side
effects. The numerical analysis provided here shows a glimpse of how much profit increase is possible
in different settings. The results are particularly impressive if demand is highly volatile or highly
elastic, or if the starting inventory of old products is large.

Donations are considered to be a viable option in achieving Circular Economy (CE) objectives.
As defined by The Ellen MacArthur Foundation, CE is based on designing out waste and pollution,
keeping products and materials in use, and regenerating natural systems [28]. Hence, donation is one
of the ways to reduce waste, use resources more efficiently, and keep products in use. Several top-tier
textile firms such as H&M, Levi Strauss Co. etc. have clothing “donation bins” in stores ([29]),
and many grocery stores engage in donation activities in collaboration with local food banks ([30,31]).
Similarly, there are several papers in the CE literature that propose donation as one of the possible
ways to achieve resource efficiency. For instance, Awasthi et al. [5] state that one of the policies to
more effectively manage electronic waste is to support humanitarian organizations donating used
electronics to poorer countries. Chang [29], Mariani [32] and Hvass [33] develop distinct, innovative
business models incorporating donation to reduce waste in textile industry and reach circular economy
objectives. However, what the practical donation applications or previous research on the topic fail
to recognize is that beside being a good-samaritan activity and creating good public recognition for
the firms, it is also possible to raise additional profit by donations using correct pricing strategies.
In this paper, this aspect of donations is emphasized, which clearly aligns with the aims of CE, as CE
represents a development strategy that enables economic growth while aiming to optimize the chain
of consumption of biological and technical materials ([34]).

One should however note that for the results to be applicable, the two demand streams (one for new
and one for the old product) should already be in effect. For instance, Ferguson and Koenigsberg [9] show
that for a monopolist perishable product vendor, carrying inventory to the next period could cannibalize
the demand for the new product and reduce profitability. In the setting of this paper, it is assumed that
regardless of the inventory holding or disposal decision, some price-sensitive customers will prefer old
products and could find them in other vendors if not offered by the seller. Therefore, keeping the old
product for one more period and pricing it appropriately to maximize profits makes sense. In this setting,
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donation would increase financial benefits substantially if the starting old product inventory is higher than
a certain level, and disposal is not an option or costly for old products in their second life phase.

Another limitation of this work could be the assumption that products go through only two
phases in their life cycle (new vs. old) as opposed to a continuous scale and that all products in
each phase are regarded as having the same quality. These products in fact could be heterogeneous
within themselves, and/or the quality degradation might not be piece-wise as it is assumed here. Still,
despite analytical complexity, the model and results that are found in this work could be extended to
situations with more than two quality levels (versions) of the products.

In any case, the insights in this paper could be beneficial mainly for retailers in fresh food or
high-tech industries, who would like to perform good samaritan work while not hurting their profits,
and also for public policy-makers who would like to support low-income citizens. Customers in today’s
world display a clear interest in supporting firms who are known to engage in sustainability-ensuring
activities ([35]), and they feel more connected to this firm if they are personally engaged in these
activities (e.g., such as by using the donation bins in H&M stores and getting a reimbursement in
return) ([33]). If large grocery or high-tech product chains engage in donation activities, this would
strengthen the brand image for these companies, leading to positive effects on the customer loyalty,
market shares and share prices. On the top of improved brand image, these firms will have the chance
to reduce costs (by reducing waste) and improve profitability via correct pricing strategies and tax
benefits; which would clearly lead to more sustainable and effective corporations in the long run.

Similarly, municipalities of big cities could develop policies towards buying unsold products from
small vendors in farmer markets at discounted prices and send them to soup kitchens. For instance,
consider a small vendor selling vegetables in a farmer’s market. These vendors often sell the vegetable
only during a few (for instance, two) consecutive days, fresh product and old (or crushed, battered but
still edible) products have different sales prices, and the unsold products at the end of these days go to
waste bin. However, if the municipality of the region sets a particular purchase quota for the unsold
old products at the end of every sales day at a preannounced, lower-than-market price, the small
vendor could enjoy the increased profit levels even without changing the initial inventory and the
sales price of old product. He or she can earn even more by appropriately revising the sales price of
old product and the order quantity of fresh product, as the numerical results of this paper suggest.
On the other side, the municipality could provide material for food banks at reduced prices, leading to
a win-win situation for all the parties that are involved.

In this aspect, when donations are used properly, small vendors of the farmer markets,
large retailers and low-income citizens will be the direct winners, but the citizens in the region
will also enjoy indirect benefits such as more efficient municipality services and lower environmental
side effects due to lessened waste. Hence, both public and private business models incorporating
the donation element bear the potential to improve stakeholder benefits and elevate sustainability of
economic systems. It is hoped that this work attracts more attention towards donation models and
contributes to building innovative business systems that are compatible with the notions of green deal
strategies and CE.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Theorem 1. The proof follows following steps: 1. The net revenue function of the last period,
φT is shown to be jointly concave with respect to (yT , p2T) given an inventory level x2T ; 2. p2T , yT are
non-increasing in x2T . 3. VT is concave in x2T 4. Jt(x2t, yt, p2t) is jointly concave with respect to (yt, p2t)

given an inventory level x2t 5. p2t, yt are non-increasing in x2t, ∀t. 6. Vt is concave in x2t, ∀t.
Step 1. Consider the Hessian matrix for φT , H(φT). Its determinant is:
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det(H(φT)) =

∣∣∣∣∣∣
∂2φT
∂p2

2T

∂2φT
∂p2T∂yT

∂2φT
∂yT∂p2T

∂2φT
∂y2

T

∣∣∣∣∣∣
Note that ∂φT

∂yT
= p1T(1− F1T(yT − µ1T))− hF1T(yT − µ1T)− c and ∂φT

∂p2T
= E[min{D2T , x2T}] +

(p1T + h)b12T F1T(yT − µ1T)− (p2T + s)b22T F2T(x2T − µ2T). Hence:

∂2φT

∂p2
2T

= −2b22T F2T(x2T − µ2T)− (p1T + h) f1T(yT − µ1T)b2
12T − (p2T + s) f2T(x2T − µ2T)b2

22T ≤ 0

∂2φT

∂y2
T

= −(p1T + h) f1T(yT − µ1T) ≤ 0

∂2φT
∂yT p2T

= b12T(p1T + h) f1T(yT − µ1T)

The first leading principal minor of the Hessian matrix is negative, while the second leading

principal minor, ∂2φT
∂p2

2T
× ∂2φT

∂y2
T
− ( ∂2φT

∂yT p2T
)2 = 2b22T F2T(x2T − µ2T)(p1T + h) f1T(yT − µ1T) + (p2T +

s) f2T(x2T − µ2T)b2
22T(p1T + h) f1T(yT − µ1T) ≥ 0, proving that H(φT) is a negative semi-definite

matrix. Thus, φT is jointly concave in p2T , yT .
Step 2. The optimal values of p2T , yT can be obtained by solving the Lagrangian problem and

stating the KKT (Karush-Kuhn-Tucker) conditions.

∂φT
∂p2T

= E[min{D2T , x2T}] + (p1T + h)b12T F1T(y∗T − µ1T)− (p∗2T + s)b22T F2T(x2T − µ2T) (A1)

+λ∗1T − λ∗2T = 0 (A2)
∂φT
∂yT

= p1T(1− F1T(y∗T − µ1T))− hF1T(y∗T − µ1T)− c = 0 (A3)

λ∗1T(p∗2T − pmin) = 0 (A4)

λ∗2T(−p∗2T + pmax) = 0 (A5)

λ∗1T , λ∗2T ≥ 0, pmin ≤ p∗2T ≤ pmax (A6)

By (A3), optimal y∗T can be found as y∗T = F−1
1T ( p1T−c

p1T+h ) + µ1T . It is easy to see y∗T decreases in
p1T by simply checking the sign of the first derivative. To see that y∗T decreases in x2T , note that by

implicit theorem, ∂y∗T
∂x2T
− ∂µ1T

∂x2T
= 0, i.e., ∂y∗T

∂x2T
− b12T

∂p∗2T
∂x2T

= 0, proving that ∂y∗T
∂x2T

and ∂p∗2T
∂x2T

have the same
sign. Next consider all cases where λ∗1T = λ∗2T = 0, λ∗1T > 0, λ∗2T = 0 and λ∗1T = 0, λ∗2T > 0.

Case (i): λ∗1T = λ∗2T = 0: In this case:

∂φT
∂p2T

= b12T(p1T − c)− b22T(p2T + s)F2T(x2T − µ2T) + E[min{D2T , x2T}] = 0 (A7)

Calling A := yT − µ1T and B := x2T − µ2T :

∂

∂x2T
[

∂φT
∂p∗2T

] = (1− F2T(B))− b22T(p∗2T + s) f2T(B)− b22T
∂p∗2T
∂x2T

(F2T(B) + b22T(p∗2T + s) f2T(B)) = 0 (A8)

So, provided (1 − F2T(B)) − b22T(p∗2T + s) f2T(B) ≤ 0, ∂p2T
∂x2T

≤ 0. Noting that b12T(p1T −
c) − b22T(p∗2T + s)F2T(B) + E[min{D2T , x2T}] = 0, this requirement pours into: F2T(B)(1−F2T(B))

f2T(B) ≤
E[min{D2T , x2T}] + b12T(p1T − c), which was previously assumed to hold.

Case (ii): λ∗1T > 0, λ∗2T = 0:
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In this case, optimal value is p∗2T = pmin, indicating the situation where µ2T is too large. Taking the

derivative of Equation (A4), ∂λ∗1T
∂x2T

(p∗2T − pmin) + λ∗1T
∂(p∗2T−pmin)

∂x2T
= λ∗1T

∂p∗2T
∂x2T

= 0. Since λ∗1T > 0,

this means ∂p∗2T
∂x2T

= 0. The same result for optimal y∗T follows as ∂y∗T
∂x2T
− b12T

∂p∗2T
∂x2T

= 0.
Case (iii): λ∗1T = 0, λ∗2T > 0:
In this case, optimal value is p∗2T = pmax, indicating the situation where µ2T is too low. Taking the

derivative of Equation (A5), ∂λ∗2T
∂x2T

(−p∗2T + pmax) + λ∗2T
∂(−p∗2T+pmax)

∂x2T
= −λ∗2T

∂p∗2T
∂x2T

= 0. Since λ∗2T > 0,

this means ∂p∗2T
∂x2T

= 0. The same result for optimal y∗T follows as ∂y∗T
∂x2T
− b12T

∂p∗2T
∂x2T

= 0.
Step 3. The optimal net revenue function VT is concave in x2T . Take the derivative of VT with

respect to x2T :

∂VT(x2T)

∂x2T
=

∂φT(x2T , y∗T , p∗2T)

∂x2T
= p1T

[ ∫ y∗T−µ1T

εmin

b12T
∂p∗2T
∂x2T

f1T(ε1T)dε1T +
∫ εmax

y∗T−µ1T

b12T
∂p∗2T
∂x2T

f1T(ε1T)dε1T
]

+ p∗2T
[ ∫ x2T−µ2T

εmin

−b22T
∂p∗2T
∂x2T

f2T(ε2T)dε2T +
∫ εmax

x2T−µ2T

1
∂p∗2T
∂x2T

f2T(ε2T)dε2T
]

− cb12T
∂p∗2T
∂x2T

+
∂p∗2T
∂x2T

E[min{D2T(p1T , p∗2T), x2T}]− s
∫ x2T−µ2T

εmin

(1 + b22T)
∂p∗2T
∂x2T

f2T(ε2T)dε2T

Rearranging the terms:

∂VT(x2T)

∂x2T
=

∂p∗2T
∂x2T

[
p1Tb12T − cb12T + E[min{D2T(p1T , p∗2T), x2T}]

− s(1 + b22T)F2T(x2T − µ2T) + p∗2T
[
− b22T F2T(x2T − µ2T) + 1− F2T(x2T − µ2T)

]]
However, then, inserting (A2) and (A3) in the above equation, one obtains:

∂VT(x2T)

∂x2T
=

[
p∗2T − F2T(x2T − µ2T)(p∗2T + s)

]
Taking the second derivative of VT(x2T) with respect to x2T :

∂2VT(x2T)

∂x2
2T

=

[
∂p∗2T
∂x2T

(1− F2T(x2T − µ2T))− f2T(x2T − µ2T)(p∗2T + s)(1 + b22T
∂p∗2T
∂x2T

)

]

Observing that ∂2VT(x2T)

∂x2
2T

≤ 0 is not immediate at first glance. However, we know from

(A8) that (1 − F2T(B)) − b22T(p∗2T + s) f2T(B) = b22T
∂p∗2T
∂x2T

(F2T(B) + b22T(p∗2T + s) f2T(B)). Hence,

incorporating this value in the above equation, one finds that ∂2VT(x2T)

∂x2
2T

=
∂p∗2T
∂x2T
− (1− F2T(B))/b22T ≤ 0

as p∗2T is a decreasing function of x2T , proving the concavity of this function.
Step 4. Given that Vt+1 is concave in x2(t+1), it can be shown that Jt(x2t, yt, p2t) is jointly concave

with respect to (yt, p2t) given an inventory level x2t. Note that

Jt(x2t, yt, p2t) = φt(x2t, yt, p2t) +
∫ yt−µ1t

εmin

Vt+1(yt − µ1t − ε) f1t(ε)dε +
∫ ∞

yt−µ1t

Vt+1(0) f1t(ε)dε

The determinant of Hessian matrix H(Jt) of this function can be stated as:

det(H(Jt)) =

∣∣∣∣∣∣
∂2 Jt
∂p2

2t

∂2 Jt
∂p2t∂yt

∂2 Jt
∂yt∂p2t

∂2 Jt
∂y2

t

∣∣∣∣∣∣
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which takes the form:

det(H(Jt)) =

∣∣∣∣∣∣
∂2φt
∂p2

2t
+ b2

21t At
∂2φt

∂p2t∂yt
− b21t At

∂2φt
∂p2t∂yt

− b21t At
∂2φt
∂y2

t
+ At

∣∣∣∣∣∣
where At =

∫ yt−µ1t
−∞ V′′t+1(yt − µ1t − ε) f1t(ε)dε ≤ 0 by concavity of Vt+1. Hence, Hessian matrix H(Jt)

is negative semi-definite, proving concavity of Jt in (yt, p2t).
Step 5. The claims that p∗2t is a non-increasing function of x2t and a non-decreasing function of

p1t, and y∗t is a non-increasing function of x2t and p1t, are again obtained from the KKT conditions.
The details are skipped as they follow along the same lines as in Step 2.

∂φt

∂p2t
= E[minD2t, x2t] + (p1t + h)b12tF1t(y∗t − µ1t)− (p∗2t + s)b22tF2t(x2t − µ2t) (A9)

+λ∗1t − λ∗2t = 0 (A10)
∂φt

∂yt
= p1t(1− F1t(y∗t − µ1t))− hF1t(y∗t − µ1t) = 0 (A11)

λ∗1t(p∗2t − pmin) = 0 (A12)

λ∗2t(−p∗2t + pmax) = 0 (A13)

λ∗1t, λ∗2t ≥ 0, pmin ≤ p∗2t ≤ pmax (A14)

Step 6. Finally, the optimal net revenue function Vt needs to be shown to be concave in x2t.
Consider the first derivative of Vt with respect to x2t:

∂Vt(x2t)

∂x2t
=

∂φt(x2t, y∗t , p∗2t)

∂x2t
+
∫ y∗t−µ1t

εmin

∂Vt+1(y∗t − µ1t − ε1t)

∂x2(t+1)
(

∂y∗t
∂x2t
− b12t

∂p∗2t
∂x2t

) f2t(ε1t)dε1t

=
∂φt(x2t, y∗t , p∗2t)

∂x2t

as ∂y∗t
∂x2t

= b12t
∂p∗2t
∂x2t

. Hence, the second derivative of Vt with respect to x2t is equivalent to the second
derivative of the net revenue function in t, which can be shown to be concave in x2t by a similar
argument as in Step 3. The results follows.

Proof of Theorem 2. We will follow the same sequence as in the Proof of Theorem 1.
First, to show the concavity of ψT , consider the Hessian matrix HT . Its determinants are shown as:

det(H(T)) =

∣∣∣∣∣∣∣∣∣∣

∂2ψT
∂p2

2T

∂2ψT
∂p2T∂yT

∂2ψT
∂p2T∂qT

∂2ψT
∂yT∂p2T

∂2ψT
∂y2

T

∂2ψT
∂yT∂qT

∂2ψT
∂qT∂p2T

∂2ψT
∂qT∂yT

∂2ψT
∂q2

T

∣∣∣∣∣∣∣∣∣∣
Clearly, the first leading principal minor of this Hessian matrix is negative, i.e., ∂2ψT

∂p2
2T

= −b2
12T(p1T +

h) f1T(yT − µ1T)− b2
22T(p2T + s) f2T(x2T − q− µ1T)− b22T F2T(x2T − q− µ1T) ≤ 0. Calling A := yT −

µ1T and B := x2T − q− µ1T , note that:∣∣∣∣∣∣
∂2ψT

∂p2
2T

∂2ψT
∂p2T ∂yT

∂2ψT
∂yT ∂p2T

∂2ψT

∂y2
T

∣∣∣∣∣∣ =

∣∣∣∣∣−b2
12T(p1T + h) f1T(A)− b2

22T(p2T + s) f2T(B)− b22T F2T(B) b12T(p1T + h) f1T(A)

b12T(p1T + h) f1T(A) −(p1T + h) f1T(A)

∣∣∣∣∣
= b2

22T(p2T + s) f2T(B)− b22T F2T(B)(p1T + h) f1T(A) ≥ 0

Thus, the second leading principal minor is positive. Finally, to show that the third order leading
principal minor is negative, consider its determinant, i.e.,
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det(H(T)) =
∂2ψT

∂qT∂p2T

∣∣∣∣∣∣
∂2ψT

∂yT∂p2T

∂2ψT
∂y2

T
∂2ψT

∂qT∂p2T

∂2ψT
∂qT∂yT

∣∣∣∣∣∣− ∂2ψT
∂qT∂yT

∣∣∣∣∣∣
∂2ψT
∂p2

2T

∂2ψT
∂p2T∂yT

∂2ψT
∂qT∂p2T

∂2ψT
∂qT∂yT

∣∣∣∣∣∣
+

∂2ψT

∂q2
T

∣∣∣∣∣∣
∂2ψT

∂yT∂p2T

∂2ψT
∂y2

T
∂2ψT
∂p2

2T

∂2ψT
∂p2T∂yT

∣∣∣∣∣∣
First, note that ∂2ψT

∂qT∂p2T
= −(1− F2T(B)) ≤ 0, ∂2ψT

∂q2
T

= −(p2T + s) f2T(B) ≤ 0 and ∂2ψT
∂yT∂qT

= 0. Thus,

the above determinant pours into the value:

det(H(T)) = f1T(A)(p1T + h)
[
(1− F2T(B))2 + (p2T + s) f2T(B)(b2

22T(p2 + s) + b22T F2T(B)
]
≥ 0

ensuring the negative semi-definiteness of the Hessian matrix.

Next, note that ∂2ψT
∂p2

2T
≤ 0, ∂2ψT

∂y2
T
≤ 0, and ∂2ψT

∂q2
T

= 0 showing the concavity of the function in all three

terms. Hence, optimal p∗2T , y∗T and q∗T satisfy:

∂ψT
∂p2T

= b12T(p1T + h)F1T(A)− b22T(p∗2T + s)F2T(B) + E[min{D2T(p1T , p2T), x2T − qT}] = 0 (A15)

∂ψT
∂yT

= (p1T − c) + (p1T + h)F1T(A) = 0 (A16)

∂ψT
∂qT

= −(p∗2T − d) + F2T(B)(s + p∗2T) = 0 (A17)

where A := y∗T − µ1T and B := x2T − µ2T − q∗T . That is:

y∗T = F−1
1T (

p1T − c
p1T + h

) + µ1T (A18)

q∗T = x2T − F−1
2T (

p∗2T − d
p∗2T + s

)− µ2T (A19)

The monotonicity properties can be shown as in Theorem 1. To see the relationship of the
variables with d, observe that q∗T increases with d by (A19), and that the partial derivative of ∂ψT

∂p2T
can

be rewritten as:

∂ψT
∂p2T

= b12T(p1T − c)− b22T(p2T − d) + E[min{D2T(p1T , p2T), x2T − qT}] = 0

Thus, increasing d would increase the third term in the above equation, leading to an increase in
the term b22T(p2T − d), which means optimal p∗2T should also increase to satisfy the equality. Similarly,
y∗T increases in d as µ1T increases in d, as evident by Equation (A18).

Thus:

∂VDT(x2T)

∂x2T
=

∂ψT(x2T , y∗T , p∗2T)

∂x2T
= p1T(1− F1T(A))

∂y∗T
∂x2T

− c
∂y∗T
∂x2T

+ p1Tb12T F1T(A)
∂p∗2T
∂x2T

− h
[
F1T(A)

∂y∗2T
∂x2T

− b12T
∂p∗2T
∂x2T

]
+ p∗2T

[
F2T(B)(−b22T

∂p∗2T
∂x2T

) + (1− F2T(B))(1−
∂q∗T
∂x2T

)
]

+
∂p∗2T
∂x2T

E[min{D2T(p1T , p2T), x2T − qT}] + d
∂q∗T
∂x2T

− sF2T(B)
[
1−

∂q∗T
∂x2T

+ b22T
∂p∗2T
∂x2T

]
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By the fact that ∂y∗T
∂x2T

= b12T
∂p∗2T
∂x2T

and ∂q∗T
∂x2T

= 1 + b22T
∂p∗2T
∂x2T
− ∂F−1

2T (B)
∂x2T

, the above equation pours into:

∂VDT(x2T)

∂x2T
= (p1T − c)b12T

∂p∗2T
∂x2T

+
∂p∗2T
∂x2T

E[min{D2T(p1T , p2T), x2T − qT}]

+ p∗2T
∂F−1

2T (B)
∂x2T

(1− F2T(B))− b22T p∗2T
∂p∗2T
∂x2T

− sF2T(B)
∂F−1

2T (B)
∂x2T

+ d
[
1−

∂F−1
2T (B)
∂x2T

+ b22T
∂p∗2T
∂x2T

]
However, then, inserting (A18) and (A19) in the above equation, and noting that E[min{D∗2T , x2T −

q∗T}] = −b12T(p1T − c) + b22T(p∗2T − d) one obtains:

∂VDT(x2T)

∂x2T
= d

That is, clearly VDT is a concave function of x2T .
To show that JDt(x2t, yt, qt, p2t) is a concave function of (yt, qt, p2t) for a given x2t, we observe its

Hessian matrix H(JDt). The determinant of this matrix can be stated as:

det(H(JDt)) =

∣∣∣∣∣∣∣∣∣
∂2 JDt
∂p2

2t

∂2 JDt
∂p2t∂yt

∂2 JDt
∂p2t∂qt

∂2 JDt
∂yt∂p2t

∂2 JDt
∂y2

t

∂2 JDt
∂yt∂qt

∂2 JDt
∂qt∂p2t

∂2 JDt
∂qt∂yt

∂2 JDt
∂q2

t

∣∣∣∣∣∣∣∣∣
which takes the form:

det(H(JDt)) =

∣∣∣∣∣∣∣∣∣
∂2ψt
∂p2

2t
+ b2

12tC
∂2ψt

∂p2t∂yt
− b12tC

∂2ψt
∂p2t∂qt

∂2ψt
∂p2t∂yt

− b12tC − f1t(A)(p1t + h) 0
∂2ψt

∂p2t∂qt
0 − f2t(B)(p2t + s)

∣∣∣∣∣∣∣∣∣
where A := y∗t − µ1t and B := x2t − µ2t − q∗t , and C :=

∫
εmin

yt−µ1t VD′′t+1(yt − µ1t −
ε1t) f1(t+1)(ε1t)dε1t. Clearly, C ≤ 0 by the concavity of Vt+1 function. The above Hessian clearly
has a negative first order leading principal minor. The second order leading principal minor is
given as:

∣∣∣∣∣∣
∂2ψt
∂p2

2t
+ b2

12tC
∂2ψt

∂p2t∂yt
− b12tC

∂2ψt
∂p2t∂yt

− b12tC − f1t(A)(p1t + h)

∣∣∣∣∣∣ = f1t(A)(p1t + h)(b2
22t(p∗2t + s) f2t(B) + 2b22tF2t(B)) + b2

12tC f1t(A)(p1t + h)− b2
12tC

2

The above equation is not necessarily positive for all C values. However, as will be evident within

the course of the proof, ∂2VDt(x2t)

∂x2
2t

=
∂2ψt(x2t ,y∗t ,q∗t ,p∗2t)

∂x2
2t

and that ∂2ψt(x2t ,y∗t ,q∗t ,p∗2t)

∂x2
2t

= ∂d
∂x2t

= 0 ∀t, i.e., C = 0.

It is immediately observable that the above equation is positive for VDT−1, since ∂2VDT(x2T)

∂x2
2T

= 0.

Finally, the third order leading principal minor is given by:

∂2ψt

∂p2t∂qt

∣∣∣∣∣∣
∂2ψt

∂p2t∂yt
− b12tC − f1t(A)(p1t + h)

∂2ψt
∂p2t∂qt

0

∣∣∣∣∣∣− 0

∣∣∣∣∣∣
∂2ψt
∂p2

2t
+ b2

12tC
∂2ψt

∂p2t∂yt
− b12tC

∂2ψt
∂p2t∂qt

0

∣∣∣∣∣∣
+(− f2t(B)(p2t + s))

∣∣∣∣∣∣
∂2ψt
∂p2

2t
+ b2

12tC
∂2ψt

∂p2t∂yt
− b12tC

∂2ψt
∂p2t∂yt

− b12tC − f1t(A)(p1t + h)

∣∣∣∣∣∣
which is negative since ( ∂2ψt

∂p2t∂qt
)2− ( f1t(A)(p1t + h)) ≤ 0, the second term is zero, and the third term is

a negative value multiplied with the second order leading principal minor (which is positive). Hence,
the matrix H(JDt) is negative semi-definite, proving the concavity of JDt.
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Finally, note that:

∂VDt(x2t)

∂x2t
=

∂ψt(x2t, y∗t , q∗t , p∗2t)

∂x2t
+ (

∂y∗t
∂x2t
− b12t

∂p∗2t
∂x2t

)
∫ yt−µ1t

εmin

VD′t+1((yt − D1t) f1t(ε1t)dε1t

=
∂ψt(x2t, y∗t , q∗t , p∗2t)

∂x2t

Hence, ∂2VDt(x2t)

∂x2
2t

=
∂2ψt(x2t ,y∗t ,q∗t ,p∗2t)

∂x2
2t

≤ 0, proving the concavity of VDt.
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