Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling
Abstract
:1. Introduction
2. Conceptual Framework
3. Methodology
3.1. Study Area
3.2. Questionnaire and Survey
3.3. Second-Order Factor Structural Equation Modeling
4. Results and Discussion
4.1. Descriptive Statistic Results
4.2. Estimation Results of the Second-Order Factor SEM
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations World Urbanization Prospects. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 28 June 2020).
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Karakounos, I.; Dimoudi, A.; Zoras, S. The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy Build. 2018, 158, 1266–1274. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Dimoudi, A.; Nikolopoulou, M. Vegetation in the Urban Environment: Microclimatic analysis and benefit. Energy Build. 2003, 35, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Ambrey, C.; Fleming, C. Public Greenspace and Life Satisfaction in Urban Australia. Urban Stud. 2014, 51, 1290–1321. [Google Scholar] [CrossRef]
- Ambrey, C.L. An investigation into the synergistic wellbeing benefits of greenspace and physical activity: Moving beyond the mean. Urban For. Urban Green. 2016, 19, 7–12. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B.; Hu, Y. Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China. Sustainability 2020, 12, 2752. [Google Scholar] [CrossRef] [Green Version]
- Badach, J.; Dymnicka, M.; Baranowski, A. Urban Vegetation in Air Quality Management: A Review and Policy Framework. Sustainability 2020, 12, 1258. [Google Scholar] [CrossRef] [Green Version]
- Coccolo, S.; Pearlmutter, D.; Kaempf, J.; Scartezzini, J.L. Thermal comfort maps to estimate the impact of urban greening on the outdoor human comfort. Urban For. Urban Green. 2018, 35, 91–105. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build. Environ. 2012, 51, 285–295. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; Jacobs, M.H.; Van Hove, B. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Build. Environ. 2015, 83, 120–128. [Google Scholar] [CrossRef]
- Wang, Y.; de Groot, R.; Bakker, F.; Wörtche, H.; Leemans, R. Thermal comfort in urban green spaces: A survey on a Dutch university campus. Int. J. Biometeorol. 2017, 61, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadvand, P.; Bartoll, X.; Basagaña, X.; Dalmau-Bueno, A.; Martinez, D.; Ambros, A.; Cirach, M.; Triguero-Mas, M.; Gascon, M.; Borrell, C.; et al. Green spaces and General Health: Roles of mental health status, social support, and physical activity. Environ. Int. 2016, 91, 161–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twohig-Bennett, C.; Jones, A. The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 2018, 166, 628–637. [Google Scholar] [CrossRef] [PubMed]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A Review of the Health Benefits of Greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Dadvand, P.; Nieuwenhuijsen, M.J.; Esnaola, M.; Forns, J.; Basagaña, X.; Alvarez-Pedrerol, M.; Rivas, I.; López-Vicente, M.; De Pascual, M.C.; Su, J.; et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl. Acad. Sci. USA 2015, 112, 7937–7942. [Google Scholar] [CrossRef] [Green Version]
- Ekkel, E.D.; de Vries, S. Nearby green space and human health: Evaluating accessibility metrics. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- Liu, B.; Lian, Z.; Brown, R.D. Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability 2019, 11, 5387. [Google Scholar] [CrossRef] [Green Version]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plan. 2009, 92, 179–186. [Google Scholar] [CrossRef]
- Ward Thompson, C.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gossilink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Boyer, T.; Polasky, S. Valuing urban wetlands: A review of non-market valuation studies. Wetlands 2004, 24, 744–755. [Google Scholar] [CrossRef]
- Rooney, R.C.; Foote, L.; Krogman, N.; Pattison, J.K.; Wilson, M.J.; Bayley, S.E. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values. Water Res. 2015, 73, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Ravit, B.; Gallagher, F.; Doolittle, J.; Shaw, R.; Muñiz, E.; Alomar, R.; Hoefer, W.; Berg, J.; Doss, T. Urban wetlands: Restoration or designed rehabilitation? AIMS Environ. Sci. 2017, 4, 458–483. [Google Scholar] [CrossRef]
- Gautam, M.; Acharya, K.; Shanahan, S.A. Ongoing restoration and management of las vegas wash: An evaluation of success criteria. Water Policy 2014, 16, 720–738. [Google Scholar] [CrossRef]
- Faccioli, M.; Riera Font, A.; Torres Figuerola, C.M. Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species’ Abundance and Diversity. Environ. Manag. 2015, 55, 550–563. [Google Scholar] [CrossRef]
- Wang, Y.; Bakker, F.; de Groot, R.; Wörtche, H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Build. Environ. 2014, 77, 88–100. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities “just green enough”. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Björk, J.; Albin, M.; Grahn, P.; Jacobsson, H.; Ardö, J.; Wadbro, J.; Ostergren, P.O. Recreational values of the natural environment in relation to neighbourhood satisfaction, physical activity, obesity and wellbeing. J. Epidemiol. Community Health 2008, 62. [Google Scholar] [CrossRef] [PubMed]
- Velarde, M.D.; Fry, G.; Tveit, M. Health effects of viewing landscapes - Landscape types in environmental psychology. Urban For. Urban Green. 2007, 6, 199–212. [Google Scholar] [CrossRef]
- Ma, B.; Zhou, T.; Lei, S.; Wen, Y.; Htun, T.T. Effects of urban green spaces on residents’ well-being. Environ. Dev. Sustain. 2019, 21, 2793–2809. [Google Scholar] [CrossRef]
- Shin, J.-H. Toward a theory of environmental satisfaction and human comfort: A process-oriented and contextually sensitive theoretical framework. J. Environ. Psychol. 2016, 45, 11–21. [Google Scholar] [CrossRef]
- Krajter Ostoić, S.; Konijnendijk van den Bosch, C.C. Exploring global scientific discourses on urban forestry. Urban For. Urban Green. 2015, 14, 129–138. [Google Scholar] [CrossRef]
- Krajter Ostoić, S.; Konijnendijk van den Bosch, C.C.; Vuletić, D.; Stevanov, M.; Živojinović, I.; Mutabdžija-Bećirović, S.; Lazarević, J.; Stojanova, B.; Blagojević, D.; Stojanovska, M.; et al. Citizens’ perception of and satisfaction with urban forests and green space: Results from selected Southeast European cities. Urban For. Urban Green. 2017, 23, 93–103. [Google Scholar] [CrossRef]
- Koufteros, X.; Babbar, S.; Kaighobadi, M. A paradigm for examining second-order factor models employing structural equation modeling. Int. J. Prod. Econ. 2009, 120, 633–652. [Google Scholar] [CrossRef]
- Blake, D.E. Contextual effects on environmental attitudes and behavior. Environ. Behav. 2001, 33, 708–725. [Google Scholar] [CrossRef]
- Kaiser, F.; Fuhrer, A.; Wolfing, S. Environmental Attitude and Ecological Behaviour Florian. Asia Pacific Forum Sci. Learn. Teach. 1999, 11, 1–19. [Google Scholar] [CrossRef]
- Balram, S.; Dragićević, S. Attitudes toward urban green spaces: Integrating questionnaire survey and collaborative GIS techniques to improve attitude measurements. Landsc. Urban Plan. 2005, 71, 147–162. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S.; Eliasson, I.; Lindberg, F. Psychological mechanisms in outdoor place and weather assessment: Towards a conceptual model. Int. J. Biometeorol. 2009, 53, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Feng, T.; Timmermans, H. Expanded comfort assessment in outdoor urban public spaces using Box-Cox transformation. Landsc. Urban Plan. 2019, 190, 103594. [Google Scholar] [CrossRef]
- Peng, Y.; Feng, T.; Timmermans, H. A path analysis of outdoor comfort in urban public spaces. Build. Environ. 2019, 148, 459–467. [Google Scholar] [CrossRef]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int. J. Biometeorol. 2010, 54, 319–334. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- World Bank. DataBank: Population Estimates and Projections; WorldBank: Washington, DC, USA, 2020. [Google Scholar]
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901-2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Du, X.; Huang, Z. Spatial and temporal effects of urban wetlands on housing prices: Evidence from Hangzhou, China. Land Use Policy 2018, 73, 290–298. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.; Jiang, J. Effect of the urbanization of wetlands on microclimate: A case study of XixiWetland, Hangzhou, China. Sustainability 2016, 8, 885. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Christian, A.; Martin, P. Exploring integrated design guidelines for urban wetland parks in China. Urban For. Urban Green. 2020, 53, 126712. [Google Scholar] [CrossRef]
- Hunan Prospecting Design and Research Institute. Master Plan (2017-2021) of National Yanghu Wetland Park in Changsha Hunan Province; Hunan Prospecting Design and Research Institute: Changsha, China, 2016. (In Chinese) [Google Scholar]
- Hox, J.J.; Bechger, T.M. An introduction to structural equation modeling. Fam. Sci. Rev. 1999, 11, 354–373. [Google Scholar]
- Duncan, O.D. Path Analysis: Sociological Examples. Am. J. Sociol. 1966, 72, 1–16. [Google Scholar] [CrossRef]
- Tarka, P. An overview of structural equation modeling: Its beginnings, historical development, usefulness and controversies in the social sciences. Qual. Quant. 2018, 52, 313–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollen, K.A. Latent Variables in Psychology and the Social Sciences. Annu. Rev. Psychol. 2002, 53, 605–634. [Google Scholar] [CrossRef] [Green Version]
- Bentler, P.M. Comparative fit indexes in structural models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6. [Google Scholar] [CrossRef]
- The Per-Capita Disposable Income of Residents in Changsha (2018). Available online: http://hnzd.stats.gov.cn/dcsj/sjfb/cs/zxfb/201805/t20180516_142203.html. (accessed on 28 June 2020).
Gender | Male | 46.0% |
Female | 54.0% | |
Age | ≤15 | 2.7% |
16–30 | 53.0% | |
31–45 | 30.0% | |
46–60 | 9.5% | |
>60 | 4.8% | |
Civil status | Married | 53.3% |
Unmarried | 43.4% | |
Divorced or widowed | 3.3% | |
Education level | High school and below | 28.1% |
Undergraduate | 61.9% | |
Graduate | 10.0% | |
Employment | Student | 29.3% |
Jobless or unemployed | 7.1% | |
Employed | 54.8% | |
Other | 8.8% | |
Income | <5000 CNY | 52.8% |
5000–10000 CNY | 27.5% | |
10000–15000 CNY | 14.9% | |
>15,000 CNY | 4.8% | |
Local residential time | Non-local resident | 5.3% |
<1 year | 27.0% | |
1–5 years | 29.4% | |
>5 years | 38.3% | |
Residential ownership | Joint tenancy | 34.9% |
Rent (alone) | 11.9% | |
Purchased (alone) | 2.8% | |
Purchased (with family) | 50.4% | |
Residential size | <90 m2 | 34.0% |
90–120 m2 | 36.6% | |
120–150 m2 | 23.5% | |
>150 m2 | 5.9% |
Distance from residence | <0.5 km | 6.3% |
0.5–1.5 km | 16.6% | |
1.5–2.5 km | 23.7% | |
2.5–3.5 km | 20.8% | |
>3.5 km | 32.5% | |
Transport mode | By foot | 17.8% |
By bike | 8.5% | |
By taxi or online car hailing | 17.3% | |
By bus or metro | 35.6% | |
By private car | 17.8% | |
Other | 3.0% | |
Transport time | <15 min | 21.6% |
15–30 min | 40.0% | |
30–45 min | 25.5% | |
45–60 min | 10.1% | |
>60 min | 2.8% |
Purpose | Walking | 44.8% |
Resting | 17.6% | |
Social activity and recreation | 24.5% | |
Physical activity | 6.5% | |
Other | 6.6% | |
Total outdoor duration | <30 min | 21.7% |
30–60 min | 31.7% | |
60–90 min | 26.1% | |
90–120 min | 19.0% | |
>120 min | 1.5% | |
Duration in studied plots | <15 min | 11.5% |
15–30 min | 21.5% | |
30–45 min | 25.5% | |
45-60 min | 15.5% | |
>60 min | 26.0% | |
Frequency of visit | First time | 14.6% |
A few times in a year | 38.8% | |
A few times in a month | 28.8% | |
Several time per week | 9.8% | |
Almost every day | 8.0% |
CFI | TLI | RMSEA | SRMR |
---|---|---|---|
0.913 | 0.900 | 0.064 | 0.047 |
TS | Thermal sensation | PH | Perceived humidity |
PV | Perceived wind velocity | PR | Perceived solar radiation |
LS | Landscape aesthetics | NT | Number of trees |
DP | Diversity of plants | HC | Hygienic condition |
FA | Facility | NL | Noise level |
BD | Barrier-free design | AQ | Air quality |
A1 | Experience in green space helps restoration | ||
A2 | Increasing the green space will contribute to urban sustainable development | ||
A3 | Green spaces improve comfort and aesthetics of urban environments | ||
A4 | I prefer outdoor activity especially in green spaces | ||
A5 | City inhabitants should spend more time in open green spaces | ||
A6 | More efforts should be made in green space cleaning and management | ||
A7 | Plants in urban green spaces need stated maintenance |
Estimate | p-Value | ||
---|---|---|---|
Attitude toward green space | by | ||
A1 | 0.725 | 0.000 | |
A2 | 0.739 | 0.000 | |
A3 | 0.746 | 0.000 | |
A4 | 0.624 | 0.000 | |
A5 | 0.778 | 0.000 | |
A6 | 0.775 | 0.000 | |
A7 | 0.756 | 0.000 | |
Comfort | by | ||
TS | 0.532 | 0.000 | |
PV | 0.582 | 0.000 | |
PH | 0.568 | 0.000 | |
PR | 0.490 | 0.000 | |
Environmental satisfaction | by | ||
LS | 0.828 | 0.000 | |
DP | 0.795 | 0.000 | |
FA | 0.698 | 0.000 | |
BD | 0.548 | 0.000 | |
NT | 0.718 | 0.000 | |
HC | 0.650 | 0.000 | |
NL | 0.465 | 0.000 | |
AQ | 0.718 | 0.000 | |
Quality of wetland park | by | ||
Comfort | 0.749 | 0.000 | |
Environmental satisfaction | 0.828 | 0.000 | |
Quality of wetland park | on | ||
Attitude toward green space | 0.560 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Pan, Q.; Peng, Y.; Feng, T.; Liu, S.; Cai, X.; Zhong, C.; Yin, Y.; Lai, W. Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling. Sustainability 2020, 12, 7204. https://doi.org/10.3390/su12177204
Li J, Pan Q, Peng Y, Feng T, Liu S, Cai X, Zhong C, Yin Y, Lai W. Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling. Sustainability. 2020; 12(17):7204. https://doi.org/10.3390/su12177204
Chicago/Turabian StyleLi, Jiang, Qiao Pan, You Peng, Tao Feng, Shaobo Liu, Xiaoxi Cai, Chixing Zhong, Yicheng Yin, and Wenbo Lai. 2020. "Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling" Sustainability 12, no. 17: 7204. https://doi.org/10.3390/su12177204
APA StyleLi, J., Pan, Q., Peng, Y., Feng, T., Liu, S., Cai, X., Zhong, C., Yin, Y., & Lai, W. (2020). Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling. Sustainability, 12(17), 7204. https://doi.org/10.3390/su12177204