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Abstract: This study quantified the uncertainties in historical and future average monthly precipitation
based on different bias correction methods, General Circulation Models (GCMs), Representative
Concentration Pathways (RCPs), projection periods, and locations within the study area (i.e., the
coastal and inland areas of South Korea). The GCMs were downscaled using deep learning, random
forest, and nine quantile mapping bias correction methods for 22 gauge stations in South Korea. Data
from the Korean Meteorology Administration (1970–2005) were used as the reference data in this
study. Two statistical measures, the standard deviation and interquartile range, were used to quantify
the uncertainties. The probability distribution density was used to assess the similarity/variation
in rainfall distributions. For the historical period, the uncertainty in the selection of bias correction
methods was greater than that in the selection of GCMs, whereas the opposite pattern was observed
for the projection period. The projection period had the lowest level of uncertainty in the selection
of RCP scenarios, and for the future, the uncertainly related to the time period was slightly lower
than that for the other sources but was much greater than that for the RCP selection. In addition,
it was clear that the level of uncertainty of inland areas is much lower than that of coastal areas.
The uncertainty in the selection of the GCMs was slightly greater than that in the selection of the
bias correction method. Therefore, the uncertainty in the selection of coastal areas was intermediate
between the selection of bias correction methods and GCMs. This paper contributes to an improved
understanding of the uncertainties in climate change projections arising from various sources.
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1. Introduction

Globally, rising temperatures due to continuous greenhouse gas emissions (GHG) have caused
climate change. Accordingly, many sectors important to human existence including water resources,
agriculture, health, energy, and the environment have been affected [1–5]. Due to the consequences of
climate change, there have been numerous studies on climate change projections and impacts in which
General Circulation Models (GCMs) have been popularly used to analyze the simulated historical
and future changes in climatic variables. GCMs have the ability to provide insight into the past and
possible future climate variabilities and the occurrence of extreme events [6–8]. However, GCMs are
developed by different modeling centers and thus there are variations in their projections of climatic
variables across many parts of the globe. In addition, as GCMs have different resolutions, the sources
of the differences are not obvious, although all GCMs model precipitation and temperature on the
same planet.
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There have been multiple GCMs, including the Coupled Model Intercomparison Project 5 (CMIP5)
of the 5th Assessment Report (AR5), which succeeded the Coupled Model Intercomparison Project 3
(CMIP3). Compared with CMIP3, the CMIP5 simulations offer a larger number of models with higher
resolution and physical improvements, which allow the inclusion of improved land-use changes and
better representation of the mean condition of atmospheric variables such as precipitation and surface
temperature [9–11]. CMIP5 has four future scenarios, that is, Representative Concentration Pathways
(RCP): 2.6, 4.5, 6.0, and 8.5. These scenarios are based on the expected differences in radiation forcing
for the future climate.

The use of GCMs for future climate projections is subject to some uncertainties arising from distinct
sources such as different emission/concentration scenarios, parameterization and structure of the GCMs,
and boundary and initial conditions [12–14]. Prudhomme and Davies [15], for example, found that a
major contributor to uncertainty in the climate change impact assessment is the GCM. Jung et al. [16]
reported that in two catchments with different levels of urbanization, potential climatic changes
in flood frequency and related uncertainties would increase with the GCM structure. In contrast,
Sharma et al. [17] concluded that the uncertainty from the dynamic downscaling method is greater
than that of statistical downscaling. Some studies have also found that statistical downscaling methods
were an additional source of uncertainty in any resulting climate ensembles [18,19]. Climate projections
are influenced by uncertainty in the initial conditions of the GCMs. For example, a preliminary analysis
showed that the first run of the MIROC5 model was an extreme outlier in the uncertainty assessment
for climate change impacts on intense precipitation [20]. Therefore, it has long been recognized by
both the GCM developers and the decision-makers that there is a need for careful consideration of
the uncertainties in the resulting climate change projections to properly frame and assess the costs,
benefits, and risks associated with the increases in GHGs and any preferred mitigation policies.

The quantification of uncertainties in climate projections has been conducted in various ways. For
example, probabilistic representation, which relies on ensembles of GCM projections in which each
GCM projection is treated as an observation, has been used to generate plausible scenarios for future
precipitation and temperature [21]. The Reliability Ensemble Averaging (REA) approach has been used
to estimate the range and reliability of uncertainty in climate change projections [22]. Tanveer et al. [23]
and Abdulai and Chung [24] used the REA method to quantify the range of uncertainty for future
climate projections over the Han River basin in Korea using 18 and 27 GCMs, respectively, from the
CMIP5. Woldemeskel et al. [25] also used the Square Root Error Variance (SREV) approach for the
quantification of uncertainties in CMIP5 projections and compared the results with those of the CMIP3.

This study quantified the uncertainties in average monthly precipitation arising from five sources:
the different GCMs, the bias correction methods, the RCPs, the projection periods, and the locations
within the study area (i.e., coastal and inland areas). This study considered 13 GCMs from CMIP5,
11 bias correction methods, four RCP scenarios, and 11 10-year future periods from 2010–2099 at
22 weather stations in South Korea. Two statistical measures, the standard deviation (STDEV) and
interquartile range (IQR; the difference between 25 and 75 percentiles) were used to quantify the
uncertainty during the historical (1970–2005) and future (2011–2100) climates. This paper contributes
to a better understanding of the uncertainties in climate change projections from various sources and is
expected to help decision-makers with the development of climate change adaptation and mitigation
strategies in a changing climate.

2. Study Area and Data

2.1. Study Area

This study was conducted in South Korea (35◦50′ N, 127◦00′ W), which is located in East Asia
between Japan and China. There is complex temporal and spatial variation in the climate of the country
as it is strongly influenced by the East Asian monsoon and diverse topographical characteristics.
There are four distinct seasons: winter (Dec–Feb), autumn (Sep–Nov), summer (Jun–Aug), and spring
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(Mar–May). The annual average precipitation across the country ranges from 1200 to 1500 mm with
60–70% of precipitation occurring in summer. The annual average temperature ranges from 10 to 15
◦C. The country has a warm continental climate/humid continental climate in the Northwest to South
Central regions, a humid subtropical climate in the South, and a warm oceanic climate in the East and
part of the South. The elevation of the country ranges from −43 m in the West to 1810 m in the eastern
and southern parts of the country (Figure 1).

Figure 1. Map of the study area showing the elevation and meteorological stations.

2.2. Dataset and Sources

2.2.1. Observed Data

This study used observed data from the Korean Meteorological Agency (KMA). There are 96
gauge stations with historical data on precipitation in South Korea. However, the periods of data
availability differ among stations. Stations with short availability (less than 30 years) are primarily
located in the mountainous areas (Figure 1), and these stations are not considered in this study. This
study used the observed data from 22 gauge stations over 35 years (1970–2005).

2.2.2. General Circulation Models

CMIP5 is a set of globally coordinated GCM simulations that comprise historical and future climate
simulations assembled from different modeling groups. Following CMIP3, CMIP5 was significantly
improved by including a greater number of GCMs and addressing several issues that were not
considered in CMIP3 [9]. This study used the monthly historical and future precipitation data from 13
GCMs in the CMIP5 using the availability of RCPs 2.6, 4.5, 6.0, and 8.5 for South Korea. The names of
the modeling centers, models, institutions, and resolutions are presented in Table 1.
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Table 1. Information on GCMs used in this study.

Modeling Centers Models Institutions Resolution
(Longitude × Latitude)

NSF-DOE-NCAR CESM1-CAM5
National Science Foundation,
Department of Energy, National
Center for Atmospheric Research

1.25◦ × 0.94◦

NCAR CCSM4 National Center for
Atmospheric Research 1.25◦ × 0.94◦

CSIRO-QCCCE CSIRO-Mk3.6.0

Commonwealth Scientific and
Industrial Research Organisation in
collaboration with the Queensland
Climate Change Centre
of Excellence

1.88◦ × 1.86◦

BCC
BCC-CSM1.1 Beijing Climate Center, China

Meteorological Administration
2.81◦ × 2.79◦

BCC CSM1.1(m) 1.13◦ × 1.12◦

NOAAFGDL
GFDL-ESM2G Geophysical Fluid

Dynamics Laboratory 2.50◦ × 2.00◦GFDL-ESM2M

GISS GISS-E2-R National Aeronautics and Space 1.88◦ × 1.86◦

NIMR/KMA HadGEM2-AO
National Institute of Meteorological
Research/Korea
Meteorological Administration

1.88◦ × 1.25

MRI MRI-CGCM3 Meteorological Research Institute 1.13◦ × 1.12◦

MIROC

MIROC5

Atmosphere and Ocean
Research Institute
National Institute for Environmental
Studies (The University of Tokyo),
and Japan Agency for Marine-Earth
Science and Technology

1.41◦ × 1.40◦

MIROC-ESM

Japan Agency for Marine-Earth
Science and Technology,
Atmosphere and Ocean Research
Institute (The University of Tokyo),
and National Institute for
Environmental Studies

2.81◦ × 2.79◦

NCC NorESM1-M Norwegian Climate Centre 2.50◦ × 1.89◦

3. Methodology

3.1. Procedure

The procedure used in this study was as follows:

1. GCMs were selected from the pool of CMIP5 GCMs based on the availability of all RCPs for
South Korea.

2. All GCMs having all different resolutions were spatially downscaled to obtain the data of the 22
gauge stations using Inverse Distance Weighting (IDW).

3. Bias corrections were made to the 13 GCMs using the observed precipitation data and 11 bias
correction methods.

4. The uncertainty of the 11 bias correction methods was quantified.
5. The uncertainty of the 13 GCMs using the selected bias correction method was quantified.
6. A robust bias correction method was selected using three evaluation metrics.
7. The uncertainty of the four RCPs was quantified.
8. The uncertainty of the nine 10-year time periods was quantified.
9. The uncertainty of the locations by coastal and inland regions was quantified.

The five types of uncertainties were compared.



Sustainability 2020, 12, 7508 5 of 19

3.2. Bias Correction Methods

In this study, a total of 11 bias correction methods were used to correct biases in the GCMs. Of the
11 methods, nine used Quantile Mapping (QM); the other two used Deep Learning (DL) and Random
Forest (RF) techniques.

3.2.1. Quantile Mapping

QM can be classified into Parametric Transformation (PT), Non-Parametric Transformation (NPT),
and Distribution Derivation Transformation (DDT). The QM non-parametric technique [26] has the
advantage of non-reliance on any predetermined statistical distribution of the data [27]. PT is a
QM that has typically been used in the past [28]. QM builds a model variable (Pm) by using the
probability integral transform in such a way that the newly constructed distribution becomes equal to
the distribution of the observed variable (Po).

Po = h(Pm) (1)

where Po is the observed precipitation value, Pm is the simulated precipitation value of the GCM, and
h is the conversion function. Equation (2) is a distribution function based on Equation (1), and the
observed precipitation value is calculated as the inverse of the cumulative distribution function (CDF).

Po = P−1
o (Fm(Pm)) (2)

where Fm is the CDF of Pm and P−1
o is the inverse function of the CDF of Po. There are three methods,

which can be divided into exponential asymptotic transfer functions, (P-Ex), linear (PL), and scale (PS).
The formulae for the three methods are presented as Equations (3)–(5).

Po = (a + b× Pm) ×
(
1− exp

(
−

Pm

τ

))
(3)

Po = a + bA× Pm (4)

Po = bA× Pm (5)

where Po is the station precipitation value, Pm is the simulated precipitation value of the GCM, a is the
additional correction coefficient, b is the multiplicative correction coefficient, (a + b× Pm) is a formula
for estimating the asymptote, and τ is a value for determining a vector approaching the asymptote.

For NPT, Robust Linear (RL) and Smoothing Spline (SSPLIN) are frequently used [26,29,30].
Robust Linear regression is estimated using local linear least square regression to correspond to
observed and simulation data in the quantile–quantile plot. SSPLIN is a method of estimation using
the Smoothing Spline in quantile–quantile plot.

DDT involves the application of distribution functions in Equation (2). In this study, the
Bernoulli–Gamma (BG), Bernoulli–Weibull (BW), and Bernoulli–Lognormal (BL) functions were used.
Bernoulli was used to analyze the occurrence of a rainfall event, and Gamma, Weibull, and Lognormal
were used to analyze precipitation distributions. The specific methods for QM used in this study are
shown in Figure 2.
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Figure 2. List of quantile mapping methods used in this study.

3.2.2. Random Forest

RF developed by Breiman [31] is one of the most successful machine (statistical) learning algorithms
for practical applications. Despite its practical value, until very recently, and compared to other machine
learning and artificial intelligence algorithms, random forests remained relatively obscure with limited
use in water science and hydrological applications [32]. RF is a non-parametric statistical regression
algorithm that produces numerous independent Classification and Regression Trees (CARTs). RF has
superior performance for the tree decision-making process compared to the conventional method using
hyperplane and it maximizes the advantages of ensemble theory. RF can be learned by calculating a
simple hierarchical structure of complex and deterministic problems. This method automatically learns
parameters from the learning data. RF has been identified as an effective and robust algorithm for
bias correction in this study because: (1) the robustness of RF can avoid overfitting, (2) many different
types of input variables can be implemented without variable deletion and regularization, and (3) it
has analytical and operational flexibility.

3.2.3. Deep Learning

The Artificial Neural Network (ANN) proposed by McCulloch and Pitts [33] is a statistical
algorithm that makes decisions patterned after the neural networks of human or animal brains. There
are three components of ANNs: an input layer, several hidden layers, and an output layer. All layers
are composed of various nodes, weights, and transition functions, and the optimal parameters and
weights of the transition functions are determined in the learning phase. An ANN is mainly suitable
for analyzing abnormal or nonlinear data. The ANN can be more accurate than the various statistical
methods that are used if the amount of data that can be learned is secured, and it has great advantages
in prediction and classification [34,35]. Also, ANN is used as a general-purpose approximator for
sophisticated nonlinear regression [36]. Li and Zheng [37] derived that it is superior to conventional
modeling methods regarding the ANN’s nonlinear system processing capability. Liu et al. [38] used it
for global climate change and ecology studies. However, ANNs have a major problem of overfitting,
which can be corrected to some extent by parameter adjustment. Hinton [39] used restricted Boltzmann
machines to perform each layer’s pre-training to check the initialization point of Feedforward Neural
Network (FNN) and solved the problem of overfitting by re-performing supervised backpropagation.
This approach was applied in this study to avoid overfitting.
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3.3. Inverse Distance Weighted Method

The Inverse Distance Weighted (IDW) method is a method typically used for studies that require
geographical interpolation [40]. The IDW method is based on Tobler’s first law and is a method for
interpolating the value of an unmeasured point; the value of the closest point is more relevant than a
far point. In this study, Equation (6) was used to estimate the precipitation at the unmeasured point,
and Equation (7) was used to estimate the weight.

Pi =
N∑

k=1

ws(x)∑N
k=1 ws(x)

Pi(xs) (6)

where Pi represents the precipitation at the unmeasured point, and Pi(xs) represents the precipitation at
the points surrounding the unmeasured point. In this study, the value of Pi(xs) was the GCM adjacent
grid of unmeasured points, and the grid can use more than two points.

ws(x) =
1

Dc
(x,xs)

(7)

where ws(x) is the interpolation weight and Dc
(x,xs)

is the distance between the unmeasured and the
measured points. The Lukaszk method and the Shepard method can both be used to calculate the
weights. The Shepard method was used in this study. When the range of exponent c of Dc is calculated
to be a value between 0 and 1, the distribution of the data is narrowly interpolated, and when it is
greater than 1, the distribution of the data is broadly interpolated. In this study, the value of c is set to 1
to consider only the effect of distance.

3.4. Evaluation Index

In this study, the performance of bias correction applied to GCM was compared. This study
applied an excellent bias correction method in the forecast period and estimated the uncertainty of
the period, RCP scenario, and location. Normalized Root Mean Square Error (NRMSE), Percent bias
(Pbias), and Nash–Sutcliffe Efficiency (NSE) were used, and the above metrics are widely used to
evaluate the results of the historical period of GCM [41]. NRMSE is shown in Equation (8). NRMSE
removed the scale of RMSE, and the closer to 0, the higher the accuracy.

NRMSE =

√
1
n
∑n

i=1(Xs −Xo)
2

Xo
(8)

Pbias is shown in Equation (9), and it is an indicator of bias. The tendency for the simulated value
of GCM to be overestimated is calculated as a positive Pbias, and the closer to 0, the optimal value.

Pbias =

∑n
i=1(Xo −Xs)∑n

i=1 Xo
(9)

NSE is shown in Equation (10). It is used to verify the accuracy of observed and GCM precipitation
in water research. The negative value indicates that the correlation between GCM and observed
precipitation is low, and the performance is low. The positive value means a high correlation and
high performance.

NSE = 1−

∑n
i=1(Xs −Xo)

2∑n
i=1

(
Xo −Xo

)2 (10)

In Equations (8)–(10), Xs is the simulated value of GCM, and Xo is the observed value. Xo means
the average of the observed data.
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4. Results

In this study, the uncertainties in historical and projected rainfall arising from five sources were
analyzed. Uncertainty sources considered in this study included: (1) bias correction methods, (2) GCMs,
(3) RCPs, (4) future periods, and (5) locations within the study area. The results obtained are presented
in the corresponding sections. In each sub-section, there are many results for 22 stations. Due to the
space limitation, the result for a representative station that showed the general characteristics is shown
for Seoul in Sections 4.1, 4.2 and 4.4–4.6 and Busan in Section 4.3.

4.1. Uncertainty in Bias Correction Methods

4.1.1. Historical Period

The Probability Density Functions (PDFs) of the monthly precipitation for the 13 GCMs for all bias
correction methods at the Seoul station are shown in Supplementary Materials Figure S1. The PDFs
from some bias correction methods were very similar to the observed data, whereas other methods
overestimated or underestimated rainfall in some GCMs. The average monthly precipitation obtained
from 11 bias correction methods for the Seoul station for the different GCMs is shown in Supplementary
Materials Figure S2. The average monthly precipitation varied from 100.3 mm for BW to 159.8 mm for
DL, and the range of the averages of the GCMs spanned from 3.1 mm for BG to 21.3 mm for BC and
BW. The differences among the bias correction methods were not large except for several methods.

To quantify the uncertainty, the STDEVs and IQRs for the average monthly precipitation from the
11 bias correction methods were calculated for each GCM, and the results are presented in Figure 3.
The maximum STDEV was 11.7 mm for MIROC-ESM, and the minimum was 4.0 mm for GFDL-ESM2G.
A median STDEV of 10.1 mm was observed for NorESM1-M. The maximum value of the IQR was
11.6 mm for MIROC-ESM, and the minimum value was 2.8 mm for MRI-CGCM3 and GISS-E2-R.
The median IQR was 7.4 mm for all GCMs. This indicates that MIROC-ESM was characterized by the
highest uncertainty compared with the other GCMs.

Figure 3. (Left) Standard deviations (STDEVs) and (Right) interquartile ranges (IQRs) of bias-corrected
average monthly precipitations of 11 bias correction methods for the historical period at Seoul station.

4.1.2. Future Projection Period

The PDFs of bias-corrected precipitation for all GCMs during the period 2011–2100 are shown
in Supplementary Materials Figure S3. The average monthly precipitation obtained from the 11 bias
correction methods for the Seoul station was calculated for all GCMs and is shown in Supplementary
Materials Figure S4. The averages ranged from 86.8 mm for RF to 184.7 mm for BL and BW in all
GCMs and the range of the averages of the GCMs spanned from 29.6 mm for SSPLIN to 88.0 mm for
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BW. Accordingly, the values for the future projections were higher and their range was broader than
those for the historical period.

To quantify the uncertainty, the STDEVs and IQRs for the average monthly precipitation from
the 11 bias correction methods were calculated for each GCM and the results are shown in Figure 4.
The maximum STDEV was 21.5 mm for CSIRO-Mk3.6.0, and the minimum was 8.6 mm for NorESM1-M.
The median STDEV was 16.4 mm for GFDL-ESM2M. The STDEVs for the projection period were much
higher than those for the historical period. This finding indicates that there is a broader distribution of
average monthly precipitation for the projection period in most GCMs.

Figure 4. (Left) STDEVs and (Right) IQRs of the bias-corrected average precipitations of 11 bias
correction methods for the projection period (2011–2100) at Seoul station.

The maximum value of the IQR was 29.7 mm for GFDL-ESM2M, and the minimum value was
10.1 mm for NorESM1-M. The median IQR was 24.4 mm for GFDL-ESM2G. Similar to the STDEV, these
three IQRs were higher than those of the historical period. This finding indicates higher uncertainty in
projected precipitation compared to the historical period.

4.2. Uncertainty in GCMs

4.2.1. Historical Period

The PDFs for the bias-corrected precipitation of the 13 GCMs and the observed precipitation using
the different bias correction methods are shown in Supplementary Materials Figure S5. The precipitation
distributions are similar for most of the GCMs and most of the bias correction methods. The greatest
variation in the distribution of precipitations was in CESM1-CAM5 and CCSM4 using the PS bias
correction method. Other GCMs such as CSIRO-Mk3.6.0 and GISS-E2-R were not able to replicate the
properties of the observed data from the PDF. MIROC5 and HadGEM-2-AO were best able to replicate
the observed precipitation distribution.

The average monthly precipitation of bias-corrected GCMs for the Seoul station was calculated
using the 11 bias correction methods and is shown in Supplementary Materials Figure S6. The maximum
average monthly precipitation of 153.8 mm was calculated for BCC-CSM1-1, and a minimum of 100.3 mm
was calculated for CSIRO- Mk3.6.0. The range of the averages of bias-corrected precipitation based on
the bias correction methods spanned from 11.8 mm for GFDL-ESM2G to 47.4 mm for CCSM4.

The STDEVs and IQRs of the average monthly precipitation from the 13 GCMs for the historical
period were calculated for each bias correction method and are presented in Figure 5. The highest STDEV
was 16.4 mm for DL, indicating the highest level of uncertainty among the methods. The minimum
value was 0.9 mm for BG, indicating a lower level of uncertainty and similar precipitation results
regardless of the type of GCM. The results of the IQRs were very similar to those of the STDEVs.
The largest IQR was obtained from DL and the smallest was obtained from BG.
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Figure 5. (Left) STDEVs and (Right) IQRs of the bias-corrected average precipitations of 13 GCMs for
the historical period at Seoul station.

4.2.2. Future Projection Period

The PDFs of the bias-corrected precipitation of the 13 GCMs for the projection period from the
different bias correction methods are presented in Supplementary Materials Figure S7. The PDFs
of the GCMs were similar for many of the bias correction methods. The most dissimilar GCM was
CCSM4, as seen from the PDFs of BL, BW, BG, and RF. The greatest variability in the distribution of
precipitation in the GCMs was for the PS bias correction method. The average monthly precipitation
of bias-corrected GCMs for the Seoul station was calculated for the 11 bias correction methods and
is shown in Supplementary Materials Figure S8. The maximum average monthly precipitation was
184.7 mm for MIROC-ESM, and the minimum was 86.8 mm for BCC-CSM1-1. The range of the averages
of the bias correction methods spanned from 24.9 mm for NorESM1-M to 69.5 mm for CSIRO-Mk3.6.0.
These values are higher, and their ranges are broader than those for the historical period.

The STDEVs and IQRs of the average monthly average precipitation from the 13 GCMs for
the projection period were calculated for each bias correction method and are presented in Figure 6.
The highest STDEVs were observed in BL (29.0 mm) and BW, indicating the greatest uncertainty
among these methods. The lowest STDEVs were observed for PL (9.5 mm), indicating a lower level of
uncertainty, which is consistent with similar projections regardless of the type of GCM. In addition, the
largest IQRs were again found in BL and BW (42.2 mm), and the smallest were calculated for P-Ex
(10.9 mm) and PS (9.6 mm). The STDEVs and IQRs from all GCMs were higher than those for the
historical period.

Figure 6. (Left) STDEVs and (Right) IQRs of the bias-corrected average precipitations of 13 GCMs for
the projection period at Seoul station.



Sustainability 2020, 12, 7508 11 of 19

4.3. Selection of Bias Correction Method

To quantify the uncertainties based on the RCPs, the projection period, and the locations, a
robust high-performing bias correction method should be consistently used for all GCMs. Therefore,
the robust bias correction method should be selected based on various performances.

The 11 bias correction methods used in this study were analyzed using three evaluation indicators:
Pbias, NSE, and NRMSE. NRMSE and Pbias values closer to 0 indicate better performance, whereas,
NSE values closer to 1 indicate better performance. Standardization was performed based on the three
estimated evaluation indicators; if the standardized performance was closer to 1, the performance had
improved, and if it was closer to 0, the performance had deteriorated. To determine the final performance
for each bias correction method at each station for each GCM, the average of the performance indicators
for the individual station was taken. As a representative example, the performances of the different
bias correction methods for the Busan station are presented by GCMs in Table 2 because the individual
values of Busan station are relatively similar to the averages of all stations. The results of the Seoul
station representing the main area in Korea are also shown in Supplementary Materials Table S1.
This table also shows the average of the scores for each of the methods from the different GCMs. RT
had the best performance for most GCMs followed by BG, P-Ex, RL, and PS. GISS and HADAO had
the best performances using the SSPLIN method. BW, BL, and RF exhibited the poorest performances.
Therefore, careful selection of the bias correction method is necessary because the performances of all
GCMs in the reproduction of historical climate were substantially different.

Table 2. Standardized statistical metrics for evaluation of bias correction methods for each GCM at
Busan station.

Name of GCM DL BL BW P-Ex BG PL RF RL RT PS SSPLIN

CAM 0.903 0.619 0 0.924 0.964 0.708 0.544 0.990 0.999 0.924 0.81
CCSM4 0.928 0 0.541 0.953 0.970 0.888 0.758 0.927 0.947 0.953 0.833
CSIRO 0.962 0.026 0.549 0.985 0.938 0.956 0.793 0.949 0.984 0.985 0.89
CSM1.1 0.874 0.923 0.356 1 0.983 0.872 0.32 0.912 0.92 1 0.923

CSM1.1M 0.986 0.375 0 0.97 0.988 0.773 0.519 0.986 0.996 0.97 0.877
ESM2G 0.958 0 0.882 0.987 0.99 0.993 0.673 0.988 0.998 0.987 0.952
ESM2M 0.899 0 0.937 0.945 0.982 0.977 0.636 0.991 0.991 0.945 0.988

GISS 0.854 0.214 0.457 0.891 0.936 0.888 0 0.91 0.929 0.891 0.989
HADAO 0.881 0.104 0.162 0.978 0.979 0.843 0.583 0.973 0.98 0.978 0.992
MIROC5 0.82 0.769 0 0.986 0.961 0.764 0.329 0.971 0.991 0.986 0.94

MIROCESM 0.926 0.53 0 0.99 0.987 0.802 0.522 0.986 0.992 0.99 0.893
MRI 0.854 0.614 0 0.941 0.969 0.727 0.391 0.969 0.988 0.941 0.950
NOR 0.898 0.932 0.351 1 0.979 0.875 0.313 0.988 0.986 1 0.927

Average 0.903 0.393 0.326 0.965 0.971 0.851 0.491 0.965 0.977 0.965 0.920

The ranking of the performances for the 11 bias correction methods was derived from the observed
data from the 22 stations in South Korea, as shown in Table 3. This table shows the number of stations
where each bias correction method was selected as having the best performance. Overall, the SSPLIN
method exhibited the best performance. SSPLIN was selected 172 times, which represents 60.1% of all
cases (286 = 13 GCM × 22 stations). The rank of the remaining methods was as follows: RT (38 times,
13.3%), RL (30 times, 10.5%), BG (19 times, 6.6%), and P-Ex (19 times, 6.6%), followed by relatively low
frequencies of top ranking for DL (4 times), PL (4 times), and BL (1 time).
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Table 3. The number of times showing the best performance by each bias correction method.

Name of GCM DL BL BW P-Ex BG PL RF RL RT PS SSPLIN

CAM 1 0 0 0 1 0 0 4 4 0 12
CCSM4 0 0 0 0 7 0 0 1 1 0 13
CSIRO 0 0 0 3 0 0 0 2 6 4 11
CSM1.1 1 0 0 5 1 0 0 2 3 4 10

CSM1.1M 0 1 0 0 2 0 0 2 3 0 14
GFDL-ESM2G 0 0 0 1 2 1 0 4 2 1 12
GFDL-ESM2M 0 0 0 0 1 2 0 3 2 0 14

GISS 1 0 0 1 0 0 0 3 3 1 14
HADAO 1 0 0 2 0 0 0 2 3 2 14
MIROC5 0 0 0 3 1 0 0 2 1 2 15

MIROCESM 0 0 0 0 1 0 0 2 3 0 16
MRI 0 0 0 0 3 0 0 1 3 0 15
NOR 0 0 0 4 0 0 0 2 4 4 12

Overall 4 1 0 19 19 3 0 30 38 18 172

4.4. Uncertainties in the RCP Scenario

The results of the uncertainties based on the RCP scenarios are discussed in this section for the
SSPLIN method, which had the best performance among all bias correction methods. The PDFs of all
GCM simulations for the four RCPs are presented in Supplementary Materials Figure S9. The PDFs
were similar for the RCPs of the different GCMs. However, RCP 8.5 showed a different distribution of
precipitation for BCC-CSM1-1(M).

The average monthly precipitation for the four RCPs is presented for all GCMs in Figure 7.
The ranges of the average precipitation for RCP 2.6, 4.5, 6.0, and 8.5 were 127.6–158.9 mm,
130.0–159.0 mm, 127.4–156.5 mm, and 123.6–156.5 mm, respectively. RCP 8.5 had the largest range
(32.9 mm) followed by RCP 2.6 (31.3 mm), RCP 4.5 (29.6 mm), and RCP 6.0 (29.2 mm). There was
little variation among the RCPs except for BCC-CSM1-1M, which had a much lower average monthly
precipitation for RCP 8.5. CESM-CAM5 had the maximum average monthly precipitation of all
RCPs, and GFDL-ESM2M had the minimum average monthly precipitation for RCPs 2.6, 4.5, and 6.0.
The differences among the RCPs were 2.2–5.2 mm for all GCMs except for BCC-CSM1-1(M), which
was 29.5 mm, as shown in Figure 7.
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The STDEVs and IQRs for the four RCPs for the different GCMs are presented in Figure 8.
The maximum STDEV was 10.9 mm, which was calculated for BCC-CSM1-1(M). However, most
STDEVs, except for BCC-CSM1-1(M), were low; the median STDEV was 1.5 mm. The minimum
STDEV was 0.95 mm for CCSM4. The maximum IQR was 9.05 mm, which was also calculated for
BCC-CSM1-1(M). As with the STDEVs, the IQRs were also low for all GCMs, except for BCC-CSM1-1(M).
The minimum IQR was 0.61 mm for NorESM1-M.

Figure 8. (Left) STDEVs and (Right) IQRs of the bias-corrected average precipitations of four RCPs for
the projection period at Seoul station.

4.5. Uncertainties in Projection Periods

This section presents the results of the downscaling using the SSPLIN method for RCP 4.5
for the Seoul station over 10-year intervals from 2011 to 2100. The monthly precipitation for
the nine 10-year periods for all GCMs at the Seoul station is shown in Figure 9. The ranges of
precipitation were 110.5–172.7 mm for 2011–2020, 130.3–163.4 mm for 2031–2040, 128.5–167.1 mm for
2051–2060, 109.1–156.6 mm for 2071–2080, and 118.2–192.4 mm for 2091–2100 for all GCMs as shown
in Supplementary Materials Figure S10. These data indicate that there will be variation in the average
monthly precipitation during different periods of the century.

Figure 9. Monthly precipitations of 11 GCMs for nine 10-year periods at Seoul station.

Figure 9 shows the monthly average precipitation at Seoul station divided into nine periods for
the projection period of RCP4.5 in 13 GCMs. The widest range of average monthly precipitation for
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these periods was observed for CCSM4 with a range of 110.5–192.4 mm, and the smallest range was
observed for GISS-E2-R with a range of 129.7–144.4 mm. The narrowest range of average monthly
precipitation was for HadGEM2-AO and NorESM1-M with 140.1–161.1 mm and 121.0–143.1 mm of
precipitation, respectively. As a result, all GCMs have their own decadal variations which are largely
different from each other.

The STDEVs and IQRs of the GCM simulations for the nine time periods are shown in Figure 10.
The maximum STDEV was 14.8 mm for CCSM4, and the minimum STDEV was 3.2 mm for GISS-E2-R.
The range was 11.6 mm. CESM-CAM5 and CCSM4 showed high STDEVs, indicating that they have
greater variation over time. The GCMs with the largest IQRs were the same as those for the STDEVs.
However, the second and third largest GCMs were GFDL-ESM2G and MIROC5, and the third smallest
was MIROC-ESM.

Figure 10. (Left) STDEVs and (Right) IQRs of the bias-corrected average precipitations of nine 10-year
periods at Seoul station.

4.6. Uncertainty by Location

To analyze the uncertainties in projected precipitation based on location, the stations within the
study area were classified as coastal or inland areas, as the meteorological characteristics of the two
regions differed. The results are presented for the SSPLIN bias correction method for RCP 4.5.

4.6.1. Coastal Areas

The PDFs of the bias-corrected precipitation for the coastal stations are presented in Supplementary
Materials Figure S11. There was a wide range of PDFs among the coastal stations as observed from
the width of the PDFs. The maximum monthly precipitation varied from 286.8 mm at Ulleungdo
to 1023.9 mm at Pohang. The range of the maximum monthly precipitation for the coastal area was
737.1 mm. This wide range in precipitation can be attributed to Pohang being closer to the equator
(latitude 36.03) than Ulleungdo (latitude 37.48). Pohang is more strongly influenced by equatorial
factors. The distribution of precipitation showed that the lower the latitude of a station, the higher
the monthly precipitation. Higher monthly precipitation is expected at the stations located in the
southeastern coastal areas.

The bias-corrected average monthly precipitation for the 12 coastal regions was calculated for all
GCMs and is presented in Supplementary Materials Figure S12. The average monthly precipitation
varied from 85.1 to 287.5 mm across all coastal regions. However, these two extreme cases both
occurred at Pohang. Similarly, the values for Ulsan were 100.2–195.3 mm. Precipitation was expected
to be high for CCSM4 at the Pohang and Ulsan stations.

The STDEVs and IQRs for the 12 gauge stations are presented by GCM in Figure 11. The highest
STDEV was 47.3 mm for CCSM4, indicating the greatest uncertainty of the locations. In contrast, the
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lowest STDEV was 10.0 mm for GISS-E2-R and thus the range was 37.3 mm. Similar to the STDEV
results, the IQRs were largest (31.0 mm) for CCSM4 and smallest (11.4 mm) for BCC-CSM1-1.

Figure 11. (Left) STDEVs and (Right) IQRs of the bias-corrected average precipitations of 12 coastal
areas for the projection period.

4.6.2. Inland Areas

The PDFs of the bias-corrected precipitation for the inland stations are shown in Supplementary
Materials Figure S13. The maximum monthly precipitation of the PDFs varied from 312.5 mm for
Daegu to 789.6 mm for Daejeon. The range of precipitation was 477.1 mm, which is much smaller than
that for the coastal areas by 260.1 mm. Although the maximum precipitation for the inland areas was
lower than that for the coastal areas, the PDFs of precipitation at the inland stations were broader and
the precipitation was more widely distributed. In addition, the shapes of the PDFs in the inland areas
were relatively similar to one another, compared to those of the coastal areas. However, some inland
areas such as Busan and Ulsan showed variability in the distribution of precipitation for some GCMs
such as CCSM4, CSIRO-Mk3.6.0, BCC-CSM1-1, GFDL-ESM2G, and HadGEM2-AO.

The bias-corrected average monthly precipitation for the 10 inland stations was calculated for all
GCMs and is shown in Supplementary Materials Figure S14. The maximum average was 184.9 mm at
Chuncheon, and the minimum average was 86.5 mm at Deagu.

The STDEVs and IQRs for the 10 weather stations are presented by GCM in Figure 12. The STDEVs
from the inland stations are lower than those from the coastal stations. The maximum STDEV was
24.1 mm for CSIRO-Mk3.6.0, and the minimum was 10.7 mm for MIROC-ESM. The range of the
STDEVs was 13.4 mm. The next highest STDEVs were observed for GFDL-ESM2G, BCC-CSM1-1, and
HadGEM2-AO with 23.4, 22.5, and 20.7 mm, respectively.

The IQRs for the inland areas were also lower than those for the coastal areas, indicating less
uncertainty. The maximum IQR was 21.9 mm for GFDL-ESM2G, and the minimum IQR was 9.9 mm
for GFDL-ESM2M. The range was 12.0 mm, which is smaller than that for the coastal area.
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Figure 12. (Left) STDEVs and (Right) IQRs of the bias-corrected average precipitations of 10 inland
areas for the projection period.

5. Discussion

The summary of STDEV and IQR analyses for the historical and projection periods is shown in
Table 4. For the historical period, the STDEVs and IQRs of the precipitation based on the type of bias
correction method were higher than those based on the type of GCM. In contrast, for the projection
period, the uncertainties related to the different bias correction methods were smaller than those related
to the different GCMs.

Table 4. STDEV and IQR analysis results for the historical period and projection period by GCMs.

Name of GCM

Historical Period Projection Period

Bias Correction Bias Correction RCPs Period
Location

Coastal Inland

STDEV IQR STDEV IQR STDEV IQR STDEV IQR STDEV IQR STDEV IQR

CAM 8.1 7.3 11.9 13.8 1.6 2.6 19.6 18.3 14.8 19.4 14.7 15.4
CCSM4 13.1 8.6 18.0 25.5 1.0 0.9 22.7 16.6 47.3 31.0 15.1 17.5
CSIRO 15.4 8.7 22.7 30.9 1.3 2.2 21.7 30.5 14.3 19.8 24.1 17.2
CSM1.1 14.2 8.9 17.1 31.8 1.5 1.6 11.5 10.4 13.0 11.4 22.5 15.3

CSM1.1M 9.5 8.1 18.9 22.1 10.9 9.1 13.4 18.2 12.0 17.7 14.2 16.1
GFDL-ESM2G 4.0 6.2 13.1 21.8 1.2 1.8 13.3 13.7 12.7 18.2 23.4 21.9
GFDL-ESM2M 4.5 7.4 16.9 30.8 2.4 3.1 10.3 16.3 16.1 19.4 13.3 9.9

GISS 5.2 2.8 9.2 9.4 1.9 1.4 5.8 12 10.0 20.5 13.6 19.8
HADAO 10.4 6.4 12.4 14.1 1.4 1.4 6.7 7.6 15.8 22.2 20.7 16.3
MIROC5 9.1 2.8 21.2 28.4 1.8 1.9 11.9 15.3 18.7 23.0 14.5 16.0

MIROCESM 11.7 9.5 13.9 11.6 1.2 0.8 15.2 21 13.2 18.1 13.5 15.2
MRI 11.4 11.6 15.8 12.0 1.8 1.4 13.6 22 20.7 26.6 10.7 14.7
NOR 10.1 6.1 9.2 14.3 1.0 0.6 7.4 9.3 13.1 17.6 12.8 16.5

Overall 9.8 7.3 15.4 20.5 2.2 2.2 13.3 16.2 17.1 20.4 16.4 16.3

The least uncertainty was observed among the four RCP scenarios, with a 2.2 mm STDEV and
IQR. The next lowest level of uncertainty was related to the time period, with a STDEV and IQR of
13.3 and 16.2 mm, respectively. Therefore, the selection of the target future time period is much more
important than the target RCP scenario.

The STDEVs and IQRs of the bias-corrected precipitation for the GCMs for the coastal and
inland locations were compared. The results indicated that there was less uncertainty in the projected
precipitation of the inland stations compared to that of the coastal stations.

Overall, the uncertainties based on bias correction methods, GCMs, and location all showed
a similar magnitude, which was larger than the other sources of uncertainty. However, it can be
concluded that the uncertainty in inland areas is lower than those from the other three sources, and the
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uncertainty in the GCMs are slightly higher than those from the bias correction methods during the
projection period. In other words, the uncertainty in the projected precipitation in the coastal areas
may be the intermediate between that of the bias correction methods and the GCMs for some criteria,
or, overall, the largest among all kinds of uncertainty considered in this study (see Tables 4 and 5).

Table 5. STDEV and IQR analysis results for the historical period and projection period by bias
correction (BC) methods.

BC Method
Historical Period Projection Period

STDEV IQR STDEV IQR

DL 5.8 7.8 29.0 42.2
BL 6.0 8.6 28.7 42.2
BW 3.3 3.1 11.3 10.9
P-Ex 5.1 4.7 9.5 13.4
BG 13.7 7.2 15.4 9.6
PL 3.5 4.9 16.7 31.0
RF 2.6 3.6 15.1 26.7
RL 1.1 1.6 9.8 16.6
RT 0.9 1.5 10.7 12.4
PS 6.5 9.6 13.1 13.8

SSPLIN 11.2 8.4 15.7 26.7

Overall 5.4 5.5 15.9 22.3

6. Conclusions

In this study, five sources of uncertainty in the projected precipitation over South Korea were
quantified. This study considered uncertainties based on the selection of bias correction methods, the
GCMs, the RCPs, the time periods, and the locations within the study area. The study used 11 bias
correction methods for the downscaling of 13 GCMs and four RCPs for 10-year intervals (2011–2100)
at 22 gauge stations in coastal and inland areas of South Korea. The uncertainties were quantified
using two statistics: STDEVs and IQRs. PDFs were used to assess the variability in the distribution of
rainfall among the GCMs. The variability in the average monthly precipitation among GCMs was
also assessed.

For the historical period, the uncertainty related to the bias correction method was greater than
that from the GCMs, whereas the opposite was true for the projection period. For the projection period,
the uncertainty based on the RCP scenario was the lowest and the uncertainty related to the selection
of the future time period was the next lowest, but it was much larger than that related to RCP selection.
In addition, the uncertainty in projected precipitation from inland areas was lower than that from the
coastal areas. The uncertainties originating from the GCMs were slightly higher than those related to
the bias correction method.

To reduce the uncertainties associated with climate projections using different GCMs, the use
of a Multi-Model Ensemble (MME) is recommended. In doing so, the selection of the most realistic
GCMs with lower uncertainties is suggested. The uncertainty assessment proposed in this study
can be applied to the results of CMIP6 GCMs for the uncertainty quantification of new scenarios for
shared socioeconomic pathways and these results can be compared to the results of this study for the
improvement of CMIP6.
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