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Abstract: The main purpose of this study was to compare the prediction accuracies of various seismic
vulnerability assessment and mapping methods. We applied the frequency ratio (FR), decision tree
(DT), and random forest (RF) methods to seismic data for Gyeongju, South Korea. A magnitude 5.8
earthquake occurred in Gyeongju on 12 September 2016. Buildings damaged during the earthquake
were used as dependent variables, and 18 sub-indicators related to seismic vulnerability were used as
independent variables. Seismic data were used to construct a model for each method, and the models’
results and prediction accuracies were validated using receiver operating characteristic (ROC) curves.
The success rates of the FR, DT, and RF models were 0.661, 0.899, and 1.000, and their prediction
rates were 0.655, 0.851, and 0.949, respectively. The importance of each indicator was determined,
and the peak ground acceleration (PGA) and distance to epicenter were found to have the greatest
impact on seismic vulnerability in the DT and RF models. The constructed models were applied to all
buildings in Gyeongju to derive prediction values, which were then normalized to between 0 and 1,
and then divided into five classes at equal intervals to create seismic vulnerability maps. An analysis
of the class distribution of building damage in each of the 23 administrative districts showed that
district 15 (Wolseong) was the most vulnerable area and districts 2 (Gangdong), 18 (Yangbuk), and 23
(Yangnam) were the safest areas.

Keywords: seismic vulnerability assessment; frequency ratio; decision tree; random forest; machine
learning; Gyeongju Earthquake; geographic information system (GIS)

1. Introduction

An ML 5.8 earthquake occurred 8.7 km south–southwest of Gyeongju, South Korea (35◦46′36” N,
129◦11′24” E) at 11:32:55 UTC (20:32:54 Korea Standard Time; GMT + 9 h) on 12 September 2016 [1,2].
The earthquake was accompanied by 601 aftershocks, including an ML 5.1 foreshock that occurred
8.2 km south–southwest of Gyeongju (35◦46′12” N, 129◦11′24” E) at 10:44:32 UTC (19:44:32 Korea
Standard Time) and the largest aftershock (ML 4.5), which occurred at 11:33:58 UTC (20:33:58 Korea
Standard Time) on 19 September. As of 31 March 2017 [3], the Gyeongju Earthquake was the largest
earthquake among those recorded by the domestic seismic observation network; it consisted of a
shock wave with concentrated energy, in which strong ground motion lasted for only 1–2 s, 15 km
beneath the surface. Due to these characteristics, the initial reporting indicated that the earthquake
did not significantly damage structures; however, it resulted in 5368 damaged properties, 111 victims,

Sustainability 2020, 12, 7787; doi:10.3390/su12187787 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-5175-6500
http://dx.doi.org/10.3390/su12187787
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/18/7787?type=check_update&version=3


Sustainability 2020, 12, 7787 2 of 22

and 23 injured people. The Gyeongju Earthquake represented a new disaster type that provoked a
number of economic and social problems and revealed the limitations of established countermeasures.
This disaster also made it impossible to rule out the possibility of similar earthquakes in the future,
highlighting the importance of precautions to prevent greater losses.

The Korean Peninsula is located within the Eurasian plate and, therefore, has a lower earthquake
occurrence frequency and longer recurrence period than countries located at the plate boundary.
The geological structures of the Korean Peninsula include weak crust and many fault structures,
which have led to increased earthquake occurrence frequency in recent years, partly because the
peninsula is affected by earthquakes occurring in neighboring China and Japan [3]. The 2016 Gyeongju
Earthquake occurred approximately five months after the occurrence of the ML 7.3 Kumamoto
Earthquake on 16 April 2016, which followed the ML 9.0 Great East Japan Earthquake on 11 March
2011. Earthquake occurrence frequency and size are increasing globally; according to a UN report,
disasters related to earthquakes and volcanoes accounted for approximately 10% of the natural disasters
that occurred from 1998 to 2017 [4]. Although the proportion of earthquakes is low compared to
those of other natural disasters, economic damage caused by earthquakes represented approximately
23% of that of total natural disasters and 56% of total human casualties during the same period.
Property damage caused by domestic earthquakes totaled approximately 9.5 million USD in 2016
and 70.6 million USD in 2017, representing significant national losses. Despite continuous damage
from earthquakes, it remains impossible to predict earthquake occurrence accurately or to control
natural disasters artificially. However, it is possible to minimize damage by predicting areas vulnerable
to earthquakes and potential damage, establishing policies suitable for such areas, and performing
sustainable preparation in advance.

Seismic vulnerability assessment involves the comprehensive evaluation of factors that affect risks
associated with earthquakes within predefined areas. Urban areas are at higher risk of seismic disasters
than outlying areas due to their higher building and infrastructure density and larger population.
Therefore, in assessing seismic vulnerability, it is essential to select suitable influential factors and
methods for the area of interest. Several methodologies have been applied for seismic vulnerability
assessment and mapping during the past few decades.

Seismic vulnerability assessment studies commonly analyze case studies using a combination of
multi-criteria decision-making (MCDM) and geographic information system (GIS) approaches [5–7].
Among these, the analytical hierarchy process (AHP) is one of the most widely known MCDM
methodologies; it stratifies and quantifies the importance of each applied influential factor to determine
its relative importance, and assesses vulnerability by applying weights to all factors [8–12]. However,
this method can be subjective because the opinion of the researcher can affect the weight assignment
process; therefore, it is somewhat unsuitable for objective assessment. To address this problem, recent
studies have applied hybrid models that combine various methodologies [13–17]. Lee et al. (2019) [16]
developed the GIS-based Seismic-Related Vulnerability Calculation Software (SEVUCAS) for seismic
vulnerability assessment, which includes a stepwise weight assessment ratio analysis (SWARA),
radial basis function (RBF), and teaching–learning-based optimization (TLBO) methods. SEVUCAS
provided reliable results by assigning the weights of main indicators and sub-indicators using SWARA
and interpolation methods based on RBF and TLBO to reduce the effects of weights with significant
variation at the boundary of each class for each factor. Yariyan et al. (2020) [17] constructed a hybrid
model by integrating different decision support systems to increase the accuracy of seismic vulnerability
mapping. Using this model, seismic vulnerability maps were created based on multiple-criteria decision
analysis–multi-criteria evaluation (MCDA–MCE) and MCDA–fuzzy models to construct training
datasets, and training points were randomly selected. The MCDA–MCE and MCDA–fuzzy models were
found to have 0.85 and 0.80 model accuracy, respectively. Based on two training datasets, MCE–logistic
regression (LR) (0.90) and fuzzy–LR (0.85) hybrid models were constructed. The accuracy of the
resulting seismic vulnerability maps was found to be directly related to that of the training datasets.
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Many recent studies related to seismic vulnerability assessment and mapping have been conducted
using machine learning techniques [12,18–21]. For example, Han et al. (2019) [20] used a logistic
regression (LR) model and applied the support vector machine (SVM) methodology to four kernel
models (linear, polynomial, radial basis function, and sigmoid) to derive a suitable model for seismic
vulnerability assessment; this study was notable in that the results of several seismic vulnerability
models were compared analytically; such analyses are rarely conducted in this field, despite the broad
application of machine learning techniques in recent years.

Vulnerability assessments have been conducted for natural disasters other than earthquakes,
including floods [22–26], landslides [27–34], gully erosion [35–39], and groundwater contamination [40–44].
Some studieshave compared theperformance of various methodologies, including probabilistic techniques such
asfrequencyratio(FR)models[22,27,43], statistical techniquessuchasLR-basedmodels[22,27,28,32,34,38,40–43],
and machine learning algorithms such as decision tree (DT) [24,26,28,29,31,34,38,39,42–44], random forest
(RF) [23,26,29–33,35,36,40,42,43], rotationforest(RoF)[23,31,33,42,44],adaptiveboosting(AdaBoost)[23,39,42,44],
random subspace (RS) [33,39,40,44], bagging [33,39,44], SVM [24,25,28,32,34,36–38,42,43], artificial neural
network (ANN) [28,32,34,37], and naïve Bayes (NB) models [26,34,36,38,40].

Tree-based machine learning methodologies have mainly been applied in seismic vulnerability
studies for parameter evaluation [45–47]. For other natural disasters, these methodologies have also
been used to determine the relative influence of seismic parameters on the model results.

The objective of this study was to assess the seismic vulnerability of all buildings in Gyeongju,
South Korea, and to create maps using these data. We applied FR, a probabilistic technique, and DT
and RF, which are tree-based machine learning techniques, to construct models using 18 sub-indicators
related to geotechnical, physical, structural, social, and capacity indicators as independent variables and
building damage location data collected after the 2016 Gyeongju Earthquake as dependent variables.
Model performance was verified using relative operating characteristic (ROC) curves. The results were
compared and analyzed to identify models suitable for seismic vulnerability assessment and mapping
and to evaluate the importance of each factor for each methodology. Finally, dangerous and safe areas
were identified in each of 23 administrative districts by creating maps based on the model with the
highest accuracy for each methodology, and the results were assessed (Figure 1).
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2. Study Area and Data

2.1. Study Area

The target area of this study was the city of Gyeongju, Gyeonsangbuk-do, South Korea
(35◦39′–36◦04′ N, 128◦58′–129◦31′ E). Gyeongju is in the southeastern part of the Korean Peninsula;
it has a population of 254,853 and an area of 1324.82 km2, and consists of 23 administrative districts
(Figure 2). Within the total area, agriculture and forestry account for 42.36%, followed by green areas
(31.04%) and other areas (26.6%) [48].
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Figure 2. Study area in Gyeongju, South Korea: (1) Angang-eup, (2) Gangdong-myeon, (3) Seo-myeon,
(4) Hyungok-myeon. (5) Cheonbuk-myeon, (6) Geoncheon-eup, (7) Seondo-dong, (8) Seonggun-dong,
(9) Hwangseong-dong, (10) Yonggang-dong, (11) Jungbu-dong, (12) Hwangoh-dong, (13) Dongcheon-dong,
(14) Hwangnam-dong, (15) Wolseong-dong, (16) Bodeok-dong, (17) Bulguk-dong, (18) Yangbuk-myeon,
(19) Gampo-eup, (20) Sannae-myeon, (21) Naenam-myeon, (22) Oedong-eup, and (23) Yangnam-myeon.

Several earthquakes of magnitude 3.0 or higher, which can be sensed by people, have occurred in
Gyeongju. A magnitude 3.1 earthquake occurred 12 km northwest of the center of Gyeongju at around
08:13:23 AM on 24 December 1993, and a magnitude 4.2 earthquake occurred approximately 9 km
east–southeast of the center of Gyeongju at around 03:50:22 AM on 26 June 1997. A magnitude 3.4
earthquake occurred 10 km to the northeast at around 06:12:23 PM on 2 June 1999, and a magnitude
3.2 earthquake occurred in the same area at 05:56:43 AM on 12 September 1999. A magnitude
3.0 earthquake occurred 9 km east–southeast of Gyeongju at 11:33:29 PM on 1 March 2003, and a
magnitude 3.5 earthquake occurred approximately 18 km to the east–southeast at around 03:27:58 PM
on 23 September 2014 [49].

Several faults in the study area, including Dongrae, Moryang, Miryang, Ulsan, and Yangsan,
are distributed within the study area [50], and the Wolseong, Saeul, and Kori nuclear power plants are
located along the nearby coastline to the southeast. Due to these regional and geographic characteristics,
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the probability of earthquake occurrence in this region is considered to be relatively high, and secondary
damage in the event of an earthquake with medium or higher magnitude constitutes an unusually
high risk. In 2019, 957 earthquakes with magnitudes of less than 2.0 occurred in the Korean Peninsula;
among these, 260 earthquakes (27.17%) occurred in the Gyeongsangbuk-do area (including Daegu) [49].
Among the 88 earthquakes of magnitude 2.0 or higher, 23 (26.17%) occurred in the same area. Since the
2016 Gyeongju Earthquake, large and small earthquakes have occurred continuously. Therefore,
sustainable preparation and management planning for such events is required.

2.2. Data

We selected factors affecting seismic vulnerability based on the results of a previous study,
taking into consideration applicability and practicality [51]. The main indicators were geotechnical,
physical, structural, social, and capacity indicators; we selected a total of 18 sub-indicators corresponding
to these categories. Geotechnical sub-indicators included slope, altitude, and groundwater level;
physical sub-indicators included peak ground acceleration (PGA), epicenter distance, and fault distance;
structural sub-indicators included building age, construction materials, building density, and number
of floors; social sub-indicators indicators included elderly population (≥65 years), child population
(<15 years), and population density; and capacity sub-indicators included distances from hospitals,
fire stations, police stations, roads, and gas stations. Sub-indicators were organized into a raster-based
spatial database (10 m spatial resolution) and applied to all buildings in Gyeongju as independent
variables (Figure 3).
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We used the 3896 buildings damaged during the 2016 Gyeongju Earthquake as dependent variables.
The corresponding building polygons were converted into cells (10 × 10 m spatial resolution) for a
total of 9847 cells. Among these cells, 70% (6893) were used as a training dataset to create the models
and 30% (2954) were used as a test dataset. We extracted the same number of cells corresponding
to undamaged buildings. All cells were randomly sampled, and the accuracy of each model was
calculated based on the final training (13,786) and test datasets (5908).

3. Methodology

3.1. FR Model

The FR model is a probabilistic model used to determine the influence of each factor by analyzing
the correlations between seismic vulnerability and earthquake-related factors. The FR model easily
classifies the influence factors associated with the largest numbers of accidents during a disaster [52].
FR > 1 indicates strong correlation between seismic vulnerability and the factor class, whereas FR < 1
indicates weak correlation. FR is calculated as follows [53]:
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FR =
TGFC/WTG

FC/WG
(1)

TGFC: Training Grid of Factor Class
WTG: Whole Training Grid
FC: Factor Class Grid
WG: Whole Grid

In this study, WTG represents the number of cells corresponding to damaged buildings, TGFC is
the number of cells corresponding to damaged buildings in the corresponding class, WG is the number
of cells corresponding to all buildings, and FC is the number of cells corresponding to the buildings of
the corresponding class. After FR values are calculated for each class of the 18 factors and applied to
the grid format of each factor, they are superimposed to create the final seismic vulnerability maps.

3.2. DT Model

The DT model uses hierarchical structures to find structural patterns in data for the purpose of
constructing decision-making rules to estimate the relationships between independent and dependent
variables [54]. The DT model consists of three nodes: a root node (all data) located at the top, a set of
internal nodes (splits), and a set of terminal nodes (leaves) located at the bottom. Pruning is performed
from the top of the tree to its bottom until the terminal nodes are reached [55].

Four main algorithms are used to construct DTs: a classification and regression tree (CART),
chi-square automatic interaction detector DT (CHAID), ID3, and C4.5 [56]. In this study, we constructed
a regression tree model for seismic vulnerability assessment based on a CART algorithm developed
by Breiman et al. (1984) [57]. CART is among the most widely known DT algorithms; it minimizes
variance through binary recursive partitioning of the branches of a regression tree [58,59]. In this
process, CART repeatedly creates two sub-nodes by partitioning a subset of the data using all predictors;
its final goal is to create an optimal tree among several candidate trees [60].

In this study, we applied the DT model using the rpart package of the RStudio software (ver. 3.6.0),
which creates an optimal model by adjusting the values of representative parameters, i.e., minsplit,
minbucket, maxdepth, and cp. Minsplit is the minimum number of observations available at the node
for splitting attempts, and minbucket is the minimum number of observations at all terminal nodes.
As the minbucket value decreases, the tree becomes more detailed, thereby increasing the complexity of
the model and increasing the prediction rate. Maxdepth is the maximum depth of the tree; if its value
is 1, then a redundant column is not used as a node, whereas if it is 2 or greater, then redundant column
nodes are allowed, increasing the complexity of the model. The cp value is a complexity parameter,
and has values between zero and 1. As the cp value decreases, the size of the tree increases [31].

3.3. RF Model

RF [61] is a powerful ensemble algorithm that exhibits excellent performance; it has a wide variety
of applications, including classification, regression, and unsupervised learning [60,62]. RF creates
a binary tree by randomly selecting the training data of variables selected at each node based on a
bootstrap sample, and constructs a DT for final prediction [63]. The tree inducer then selects the optimal
data by randomly sampling an attribute subset instead of performing optimal partitioning; this process
is an improved version of the bagging method, which forms a random DT at each iteration [64].

The regression algorithm of RF, which was used in this study, calculates estimates of the dependent
variables using the average of the results. RF is suitable for analyzing hierarchical interactions and
nonlinearity among large datasets because it does not require assumptions about the relationships
between explanatory and response variables [65].

In this study, we applied the RF model using the randomForest package of the RStudio software
(ver. 3.6.0). To create the model, we defined four parameters: the number of trees (ntree), the number
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of variables to be used at each node (mtry), the maximum number of terminal nodes (maxnodes),
and the depth setting of the tree (nodesize). Although increasing ntree does not guarantee an increase
in model accuracy, several ntree values must be tested before finding a sufficiently high value to allow
the error to converge [66]. If maxnodes is not given, the tree grows to its maximum; nodesize is a
minimum number of nodes, and a small value creates a deep tree.

3.4. Assessment of Model Performance

Based on training and test datasets, the three models were verified for performance using statistical
measures. These are classified into four categories, depending on how well they predicted the actual
damaged building—true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
The TN and TP are pixels that accurately classified as damaged and undamaged buildings, and FP
and FN are pixels that are classified as opposed to actually damaged. These are used to calculate the
following statistical metrics: Sensitivity (also referred to as recall) is the proportion of the damaged
building pixels correctly classified, Specificity is the proportion of undamaged building pixels correctly
classified, Precision is a positive predictive value that represents the proportion of actual damaged
building pixels to those classified as damaged buildings by the model, Accuracy is the proportion of
the correctly classified damaged and undamaged pixels, and F1-score means the harmonic mean of
precision and sensitivity [23,31,42]. Statistical indices are calculated as follows.

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

Accuracy =
TP + TN

TP + TN + FN + FP
(5)

F1-score = 2×
Precision× Sensitivity
Precision + Sensitivity

(6)

In addition, the models created based on the three methodologies were verified using the receiver
operating characteristics (ROC) curve method. This method evaluates overall model performance by
calculating the area under the ROC curve (AUC) values. The AUC can be classified as follows: excellent
(0.9–1), very good (0.8–0.9), good (0.7–0.8), average (0.6–0.7), and poor (0.5–0.6) [28]. The y-axis of the
ROC curve graph represents sensitivity, or the true positive rate. The x-axis represents 1—specificity,
or the false positive rate.

4. Results

4.1. Model Validation and Comparison

Based on the results of the statistical metrics, the performances of the models were compared
(Table 1). The RF model showed a value of 1.000 with respect to all statistical indices, and generally
showed excellent performance among the three models. The DT and FR models showed that the value
of DT was higher than that of FR in most statistical indices. Its specificity was DT (0.842) and FR (0.415),
and precision was DT (0.838) and FR (0.583). The accuracy was shown as DT (0.828) and FR (0.616),
and F1-score as DT (0.826) and FR (0.584), whereas, for sensitivity, FR (0.816) was slightly higher than
DT (0.814).
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Table 1. Performance results of three models using training and test datasets.

Training Dataset Test Dataset

FR DT RF FR DT RF

TP 5628 5614 6890 2573 2257 2545

TN 2862 5804 6890 939 2394 2609

FP 4031 1089 3 2015 560 345

FN 1265 1279 3 381 697 409

Sensitivity 0.816 0.814 1.000 0.871 0.764 0.862

Specificity 0.415 0.842 1.000 0.318 0.810 0.883

Precision 0.583 0.838 1.000 0.561 0.801 0.881

Accuracy 0.616 0.828 1.000 0.594 0.787 0.872

F1-score 0.584 0.826 1.000 0.616 0.782 0.881

AUC 0.661 0.899 1.000 0.655 0.851 0.949

The three models were verified for prediction ability using a test dataset. Most statistical indices
showed that the highest value for RF, followed by DT and FR. The specificity was shown as RF (0.883),
DT (0.810), and FR (0.318), and for FR, undamaged buildings were not the best classified. The precision
was shown to be RF (0.881), DT (0.801), and FR (0.561), which best matched the positive predicted values
of the model with the actual damaged buildings. Its accuracy was shown as RF (0.872), DT (0.787),
and FR (0.594); the RF model was the best in classifying the damaged and undamaged buildings.
The F1-score, which considered precision and sensitivity, was shown as RF (0.881), DT (0.782), and FR
(0.616). For sensitivity, FR (0.871) was the highest, which was the best at classifying actual damaged
buildings, followed by RF (0.862) and DT (0.764). These results confirmed that the RF model seems to
be most suitable for predicting the damaged buildings.

The performance accuracy of the model was verified by calculating the success and prediction
rates through ROC curves (Figures 4 and 5). The success rate is a measure of the training degree of
the model based on the training data, and the prediction rate is a measure of how well the model
predicts damage to the building based on the test data. We verified the accuracy of all models using
the IBM SPSS software (ver. 25). The FR model exhibited a success rate of 0.661 and a prediction rate of
0.655. The DT model constructed the optimal model by adjusting the minsplit, minbucket, maxdepth,
and cp values based on the training datasets. In this study, the optimal model was created at minsplit,
minbucket, maxdepth, and cp values of 20, 7, 30, and 0.001, respectively. The success and prediction
rates were 0.899 and 0.851, respectively. RF also created the optimal model by adjusting the ntree and
mtry values based on training datasets. The highest accuracy was observed at an ntree of 8000 and
mtry of 6. The RF model showed the highest performance among the three methodologies, with a
success rate of 1.000 and prediction rate of 0.949. The validation based on the statistical indices and
ROC curves confirmed that the RF model is the most suitable model for the training and test datasets.

4.2. Relative Importance of Factors

After deriving the optimal model for each methodology, we determined the relative importance
of the 18 sub-indicators. First, for the FR model, each factor was divided into six classes using the
natural breaks method to identify the class with the largest impact on seismic vulnerability. FR values
were calculated for the sub-indicators in each class based on the number of pixels corresponding
to undamaged and damaged buildings, respectively (Table 2). The classes with the greatest impact
on seismic vulnerability were: altitude of 86.061–138.262 m (FR = 1.23), slope of 1.716–4.291◦ (1.11),
groundwater level of 21.047–37.061 m (1.47), fault distance of 6.124–7.946 km (1.26), epicenter distance
of 0.028–3.183 km (1.24), PGA of 0.244–0.288 g (1.17), building age of 33–59 years (1.38), 5–7 building
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floors (1.53), construction materials consisting of concrete mixed with steel (1.44), building density of
949.480–1169.540 (1.53), child population of 1020–1279 (1.21), elderly population of 526 (1.94),
population density of 201.358–586.957 (1.76), 0.000–1.205 km distance from police stations (1.18),
0.000–1.431 km distance from fire stations (1.16), 4.216–5.646 km distance from hospitals (1.16),
0.000–0.116 km distance from roads (1.05), and 0.000–0.680 distance from gas stations (1.16).
Buildings corresponding to these classes are predicted to experience the highest degree of damage due
to earthquakes.

Sustainability 2020, , x FOR PEER REVIEW 10 of 22 

methodologies, with a success rate of 1.000 and prediction rate of 0.949. The validation based on the 
statistical indices and ROC curves confirmed that the RF model is the most suitable model for the 

Figure 4. Success rates using the training dataset; (a) frequency ratio (FR), (b) decision tree (DT), and 
(c) random forest (RF) models. 

Figure 5. Prediction rates using test dataset: (a) FR, (b) DT, and (c) RF models. 

4.2. Relative Importance of Factors 

After deriving the optimal model for each methodology, we determined the relative importance
of the 18 sub-indicators. First, for the FR model, each factor was divided into six classes using the 
natural breaks method to identify the class with the largest impact on seismic vulnerability. FR values 
were calculated for the sub-indicators in each class based on the number of pixels corresponding to 
undamaged and damaged buildings, respectively (Table 2). The classes with the greatest impact on 
seismic vulnerability were: altitude of 86.061–138.262 m (FR = 1.23), slope of 1.716–4.291° (1.11), 
groundwater level of 21.047–37.061 m (1.47), fault distance of 6.124–7.946 km (1.26), epicenter 
distance of 0.028–3.183 km (1.24), PGA of 0.244–0.288 g (1.17), building age of 33–59 years (1.38), 5–7 
building floors (1.53), construction materials consisting of concrete mixed with steel (1.44), building 
density of 949.480–1,169.540 (1.53), child population of 1020–1279 (1.21), elderly population of 526 
(1.94), population density of 201.358–586.957 (1.76), 0.000–1.205 km distance from police stations 
(1.18), 0.000–1.431 km distance from fire stations (1.16), 4.216–5.646 km distance from hospitals (1.16), 
0.000–0.116 km distance from roads (1.05), and 0.000–0.680 distance from gas stations (1.16). Buildings 
corresponding to these classes are predicted to experience the highest degree of damage due to 
earthquakes.  

Figure 4. Success rates using the training dataset; (a) frequency ratio (FR), (b) decision tree (DT), and
(c) random forest (RF) models.

Sustainability 2020, , x FOR PEER REVIEW 10 of 22 

methodologies, with a success rate of 1.000 and prediction rate of 0.949. The validation based on the 
statistical indices and ROC curves confirmed that the RF model is the most suitable model for the 
training and test datasets. 

Figure 4. Success rates using the training dataset; (a) frequency ratio (FR), (b) decision tree (DT), and 
(c) random forest (RF) models. 

Figure 5. Prediction rates using test dataset: (a) FR, (b) DT, and (c) RF models. 

4.2. Relative Importance of Factors 

After deriving the optimal model for each methodology, we determined the relative importance
of the 18 sub-indicators. First, for the FR model, each factor was divided into six classes using the 
natural breaks method to identify the class with the largest impact on seismic vulnerability. FR values 
were calculated for the sub-indicators in each class based on the number of pixels corresponding to 
undamaged and damaged buildings, respectively (Table 2). The classes with the greatest impact on 
seismic vulnerability were: altitude of 86.061–138.262 m (FR = 1.23), slope of 1.716–4.291° (1.11), 
groundwater level of 21.047–37.061 m (1.47), fault distance of 6.124–7.946 km (1.26), epicenter 
distance of 0.028–3.183 km (1.24), PGA of 0.244–0.288 g (1.17), building age of 33–59 years (1.38), 5–7 
building floors (1.53), construction materials consisting of concrete mixed with steel (1.44), building 
density of 949.480–1,169.540 (1.53), child population of 1020–1279 (1.21), elderly population of 526 
(1.94), population density of 201.358–586.957 (1.76), 0.000–1.205 km distance from police stations 
(1.18), 0.000–1.431 km distance from fire stations (1.16), 4.216–5.646 km distance from hospitals (1.16), 
0.000–0.116 km distance from roads (1.05), and 0.000–0.680 distance from gas stations (1.16). Buildings 
corresponding to these classes are predicted to experience the highest degree of damage due to 
earthquakes.  

Figure 5. Prediction rates using test dataset: (a) FR, (b) DT, and (c) RF models.

Table 2. Frequency ratio of each factor.

Class
No. of

Pixels in
Building

Building
(%)

No. of
Pixels in
Damaged
Building

Damaged
Building

(%)

Frequency
Ratio

Altitude
(m)

1.545–46.289 40,284 43.96 4221 42.87 0.98

46.289–86.061 24,840 27.11 2399 24.36 0.90

86.061–138.262 17,421 19.01 2308 23.44 1.23

138.262–220.292 6468 7.06 746 7.58 1.07

220.292–366.952 1787 1.95 164 1.67 0.85

366.952–635.414 842 0.92 9 0.09 0.10



Sustainability 2020, 12, 7787 11 of 22

Table 2. Cont.

Class
No. of

Pixels in
Building

Building
(%)

No. of
Pixels in
Damaged
Building

Damaged
Building

(%)

Frequency
Ratio

Slope
(degree)

0–1.716 47,128 51.43 5278 53.60 1.04

1.716–4.291 23,371 25.50 2778 28.21 1.11

4.291–7.725 13,189 14.39 1264 12.4 0.89

7.725–12.016 5533 6.04 380 3.86 0.64

12.016–18.597 1996 2.18 113 1.15 0.53

18.597–72.959 425 0.46 34 0.35 0.74

Groundwater
level (m)

0.346–7.377 30,754 33.56 2399 24.36 0.73

7.377–12.845 39,133 42.70 4469 45.38 1.06

12.845–21.047 15,209 16.60 2080 21.12 1.27

21.047–37.061 5153 5.62 813 8.26 1.47

37.061–83.346 1075 1.17 73 0.74 0.63

83.346–99.947 318 0.35 13 0.13 0.38

Distance from
faults (km)

0–1.973 25,199 27.50 2825 28.69 1.04

1.973–3.947 29,228 31.89 3021 30.68 0.96

3.947–6.124 15,147 16.53 1376 13.97 0.85

6.124–7.946 10,904 11.90 1479 15.01 1.26

7.946–9.768 6947 7.58 758 7.70 1.02

9.768–12.906 4217 4.60 389 3.95 0.86

Distance from
epicenters

(km)

0.028–3.183 17,765 19.39 2368 24.05 1.24

3.183–6.112 35,244 38.46 4529 45.99 1.20

6.112–10.731 21,506 23.47 1931 19.61 0.84

10.731–16.590 5767 6.29 686 6.97 1.11

16.590–21.886 9184 10.02 326 3.31 0.33

21.886–28.758 2176 2.37 7 0.07 0.03

PGA (g)

0.045–0.182 12,241 13.36 536 5.44 0.41

0.182–0.244 23,945 26.13 2985 30.31 1.16

0.244–0.288 38,745 42.28 4878 49.54 1.17

0.288–0.371 14,222 15.52 1187 12.05 0.78

0.371–0.510 1966 2.15 236 2.40 1.12

0.510–0.705 523 0.57 25 0.25 0.44

Age of
buildings

(year)

1–17 36,688 40.03 3606 36.62 0.91

18–32 34,320 37.45 3584 36.40 0.97

33–59 13,275 14.49 1964 19.95 1.38

60–98 6243 6.81 569 5.78 0.85

99–172 1050 1.15 119 1.21 1.05

173–562 66 0.07 5 0.05 0.71

Number of
floors

1–2 72,680 79.31 7121 72.32 0.91

3–4 12,901 14.08 1870 18.99 1.35

5–7 3967 4.33 651 6.61 1.53

8–12 1071 1.17 128 1.30 1.11

13–16 786 0.86 62 0.63 0.73

17–20 237 0.26 15 0.15 0.59
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Table 2. Cont.

Class
No. of

Pixels in
Building

Building
(%)

No. of
Pixels in
Damaged
Building

Damaged
Building

(%)

Frequency
Ratio

Construction
materials

Masonry 17,578 19.18 1642 16.68 0.7

Concrete 27,048 29.51 3684 37.41 1.27

Wood 11,096 12.11 1258 12.78 1.06

Steel 35,262 38.48 3167 32.16 0.84

Concrete + Steel 621 0.68 96 0.97 1.44

Etc. 37 0.04 0 0.00 0.00

Density of
buildings

0.476–156.351 65,002 70.93 6401 65.00 0.92

156.351–376.410 10,396 11.34 914 9.28 0.82

376.410–596.469 3409 3.39 412 4.18 1.23

596.469–770.682 4205 4.59 675 6.85 1.49

770.682–949.480 4586 5.00 732 7.43 1.49

949.480–1169.540 4344 4.74 713 7.24 1.53

Child
population
(age < 15)

93–183 7735 8.44 868 8.81 1.04

183–329 15,254 16.65 1823 18.51 1.11

329–603 14,290 15.59 1431 14.53 0.93

603–1020 8821 9.63 944 9.59 1.00

1020–1279 20,238 22.08 2628 26.69 1.21

1279–4944 25,304 27.61 2153 21.86 0.79

Elderly
population
(age ≥ 65)

526 2414 2.63 503 5.11 1.94

526–1553 23,499 25.64 1441 14.63 0.57

1553–2032 23,470 25.61 3026 30.73 1.20

2032–2432 10,406 11.36 1354 13.75 1.21

2432–3951 27,009 29.47 3410 34.63 1.17

3951–6118 4844 5.29 113 1.15 0.22

Population
density

23.390–82.713 16,580 18.09 1414 14.36 0.79

82.713–201.358 41,645 45.44 3256 33.07 0.73

201.358–586.957 11,329 12.36 2138 21.71 1.76

586.957–2603.934 2674 2.92 40 4.09 1.40

2603.934–5599.739 10,414 11.36 1065 10.82 0.95

5599.739–7587.056 9000 9.82 1571 15.95 1.62

Distance
from police

stations (km)

0–1.205 36,638 39.98 4626 46.98 1.18

1.205–2.458 19,864 21.68 2006 20.37 0.94

2.458–3.807 17,359 18.96 1468 14.91 0.79

3.807–5.350 10,379 11.33 1201 12.20 1.08

5.350–8.145 6883 7.51 540 5.48 0.73

8.145–12.291 519 0.57 6 0.06 0.11

Distance
from fire

stations (km)

0–1.431 34,930 38.12 4363 44.31 1.16

1.431–2.766 22,245 24.27 2233 22.68 0.93

2.766–4.102 14,318 15.62 1357 13.78 0.88

4.102–5.533 12,231 13.35 1212 12.31 0.92

5.533–8.204 7425 8.10 670 6.80 0.84

8.204–12.164 493 0.54 12 0.12 0.23
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Table 2. Cont.

Class
No. of

Pixels in
Building

Building
(%)

No. of
Pixels in
Damaged
Building

Damaged
Building

(%)

Frequency
Ratio

Distance from
hospitals

(km)

0–0.828 35,977 39.26 4115 41.79 1.06

0.828–1.919 20,364 22.22 1976 20.07 0.90

1.919–3.011 15,086 16.46 1637 16.62 1.01

3.011–4.216 10,804 11.79 1044 10.60 0.90

4.216–5.646 6744 7.36 840 8.53 1.16

5.646–9.599 2667 2.91 235 2.39 0.82

Distance from
roads (km)

0–0.116 54,351 59.31 6110 62.05 1.05

0.116–0.311 22,932 25.02 2371 24.08 0.96

0.311–0.610 9430 10.29 993 10.08 0.98

0.610–1.025 2706 2.95 258 2.62 0.89

1.025–1.609 1674 1.83 103 1.05 0.57

1.609–3.310 549 0.60 12 0.12 0.20

Distance from
gas stations

(km)

0–0.680 47,099 51.39 5860 59.51 1.16

0.680–1.391 19,988 21.81 2006 20.37 0.93

1.391–2.195 13,483 14.71 1158 11.76 0.80

2.195–3.091 6706 7.32 571 5.80 0.79

3.091–4.390 3363 3.67 216 2.19 0.60

4.390–7.884 1003 1.09 36 0.37 0.33

Importance scores for the various factors considered in the DT model are shown in Table 3. PGA was
found to have the largest impact on building damage due to earthquakes (importance = 434.591),
followed by epicenter distance (404.310) and distance from fire stations (307.873). Factors with the
smallest impact on seismic vulnerability were related to construction materials (masonry, concrete,
wood, steel, and concrete/steel mixture) and slope.

In the RF model, the percent mean square error (%IncMSE) and node purity (IncNodePurity)
were determined as measures of factor importance in regression tree analysis. Maximum %IncMSE
is reached when the variable with the highest value is removed from the model. An increase in
IncNodePurity indicates a decrease in the Gini coefficient and includes a reduction in the residual
sum of squares of the model. The Gini coefficient is a measure of tree node homogeneity; high Gini
coefficient values indicate greater importance of the corresponding variable [67]. Epicenter distance
(337.065) exhibited the highest %IncMSE, followed by distance from fire stations (325.576) and PGA
(313.262) (Table 3). Epicenter distance (287.309) was found to be the most important factor based on
IncNodePurity, followed by PGA (271.752) and altitude (254.792). Thus, epicenter distance and PGA
have the greatest impact on seismic vulnerability according to the RF model, whereas factors related to
construction materials are of low importance.

4.3. Seismic Vulnerability Mapping

Three seismic vulnerability maps were created based on data for all 71,888 buildings in Gyeongju.
In the FR map, FR values were applied to each of the six classes for each sub-indicator. The final seismic
vulnerability map was created by superimposing the resulting 18 sub-indicators. Seismic vulnerability
maps based on the DT and RF models were created based on the prediction values of the models.
In all three seismic vulnerability maps, indicator values were normalized to between 0 and 1, and then
divided at equal intervals into five risk classes: safe, low risk, moderate risk, high risk, and very
high risk.
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Table 3. Importance variables of the DT and RF models.

Sub-indicators
Decision Tree Random Forest

Importance %IncMSE IncNodePurity

Altitude 279.939 287.574 254.792

Slope 54.361 274.164 158.876

Groundwater level 202.317 233.859 243.677

Distance from faults 277.124 286.898 228.597

Distance from epicenters 404.310 337.065 287.309

PGA 434.591 313.262 271.752

Age of buildings 152.917 298.006 222.635

Number of floors 93.618 166.177 96.625

Construction materials
Materials1 (masonry) 23.931 117.912 21.721
Materials2 (concrete) 43.296 68.501 20.897

Materials3 (wood) 0.000 84.983 13.467
Materials4 (steel) 72.115 122.198 47.492

Materials5 (concrete + steel) 0.000 39.827 2.189
Materials6 (etc.) 0.000 0.000 0.051

Density of buildings 240.093 287.399 202.289

Child population 169.186 124.942 62.086

Elderly population 273.094 114.642 81.323

Population density 192.077 168.966 115.059

Distance from police stations 284.950 308.095 201.307

Distance from fire stations 307.873 325.576 206.928

Distance from hospitals 211.459 290.069 204.312

Distance from roads 86.381 286.063 157.197

Distance from gas stations 251.988 302.629 198.339

Based on the resulting maps, the distribution of Gyeongju buildings’ risk classes was compared
among administrative districts. In the FR map, 589 buildings (0.82%) were classified as safe, 9999 (13.91%)
as low risk, 36,172 (50.32%) as moderate risk, 21,299 (29.63%) as high risk, and 3829 (5.33%) as very
high risk. Areas that are more vulnerable to earthquakes were then identified based on the sum of the
proportions of buildings corresponding to high and very high risk. District 11 was found to be the
most vulnerable district to earthquake damage, followed by districts 12, 9, 8, and 15. Among areas
classified as safe and low risk, district 2 was found to be the safest, followed by districts 23, 1, 20,
and 18 (Figure 6). In the DT map, 33,890 buildings (47.14%) were classified as safe, 13,621 (18.95%)
as low risk, 9305 (12.94%) as moderate risk, 7593 (10.56%) as high risk, and 7479 (10.40%) as very
high risk. The most vulnerable areas were districts 14, 7, 17, 15, and 8, whereas the safest areas were
districts 19, 18, 23, 2, and 1 (Figure 7). In the RF map, 23,803 buildings (33.11%) were classified as safe,
26,429 (36.76%) as low risk, 13,669 (19.01%) as moderate risk, 6548 (9.11%) as high risk, and 1439 (2.00%)
as very high risk. The most vulnerable areas were districts 14, 7, 15, 17, and 12, whereas the safest
areas were districts 2, 18, 19, 23, and 5 (Figure 8). Figure 9 shows the building distribution by risk class.
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5. Discussion

In this study, three seismic vulnerability maps were created based on FR, DT, and RF methodologies,
and their results were compared. First, we analyzed the importance of sub-indicators according to
each methodology. Epicenter distance and PGA exhibited high importance in both the DT and RF
models. Among all 9847 building cells, 5386 (54.70%) and 8756 (88.92%) corresponded to damaged
buildings within 5 and 10 km of an epicenter, respectively. These results confirmed that most buildings
close to epicenters were damaged; accordingly, this factor had a large influence on model construction.
According to the seismic design criteria of South Korea, for an earthquake with a return period of
1000 years, the design ground acceleration of ground with normal rock (SB) is 0.154 g, whereas that of
very dense ground (SC) is 0.18 g [3]. Based on these criteria, 9356 of cells corresponding to damaged
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buildings (95.01%) were found in areas where PGA exceeded 0.18 g. Thus, most cells exhibited values
higher than the design ground acceleration, which indicates that ground acceleration caused building
damage during the 2016 Gyeongju Earthquake, and that PGA exerted a large influence on seismic
vulnerability model construction. Factors exhibiting low importance included construction materials
(masonry, concrete, wood, and steel/concrete mixture).

Among all damaged building cells, 3083 (31.31%) corresponded to buildings made of masonry or
wood, which are relatively vulnerable construction materials. A much larger proportion of damaged
building cells corresponded to concrete and steel, which are relatively strong construction materials.
In addition, Gyeongju City, as a historic site, has many old buildings that correspond to the relatively
weak wood and masonry. However, the corresponding buildings continue to be renovated to preserve
historical values. Finally, it can be seen that most affected buildings are small buildings excluded from the
seismic design targets (one- or two-story buildings with a floor area of less than 500 square meters) [68].
Therefore, construction materials are somewhat unsuitable for seismic vulnerability assessment.

Next, model success and prediction rates were analyzed to determine their functional differences.
The RF model was found to be the most reliable among the three models, with the highest success
(1.000) and prediction rates (0.949). The RF model complements the shortcomings of a single tree
and operates well on large datasets; therefore, it performed best due to the relatively large number
of datasets used in this study. The DT model showed the next best performance, with success and
prediction rates of 0.899 and 0.851, respectively. The FR model showed success and prediction rates of
0.661 and 0.655, respectively, indicating low accuracy and underfitting, which prevents the reflection
of important trends due to oversimplicity [69]. Therefore, the FR model is somewhat unsuitable for
seismic vulnerability assessment.

Several studies of disaster susceptibility have also compared model performance among
methodologies similar to those used in the present study. Xiao et al. (2019) [70] produced landslide
susceptibility maps of Wanzhou County, China, using FR, certainty factor (CF), index of entropy (IOE),
and RF methodologies. The prediction accuracy values of the models descended in the following order:
RF (0.801), IOE (0.738), CF (0.732), and FR (0.728). Among the three statistical and probabilistic models,
RF, based on machine learning, showed the highest accuracy, and IOE, based on weighted coefficients,
showed the highest performance. Chen et al. (2017) [60] compared three tree-based data-mining
techniques for the spatial prediction of landslide susceptibility: RF, CART, and logistic model tree
(LMT). The prediction accuracy of the models descended in the following order: RF (0.781), LMT (0.752),
and CART (0.742), with somewhat low overall accuracy. In a similar study, Pham et al. (2017) [71]
created models based on four tree-based machine learning methods (RF, CART, LMT, and best first
DTs (BFDT)) and compared their performance for landslide susceptibility assessment and mapping.
The RF model exhibited the highest prediction accuracy (98.5%), followed by LMT (0.945), BFDT (0.934),
and CART (0.933). Thus, several studies have found that tree-based machine learning models exhibited
higher performance than statistical models, and RF models exhibited high performance in most studies,
confirming their suitability for vulnerability analysis. In a previous study, Han et al. (2019) [20] used
15 factors except for social indicators to build LR and SVM kernel models to compare and analyze their
performance. The results showed that the performance of the model based on the radial basis function
(RBF) kernel (0.998) of SVM was the best, followed by polynomial (0.842), linear (0.649), LR (0.649),
and sigmoid (0.630). The prediction rates were shown for RBF (0.919), polynomial (0.804), LR (0.655),
linear (0.651), and sigmoid (0.629). The results showed with the prediction rates that the RF model was
about 3% more accurate than the RBF kernel-based model.

Finally, we compared the seismic vulnerability maps created in this study. In all three maps,
district 15 (Wolseong) was found to be the most dangerous area, whereas districts 2 (Gangdong),
18 (Yangbuk), and 23 (Yangnam) were identified as safe. Therefore, we mainly focused our sub-indicator
characterization and comparison analyses on these districts. District 15 is located in central Gyeongju,
with an epicenter distance of 2.798 km, fault distance of 4.269 km, PGA of 0.262 g, altitude of 62.825 m,
and groundwater level of 15.078 m. In terms of its structural indicators, district 15 has a building density
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and age of 322.834 and 43 years, respectively. Among all of the buildings in this district, 1521 (68.36%)
are less than 50 years in age. District 15 has a population density of 237.167. In contrast, districts 2, 18,
and 23 are located near the northern and southeastern coasts of Gyeongju, with epicenter and fault
distances of 11.211 and 4.407 km, respectively, which are further than those of district 15. These districts
have a PGA of 0.159 g, altitude of 54.165 m, and groundwater level of 10.292 m, which are lower than
those of district 15, as well as a building density and age of 85.869 (ca. 3.76-fold lower than that of
district 15) and 32 years, respectively. Among all buildings, 6469 (77.90%) are less than 50 years in age.
These districts have a population density of 68.997, which is ca. 3.44-fold lower than that of district 15.
There was no significant difference in the average values of five capacity-related factors (distance from
hospitals, police stations, fire stations, roads, and gas stations) between dangerous and safe areas.

This study is meaningful in evaluating seismic vulnerability by comprehensively considering
18 factors related to geotechnical, physical, social, and capacity indicators, along with structural
characteristics. It was also intended to derive a model suitable for the assessment of seismic vulnerability
in Gyeongju by establishing models corresponding to various methodologies. Based on the results of
the study, the seismic vulnerability assessment data provided in this study may be used as reference
data for selecting parameters for seismic vulnerability assessments in other regions using more or
fewer influence factors. The proposed method is also expected to contribute to improving seismic
vulnerability assessment and mapping in domestic areas other than Gyeongju.

6. Conclusions

In this study, seismic vulnerability maps were created and seismic vulnerability assessment
was performed for buildings in Gyeongju, South Korea using the probabilistic FR model and
machine-learning-based DT and RF models. Models were created for each methodology using 18
factors affecting seismic vulnerability (slope, altitude, groundwater level, PGA, epicenter distance, fault
distance, building age, construction materials, building density, number of floors, elderly population,
child population, population density, and distances from hospitals, fire stations, police stations, roads,
and gas stations) as independent variables and buildings damaged in the 2016 Gyeongju Earthquake as
dependent variables. Epicenter distance and PGA were found to be the most important factors in the
DT and RF models, and factors related to construction materials were the least important. These results
may be used as reference data for models based on other methodologies. Model accuracy (success
and prediction rates) was verified using ROC curves; the RF and FR models exhibited the highest
and lowest performance, respectively, indicating that the machine-learning- based model is more
suitable for seismic vulnerability assessment. Dangerous and safe areas were identified based on the
seismic vulnerability maps created using the three models; in all three maps, district 15 was found to
be the most dangerous area and districts 2, 18, and 23 were the safest areas. Therefore, district 15 must
be managed first in preparation for future earthquakes. The seismic vulnerability maps created in
this study facilitate intuitive identification of dangerous districts within the target area, which will
prevent greater damage in future earthquakes through the establishment of evacuation routes for
residents. As reference data, our findings may be used for developing earthquake-related policies and
determining suitable locations for vulnerable infrastructure (e.g., pipelines or high-voltage facilities),
as well as important national facilities (e.g., airports, military facilities, and nuclear power plants).
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