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Abstract: Problems related to sustainable urban transport have gained in importance with the rapid
growth of urban agglomerations. There is, therefore, a need to support decision-making processes
in this area, a trend that is visible in the literature. Many methods have already been presented as
a useful decision-making tool in this field. However, it is still a significant challenge to properly
determine the relevance of the criteria because it is one of the most critical points of many presented
techniques to solve decision problems. In this work, we propose two new approaches to determining
the relevance of particular decision criteria effectively in sustainable transport problems. For this
purpose, we examine a study case for the evaluation of electric bikes evaluated against eight criteria,
which have been taken from earlier work. We calculate the relevance of each criterion using four
different approaches and then evaluate their effectiveness using a reference ranking and popular
multi-criteria decision analysis methods. The results are compared with each other by using similarity
coefficients. Finally, we summarize the results obtained and set out further methods of development.

Keywords: decision-making; multi-criteria decision analysis; MCDA; weighting methods; sustainable
transport problems; fuzzy logic

1. Introduction

The massive desire to move to larger cities allows humanity to develop at faster rates. Nearly half
of today’s world lives in urban areas, and by 2045 the quantity of citizens will rise by 150%. Scientists
estimate that the population of cities can reach 6 billion [1]. The number of motorized vehicles is
increasing every day, and this number has already reached 1 billion. Growing quality of life provokes
the production of millions of new units in the transport sector [2,3]. Urbanization is taking the transport
system to the next level. The fundamental factor in human development is the ability to save time.
The availability of affordable transportation at our fingertips allows us to save several hours a day.
Critical attitudes towards Sustainable Development Goals reaffirm the importance of this issue [4].
However, an equally important aspect is the impact of so many vehicles on the environment. All this
leads to increased air pollution, which in turn has dire consequences: worsening of the immune system,
respiratory diseases, and premature death [5]. Scientists estimate the number of deaths caused by
pollution to be 9 million in 2015, three times more fatalities than from AIDS, tuberculosis, and malaria
united and 15 times more than from all kinds of violence [6].

The importance of urban transport is becoming more and more evident. Growing influence
provokes the growth of city-mover complexity in terms of sustainability [6]. Scientists search
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for solutions to this issue using a variety of innovative methods [7,8]. The above problem is
relevant not only for metropolitan areas [9], but also for centers in developing countries [10,11].
The vital role of transport in the sustainability of the cities has been ascertained in previous papers,
motivating researchers to explore new solutions in the area [12]. The degree of importance of
transport systems in ensuring the sustainability of cities has already been defined in previous
articles, stimulating researchers to search for new approaches in this field. Demand generates supply.
As a result, modernize techniques have been put forward to improve existing transport systems
while addressing the environmental and economic aspects that cause the current instability [13,14].
Unfortunately, previous studies did not practically investigate specific urban transport, with a focus
on the supply chain [15]. Moreover, researchers in sustainable urban transport need to pay attention to
a wide range of criteria, such as environmental, financial, social, constitutional, and administrative
points [16]. In this case, the most suitable methods are fuzzy logic or multi-criteria solution analysis
(MCDA) [17–19], using different techniques to solve the problems. The MCDA method, which has
proven its effectiveness in assessing transport sustainability [20–22], is used to solve problems related
to sustainable solutions [23,24]. Therefore, it applies to the assessment of transport sustainability,
which has been proven many times. Given the desire for sustainability assessment, renewable energy
sources should also be considered. Zero-emission energy sources are a good alternative, as they meet
high availability and cleanliness requirements [25,26]. There are many suitable techniques to study
problems related to renewable energy sources. For example, the PROMETHEE method for stability
assessment (PROSA) [27,28] is used in the evaluation of offshore farm wind sites or the Analytic
Network Process (ANP) and Analytic Hierarchy Process (AHP) [29] for the design of wind farms.
Consequently, as the energy sector becomes greener, studies have shown that there is a growing interest
in sustainable means of transport, such as public city buses or electric vans [30,31].

Providing the requirements of present and future optimal means of transport is a key to sustainable
urban transport. A huge variety of research and practical initiatives were initiated in this area in
recent years which can be shown [1,32,33]. They involve both works concentrated on planning a policy
of constructing and improving sustainable urban transport [34–36], as plans of tactical [37–39] and
operational [40] scope, concentrated for example on choosing and judgment of picked alternatives
of ecological urban logistics [41–43]. It should be mentioned that active evolution of technologies
offering new efforts in modernizing present sustainable options and exploring new ones in the city
logistics and transport—for example, the search for a portfolio of relevant models of ecological city
transport—should be shared by multiple layers [44] with the use of the total set of accessible transport
options [45]. Furthermore, solutions, such as car sharing, which proved to be useful in sustainable
transport fields, should be coexisting with other pro-ecological units of a single unified system of
sustainable city logistics, like e-bikes, e-motors, and bikes [46–49].

Ordinarily, a sustainable city transport requires a comprehensive approach to determine resolution
in which vehicle will fulfill a set of external conditions (e.g., climate conditions), technical or urbanistic
options while providing a suitable level of safety [50]. As mentioned, the construction of necessary
conjunction-diverse models of sustainable transport is a relevant task, and to complete it e-bikes
may be a solution. Compared to fuel-powered cars electric bicycles are cheap and their usage cost is
undoubtedly economical [51]. Furthermore, e-bikes are more comfortable than other green kinds of city
transport, like traditional bicycles, moreover they decrease movement in urban areas which is especially
advantageous for a city with high levels of traffic. E-bikes require less physical activity in comparison
to traditional bikes, also they reach a higher speed of movement that can cause injuries. Still, they
grant such positive sides as minor emissions of pollution, reduction the level of loud noises and affect
the overall perception of a sustainable future, for example. Presently, various modern cities try to limit
the usage of fuel-powered cars and several are planning finally to remove existing ones completely
or absolutely ban future sales [52]. Support of eco-friendly vehicles causes an increasing interest in
the trend toward electric means of transport in the near future [53]. The dynamic development of
technologies affects the number of accessible sustainable vehicles, like e-bikes, electric-powered or
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hybrid cars. In such context, developing the methodological foundations for the rating of sustainable
transport becomes more and more necessary. Natural loss of selected data as malfunction reports data,
and loss of value of newly introduced variants over a few-year time span causes a specific problem
that as a result forces the requirement to improve the methodological guidelines in the background of
incomplete information in the model.

In modeling sustainable transport decision-making problems, a very big challenge remains to
determine the relevance of the decision criteria. In the literature, there are methods to obtain the
values of the criteria weights. However, these methods are not sufficiently investigated. In this
article, we research effectiveness for determining the relevance of criteria in sustainable transport
problems. Figure 1 presents the plan for the proposed research. We propose two new weighting
methods which are based on ranking similarity coefficients. For these purposes, we present a
comparative case study on the evaluation of electric bicycles. This is a continuation of previous
work [54], where a modern Characteristic Object METhod (COMET) method was used, and a reference
bicycle ranking was obtained. We compare the results for two proposed and two commonly used
weighting method. Based on four different approaches for determining the relevance of criteria,
we re-analyze the decision-making process using different standardization methods and Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) and VIKOR (in Serbian: VlseKriterijumska
Optimizacija I Kompromisno Resenje) methods. The resulting rankings are then compared with
a reference ranking that will help to determine the effectiveness of the investigated weighting
methods. The main contribution of our research is, therefore, to propose two new approaches to the
analysis of the relevance of decision-making criteria, and additionally to examine their effectiveness.
The differences between the existing and proposed methods are significant and encourage further
work in this direction.

MCDA problem

The COMET method

Weights
determining

Entropy method

Std method

WS weights

rw weights

Results
comparision

TOPSIS

VIKOR

Decision Matrix

Figure 1. The research procedure.

The rest of the paper is organized as follows. Section 2 contains a brief introduction to fuzzy set
theory, MCDA methods, correlation coefficients and normalization methods. The investigated study
case is described in Section 3, which was divided into two parts, describing the data used for research
(Section 3.1) and the research methodology (Section 3.2). Section 4 is devoted to the presentation of
results and their discussion, which takes place in Sections 4.1 and 4.2 for TOPSIS and VIKOR methods
respectively. Finally, the conclusions are formulated in Section 5.

2. Preliminaries

2.1. Fuzzy Set Theory

The idea of Fuzzy Set Theory was introduced by Lofti Zadeh in [55]. Fuzzy Set Theory is used in
many scientific fields and could be especially useful for solving MCDA problems [56–58]. Here we
present some definitions and basic concepts of the Fuzzy Set Theory which are necessary to understand
COMET method [59–61].
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Definition 1. The fuzzy set A in a certain non-empty space of solutions X is defined by (1).

A = {(x, µA(x)) ; x ∈ X} , (1)

where
µA(x) : X → [0, 1], (2)

is a membership function of the fuzzy set A. This function indicates the degree of the membership of the element
in the set A. µA(x) = 1 means full membership, 0 < µA(x) < 1 means partial membership and µA(x) = 0
means no membership at all.

Definition 2. The triangular fuzzy number A(a, m, b) is a fuzzy set which membership function is defined as
followed (3):

µA(x, a, m, b) =



0 x ≤ a
x−a
m−a a ≤ x ≤ m
1 x = m
b−x
b−m m ≤ x ≤ b
0 x ≥ b

(3)

and fulfill characteristics (4) and (5):

x1, x2 ∈ [a, m] ∧ x2 > x1 ⇒ µA (x2) > µA (x1) (4)

x1, x2 ∈ [m, b] ∧ x2 > x1 ⇒ µA (x2) < µA (x1) (5)

Definition 3. The support of a TFN—subset of the A set in which all elements have a non-zero membership
value in the A set (6).

S(Ã) = x : µÃ(x) > 0 = [a, b] (6)

Definition 4. The core of a TFN is a one-element fuzzy set (singleton) with membership value 1 (7).

C(Ã) = x : µĀ(x) = 1 = m (7)

Definition 5. The fuzzy rule—single fuzzy rule can be based on the Modus Ponens tautology. The reasoning
process uses the IF− THEN, OR and AND logical connectives.

Definition 6. The rule base—the rule base contains logical rules determining the relationships existing in the
system between the input and output sets.

Definition 7. The T-norm operator (intersection) is a function modeling the AND operation on two or more
fuzzy numbers. T-norm is described by following properties: boundary (8), monotonicity (9), commutativity (10),
associativity (11), for any a, b, c, d ∈ [0, 1].

T(0, 0) = 0, T(a, 1) = T(1, a) = a (8)

T(a, b) < T(c, d)⇔ if a < c and b < d (9)

T(a, b) = T(b, a) (10)

T(a, T(b, c)) = T(T(a, b), c) (11)
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Definition 8. The S-norm operator or T-conorm is a function modeling the OR operator of two or more fuzzy
numbers. It should fulfill the following properties: boundary (12), monotonicity (13), commutativity (14),
associativity (15), for any a, b, c, d ∈ [0, 1].

S(1, 1) = 1, S(a, 0) = S(0, a) = a (12)

S(a, b) < S(c, d)⇔ if a < c and b < d (13)

S(a, b) = S(b, a) (14)

S(a, S(b, c)) = S(S(a, b), c) (15)

2.2. Mcda Methods

2.2.1. COMET

The Characteristic Objects METhod (COMET) is based on fuzzy logic and triangular fuzzy sets.
The accuracy of the COMET method was verified in previous works [20,30,62]. The formal notation
of the COMET must be recalled based on [63–65], and Figure 2 presents the flowchart of the COMET
method as summarizing.

Step 0:
Initiate the process

Step 1:
Modeling structure of

the problem
Step 2:

Expert evaluation of
the Characteristic

Objects

Step 5:
Evaluation of the set of

alternatives

MCDA problem

Select a group of
experts

Determine the set of
alternatives

Select the decision
criteria

Step 3:
Expert evaluation of the
Characteristic Objects

Step 4:
Obtainment of the rule

base
Determine triangular

fuzzy numbers for each
criteria

Step 2:
Modeling structure of

the problem

Generate Characteristic
Objects based on TFNs

Pairwise comparison of
all Characteristic

Objects by an expert

Obtained MEJ matrix

Calculate estimated
preference value for
each Characteristic

Object

Generate the rule base
on the basis of the

Characteristic Object

Inference using rule
base

Final ranking

Figure 2. The procedure of the COMET method.

Step 1. Definition of the space of the problem—the expert determines the dimensionality of the
problem by selecting r criteria, C1, C2, . . . , Cr. Then, a set of fuzzy numbers is selected for each criterion
Ci, e.g., {C̃i1, C̃i2, . . . , C̃ici} (16):

C1 =
{

C̃11, C̃12, . . . , C̃1c1

}
C2 =

{
C̃21, C̃22, . . . , C̃2c2

}
· · ·

Cr =
{

C̃r1, C̃r2, . . . , C̃rcr

} (16)

where C1, C2, . . . , Cr are the ordinals of the fuzzy numbers for all criteria.
Step 2. Generation of the characteristic objects—the characteristic objects (CO) are obtained with

the usage of the Cartesian product of the fuzzy numbers’ cores of all the criteria (17):

CO = 〈C (C1)× C (C2)× · · · × C (Cr)〉 (17)

As a result, an ordered set of all CO is obtained (18):

CO1 = 〈C(C̃11), C(C̃21), . . . , C(C̃r1)〉
CO2 = 〈C(C̃11), C(C̃21), . . . , C(C̃r1)〉

· · ·
COt = 〈C(C̃1c1), C(C̃2c2), . . . , C(C̃rcr )〉

(18)
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where t is the count of COs and is equal to (19):

t =
r

∏
i=1

ci (19)

Step 3. Evaluation of the characteristic objects—the expert determines the Matrix of Expert
Judgment (MEJ) by comparing the COs pairwise. The matrix is presented below (20):

MEJ =


α11 α12 · · · α1t
α21 α22 · · · α2t
· · · · · · · · · · · ·
αt1 αt2 · · · αtt

 (20)

where αij is the result of comparing COi and COj by the expert. The function fexp denotes the mental
judgment function of the expert. It depends solely on the knowledge of the expert. The expert’s
preferences can be presented as (21):

αij =


0.0, fexp (COi) < fexp

(
COj

)
0.5, fexp (COi) = fexp

(
COj

)
1.0, fexp (COi) > fexp

(
COj

) (21)

After the MEJ matrix is prepared, a vertical vector of the Summed Judgments (SJ) is obtained as
follows (22):

SJi =
t

∑
j=1

αij (22)

Eventually, the values of preference are approximated for each characteristic object. As a result,
a vertical vector P is obtained, where the i-th row contains the approximate value of preference for COi.

Step 4. The rule base—each characteristic object and its value of preference is converted to a fuzzy
rule as (23):

IF C
(
C̃1i
)

AND C
(
C̃2i
)

AND . . . THEN Pi (23)

In this way, a complete fuzzy rule base is obtained.
Step 5. Inference and the final ranking—each alternative is presented as a set of crisp numbers,

e.g., Ai = {αi1, αi2, αri}. This set corresponds to the criteria C1, C2, . . . , Cr. Mamdani’s fuzzy inference
method is used to compute the preference of the i-th alternative. The rule base guarantees that the
obtained results are unequivocal. The bijection makes the COMET completely rank reversal free.

2.2.2. TOPSIS

The TOPSIS method is a simple MCDA technique used in many practical problems. Thanks to
its simplicity of use it is widely used in solving multi-criteria problems. Below we present its
algorithm [66]. We assume that we have decision matrix with m alternatives and n criteria is
represented as X = (xij)m×n.

Step 1. Calculate the normalized decision matrix. The normalized values rij calculated according
to Equation (39) for profit criteria and (40) for cost criteria. We use this normalization method,
because [67] shows that it performs better that classical vector normalization.

rij =
xij −minj(xij)

maxj(xij)−minj(xij)
(24)

rij =
maxj(xij)− xij

maxj(xij)−minj(xij)
(25)



Sustainability 2020, 12, 7915 7 of 23

Step 2. Calculate the weighted normalized decision matrix vij according to Equation (26).

vij = wirij (26)

Step 3. Calculate Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) vectors. PIS is
defined as maximum values for each criterion (27) and NIS as minimum values (28). We do not need to
split criteria into profit and cost here, because in step 1 we use normalization which turns cost criteria
into profit criteria.

v+j = {v+1 , v+2 , · · · , v+n } = {maxj(vij)} (27)

v−j = {v−1 , v−2 , · · · , v−n } = {minj(vij)} (28)

Step 4. Calculate distance from PIS and NIS for each alternative. As shows Equations (29) and (30).

D+
i =

√√√√ n

∑
j=1

(vij − v+j )
2 (29)

D−i =

√√√√ n

∑
j=1

(vij − v−j )
2 (30)

Step 5. Calculate each alternative’s score according to Equation (31). This value is always between
0 and 1, and the alternatives which got values closer to 1 are better.

Ci =
D−i

D−i + D+
i

(31)

2.2.3. VIKOR

The VIKOR method, similarly to the TOPSIS method, is based on distance measurements. In this
approach a compromise solution is sought. The description of the method will be quoted according
to [68,69]. Let us say that we have decision matrix with m alternatives and n criteria is represented as
X = fij(Ai)m×n.

Step 1. Determine the best f ∗i and the worth f−i values for each criteria functions. Use (32) for
profit criteria and (33) for cost criteria.

f ∗j = max
i

fij, f−j = min
i

fij (32)

f ∗j = min
i

fij, f−j = max
i

fij (33)

Step 2. Calculate the Si and Ri values by Equations (34) and (35).

Si =
n

∑
j=1

wj

(
f ∗j − fij

)
/
(

f ∗j − f−j
)

(34)

Ri = max
j

[
wj

(
f ∗j − fij

)
/
(

f ∗j − f−j
)]

(35)

Step 3. Compute the Qi values using Equation (36).

Qi = v (Si − S∗) /
(
S− − S∗

)
+ (1− v) (Ri − R∗) /

(
R− − R∗

)
(36)

where

S∗ = mini Si, S∗ = mini Si
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R∗ = mini Ri, R∗ = maxi Ri

and v is introduced as a weigh for the strategy “majority of criteria”. We use v = 0.5 here.
Step 4. Rank alternatives, sorting by the values S, R, Q in ascending order. Result is three

ranking lists.
Step 5. Normally, we should use S, R, Q ranking lists to propose the compromise solution or set of

compromise solutions, as showed in [69,70]. However, in this paper would be used only Q ranking list.

2.3. Correlation Coefficients

Correlation coefficients make it possible to compare obtained results and determine how similar
they are. In this paper, we would use the weighted Spearman correlation coefficient (37) and
the rank similarity coefficient (38) to determine how similar obtained with COMET rankings to
reference rankings.

2.3.1. Weighted Spearman’s Rank Correlation Coefficient

For a sample of size N, the rank values xi and yi is defined as (37). In this approach, the positions
at the top of both rankings are more important. The weight of significance is calculated for each
comparison. It is the element that determines the main difference to the Spearman’s rank correlation
coefficient, which examines whether the differences appeared and not where they appeared.

rw = 1− 6 ∑N
i=1(xi − yi)

2((N − xi + 1) + (N − yi + 1))
N4 + N3 − N2 − N

(37)

2.3.2. Rank Similarity Coefficient

For a sample of size N, the rank values xi and yi is defined as (38) [71]. It is an asymmetric
measure. The weight of a given comparison is determined based on the significance of the position in
the first ranking, which is used as a reference ranking during the calculation.

WS = 1−
N

∑
i=1

2−xi
|xi − yi|

max(|xi − 1|, |xi − N|) (38)

2.4. Normalization Methods

In the literature, there is no clear assignment to which decision-makers’ methods of data
normalization are used. This situation poses a problem, as it is necessary to consider the influence of
particular normalization on the result. The most common normalization methods in MCDA methods
can be divided into two groups [72], i.e., methods designed to profit (39), (41), (43) and (45) and cost
criteria (40), (42), (44) and (46).

The minimum-maximum method—in this approach, the greatest and the least values in the
considered set are used. The formulas are described as follows (39) and (40):

rij =
xij −minj(xij)

maxj(xij)− Xmin
(39)

rij =
maxj(xij)− xij

maxj(xij)−minj(xij)
(40)

The maximum method—in this technique, only the greatest value in the considered set is used.
The formulas are described as follows (41) and (42):

rij =
xij

maxj(xij)
(41)
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rij = 1− xij

maxj(xij)
(42)

The sum method—in this method, the sum of all values in the considered set is used. The formulas
are described as follows (43) and (44):

rij =
xij

∑m
i=1 xij

(43)

rij =

1
xij

∑m
i=1

1
xij

(44)

The vector method—in this method, the square root of the sum of all values. The formulas are
described as follows (45) and (46):

rij =
xij√

∑m
i=1 x2

ij

(45)

rij = 1− xij√
∑m

i=1 x2
ij

(46)

2.5. Weighting Methods

2.5.1. Entropy Method

According to [73], entropy method is based on a measure of uncertainty in the information. It is
calculated using Equations (47)–(49) below.

pij =
xij

∑m
i=1 xij

i = 1, ..., m; j = 1, ..., n (47)

Ej = −
∑m

i=1 pijln(pij)

ln(m)
j = 1, ..., n (48)

wj =
1− Ej

∑n
i=1(1− Ei)

j = 1, ..., n (49)

2.5.2. Standard Deviation Method

This method is similar to entropy at some point, and assigns small weights to an attribute which
has similar values across alternatives. The SD method defined with Equations (50) and (51), where wj
is weight of criteria and σj is standard deviation [73].

σj =

√√√√∑m
i=1

(
xij − xj

)2

m
j = 1, . . . , n (50)

wj = σj/
n

∑
j=1

σj j = 1, . . . , n (51)

3. Study Case

3.1. Materials

The material used for this case study will be the data from the article [54], which concerns the
assessment of preferences for electric city bikes. For the analysis, eight criteria were used, which are
presented in detail in Table 1. It should be noted that each criterion has a different numerical domain.



Sustainability 2020, 12, 7915 10 of 23

This will be of particular importance when determining the relevance weighting of criteria. In Table 1,
there are also characteristic values determined for particular criteria, which is one of the most important
steps in the COMET method.

Table 1. Selected criteria C1–C8 and their characteristic values {low, medium, high} [54].

Ci Name Unit Low Medium High

C1 battery capacity Ah 4 9 15
C2 charging time hours 3 5 8
C3 number of gears units 1 7 21
C4 engine power W 250 350 500
C5 maximum speed km/h 20 27 35
C6 range km 20 60 100
C7 weight kg 10 20 25
C8 price USD 300 2500 6300

Visualization of linguistic values, i.e., low, medium and high, is shown in Figure 3. All the
presented fuzzy numbers are asymmetrical because they are matched to the data distributions
identified by the expert. The identified structural model was transformed into a monolithic model,
which was only auxiliary. The values of the preference, and thus the rankings of the identified
decision-making sets, remained unchanged.

4 6 8 10 12 14
C1

0

1

µ
(x

)

3 4 5 6
C2

0

1

µ
(x

)

2 4 6 8 10
C3

0

1
µ

(x
)

250 300 350 400 450 500
C4

0

1

µ
(x

)

20 25 30 35
C5

0

1

µ
(x

)

20 40 60 80 100
C6

0

1

µ
(x

)

12.5 15.0 17.5 20.0 22.5 25.0
C7

0

1

µ
(x

)

2000 4000 6000
C8

0

1

µ
(x

)

Figure 3. Visualization of linguistic values, i.e., low—blue, medium—orange and high—green,
for criteria C1–C8.

In our work, we focus only on those alternatives that were described with complete information.
Therefore, 55 alternatives that are presented in detail in Table 2 will be analyzed. Table 2 shows the
full decision matrix, which is contained in columns from C1 to C8. There is also presented information
about the value of preferences and the position in the ranking of each of the examined bicycles.
For example, the most attractive bicycle turned out to be Blix Sol, i.e., alternative A5, which received
a rating of 0.6870. California Bicycle S, which received a rating of 0.3669 and the last place in the
ranking, was indicated as the least attractive bicycle. It is worth noting the differences between some
alternatives are relatively low, where for example, the second position in the ranking has a rating
worse by only 0.0021.

It is worth recalling that the obtained results come from a method that does not require a model
of knowledge of the significance of decision-making criteria to be determined. The expert identifies
the whole model by comparing pairs of characteristic objects. In this way, an indirect identification
takes place, and the models obtained in this way are well suited to complex non-linear problems.
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Thanks to this, and based on Table 2, we will propose two approaches to identify the relevance of
criteria in Section 3.2.

Table 2. Alternatives description and preference.

Ai Name C1 C2 C3 C4 C5 C6 C7 C8 P Rank

A1 2017 Raleigh Detour iE 11.6 4 9 250 32 80 21.7 2399 0.5779 26
A2 BESV CF1 8.4 5 10 250 28.8 64 22.4 1799 0.4810 46
A3 BESV PSA1 10.5 5 7 250 30.4 72 19.5 1999 0.5569 35
A4 Blix Aveny 11 3 7 350 32 96 23.5 1899 0.6849 2
A5 Blix Sol 11 3 7 350 32 88 22 1599 0.6870 1
A6 California Bicycle S 8 4 1 250 32 56 22.6 2499 0.3669 55
A7 Cannondale E-Rigid 11 3.5 8 350 32 100 22.6 3490 0.6280 9
A8 Coboc ONE Soho 9.6 3 1 250 24.8 88 13.1 5520 0.4016 52
A9 CUBE Cross Pro 400 11 3.5 9 250 32 96 22.7 2599 0.6236 11
A10 Desiknio Pinion Classic 7 3 6 250 24.8 80 15.7 6135 0.3945 53
A11 Desiknio Single Urban 7 3 1 250 24.8 80 13.1 4415 0.3898 54
A12 EcoMotion Tour e-Road 10.4 4 7 350 32 83 20.2 1299 0.6763 4
A13 E-Glide SS 10.4 5 1 350 32 56 17.1 1099 0.4893 44
A14 E-Glide ST 11.4 6 10 500 32 80 24.4 1699 0.5838 25
A15 e-Joe Gadis 11 5 7 350 32 72 24.9 1699 0.5555 36
A16 E-Lux Monaco 10.5 6 9 500 32 88 24.8 1995 0.5912 23
A17 Emazing Coeus 73h3h 8.7 4 7 350 32 88 20.2 1800 0.6591 5
A18 Emazing Selene 73h3h 8.7 4 7 350 32 88 21.9 2000 0.6336 8
A19 Espin Flow 11.6 4.5 8 350 35 80 24.3 1888 0.6095 17
A20 EUNORAU E-TORQUE 12.5 5 7 350 32 72 24.6 1599 0.5694 32
A21 eVox KAB 375 7.8 4 8 350 35 100 20.4 2199 0.6831 3
A22 Gazelle Avenue C8 14 4 8 250 32 100 23.8 2999 0.6167 13
A23 Gazelle CityZen C8 HM 11 3.5 8 350 32 94 23.1 2999 0.6204 12
A24 Gazelle CityZen T9 HMB 13.4 4 9 350 32 100 24.1 3499 0.6089 18
A25 GenZe 200 Series 9.6 3.5 8 350 32 56 22.6 1899 0.5399 39
A26 IZIP E3 Brio 11.6 5.5 7 250 32 80 25 1699 0.5600 33
A27 IZIP E3 Loma 11 5.5 7 250 32 80 24.9 1699 0.5582 34
A28 Juiced OceanCurrent 8.8 4 8 500 35 64 23.1 1299 0.6144 14
A29 Junto Gen 1 11.6 6 11 350 32 96 22.1 2222 0.6140 15
A30 Kalkhoff Agattu B7 11 3.5 7 250 32 100 24 2499 0.6353 7
A31 Optibike Rocky Mount. 11.6 5 11 500 35 96 24.4 3995 0.5768 27
A32 Orbea Katu-E 10 11 3.5 8 250 32 96 22.9 2999 0.6114 16
A33 Populo Lift V2 8.7 4.5 7 250 32 56 22.1 1399 0.5273 41
A34 Populo Scout 13 4.5 8 350 32 80 24.7 1699 0.6010 22
A35 Populo Sport 10.4 3 1 250 32 48 15.7 999 0.5028 43
A36 Populo Sport V3 8.7 4.5 1 250 32 56 16.7 999 0.4813 45
A37 Propella 2.2 7-Speed 6.8 3 7 250 28.8 56 16.8 1299 0.5486 37
A38 Propella V2.0 Single-Speed 6.8 3 1 250 25.6 56 13.6 1199 0.4495 48
A39 PUBLIC D8 Electric 8.8 4.5 8 350 32 88 24.8 2199 0.5841 24
A40 Pure Cycles Volta 8-Speed 5.8 4 8 250 32 40 17 1999 0.4433 49
A41 Raleigh Sprite iE 8.8 5 7 350 32 64 24.5 1899 0.5116 42
A42 Raleigh Superbe iE 8.8 4.5 7 350 32 64 22.7 1799 0.5450 38
A43 Riese, Müller Mixte 13.4 3.5 10 350 32 100 21.9 3879 0.6238 10
A44 Riese, Müller NuVinci 11 3.5 1 250 32 100 24.8 4489 0.4592 47
A45 Schwinn Monroe 250 11.6 4.5 1 250 32 72 18.8 1199 0.5335 40
A46 Schwinn Monroe 350 14 6 1 350 32 88 20.4 1499 0.5732 28
A47 Scott E-Sub Evo 11 3.5 8 350 32 100 22.4 4199 0.6060 20
A48 Shaofu 6AH 4.4 3 1 350 25 20 12 390 0.4261 50
A49 Specialized Como 2.0 12.8 3.5 9 250 32 96 21.5 2600 0.6411 6
A50 Specialized Como 3.0 12.8 4 9 250 32 80 20.7 2950 0.5711 31
A51 Specialized Vado 3.0 12.5 3.5 10 250 32 100 24.5 3200 0.6027 21
A52 Trek Lift+ Lowstep 11.6 4 10 250 32 80 20.3 2799 0.5718 29
A53 Trek Neko+ 11.6 4 10 250 32 80 19.1 2999 0.5717 30
A54 VoltBike Urban 13 5.5 6 350 32 80 23.4 1199 0.6085 19
A55 Xiaomi QiCycle 5.8 3 3 250 20 45 14.5 950 0.4063 51
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3.2. Methods

To determine the relevance of the criteria, a reference ranking was used. It was created using
the model identified by the COMET method. In the next step, we set eight rankings which are
created by successive exclusions of individual component criteria from the primary model. Each such
ranking has exactly seven active criteria and one excluded criterion. Table 3 presents the main
ranking without exclusions and eight derivative rankings with their ten initial alternatives. The most
important information contained in this table is the value of the similarity coefficient between the
main ranking and individual derivative rankings. For this purpose, two measures of rw and WS were
used. The highest value of rw was recorded for the ranking that excluded the C7 criterion from the
main model (value 0.8429). The smallest value was obtained for the ranking that excluded criterion C6

(value 0.7176). This means that the C6 criterion had a more significant impact on the ranking change
than the C7 criterion, so it was more significant than the rw criterion. The lowest value is obtained for
criterion C2, i.e., 0.8377, so based on the WS coefficient, the most important is criterion C2 and the least
important is criterion C3. It should be reminded here that both coefficients have a different paradigm
of determining the similarity of the two rankings. Therefore, both these coefficients will be used for
further investigation.

Table 3. Correlation with reference ranking when one criterion excluded.

Excluding 1 2 3 4 5 6 7 8 9 10 rw WS

none A5 A4 A21 A12 A17 A49 A30 A18 A7 A43 1.0000 1.0000
C1 A28 A21 A5 A4 A12 A17 A43 A31 A7 A18 0.8244 0.9616
C2 A14 A31 A29 A16 A28 A43 A12 A21 A5 A24 0.7513 0.8377
C3 A5 A4 A28 A12 A43 A21 A7 A17 A23 A31 0.8011 0.9854
C4 A49 A5 A43 A53 A52 A50 A9 A4 A12 A1 0.7801 0.9208
C5 A43 A5 A4 A28 A12 A31 A49 A24 A7 A23 0.8190 0.9558
C6 A28 A5 A43 A12 A31 A4 A25 A21 A49 A14 0.7176 0.9459
C7 A4 A28 A5 A31 A43 A24 A23 A34 A19 A7 0.8429 0.9284
C8 A43 A31 A47 A5 A7 A24 A4 A28 A23 A21 0.7897 0.9076

The rw coefficient indicated that the most important criterion is the range and the least important
criterion is the weight of the bike. It is common sense that this is in line with the expectations of
many consumers. The most important criterion is the charging time expressed in hours, and the least
important is the number of gears. It should be noted that in both cases, the battery capacity is a less
important parameter in this case than the range of the bicycle. It can be explained by the fact that a
battery with a specific capacity does not always guarantee the same distance and this attribute can be
less important than range. Figure 4 presents the similarity of the reference and derivative rankings.
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Figure 4. Visualization of the similarity of the reference ranking and eight derived rankings.
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Due to the nature of both coefficients, we propose the following formula (52) to calculate the
significance weights of the individual criteria:

wi =
1− xi

∑N
j=1 1− xj

, (52)

where N means the number of all criteria, wi is a i-th weights of criterion Ci, and xi is i-th coefficient
(WS or rw). This gives us two different approaches to the importance of weights, which will be
compared with entropy (49) and standard deviation (51) methods. Table 4 provides detailed results
of the relevance weights obtained using two new and two traditional methods for determining the
relevance of criteria.

Table 4. Weights determined with different methods.

Ci rw Weights WS Weights Entropy Method Std Method

C1 0.1049 0.0690 0.0627 0.0017
C2 0.1486 0.2914 0.0589 0.0007
C3 0.1188 0.0262 0.3854 0.0025
C4 0.1313 0.1423 0.0648 0.0569
C5 0.1081 0.0794 0.0109 0.0022
C6 0.1687 0.0972 0.0795 0.0146
C7 0.0939 0.1286 0.0393 0.0028
C8 0.1256 0.1660 0.2984 0.9185

To better compare the obtained criteria weights, they are shown in Figure 5. The significance
weights determined by means of the rw coefficient are characterized by quite equal distribution of
significance. The most significant criterion is the range with weight 0.1687 and the least significant
is the weight with weight 0.0939. Greater differences between the individual weights occur with
the approach using the WS coefficient. In this case charging time (0.2914) is the most important
and the number of gears is the least important (0.0262). Using the entropy of information approach,
we get as the most important criterion the number of gears (0.3854) and the least important criterion
is the maximum speed (0.0109). The most asymmetrical in its assessment is the method based on
standard deviation where the price has a significance equal to 0.9185. According to this approach,
the least important parameter is the charging time. The results obtained using information entropy
and standard deviation are less effective than our proposed approaches, which will be proven in the
next section.

C1 C2 C3 C4 C5 C6 C7 C8

0.0

0.2

0.4

0.6

0.8
rw weights
WS weights
Entropy weights
Std weights

Figure 5. Visualize the relevance of criteria using different methods.
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4. Results and Discussion

4.1. TOPSIS

To check the effectiveness of the four criteria weighting methods, the first TOPSIS method will be
used, where 55 electric bicycles will be evaluated using different normalization methods with each
of the four methods to identify the significance of the weights. Figures 6–9 show a comparison of
reference ranking and rankings determined by TOPSIS method, selected normalizations and ways of
determining criterion significance. In case of perfect compatibility, the black dots should completely
cover the blue line. Figure 6 shows visualizations of the results using minimax normalization. Visually,
the best representation was achieved using the scales determined by the rw approach. The ranking
circle was also well reflected by using the WS approach. At the same time, the entropy and standard
deviation method reflected best the tail of the ranking. This is confirmed by the numerical values
presented in Table 5. the method based on the rw coefficient undoubtedly did best in this aspect.

0 20 40
Reference ranking

0

10

20

30

40

50

O
bt

ai
ne

d
ra

nk
in

g

rw weights

0 20 40
Reference ranking

0

10

20

30

40

50

O
bt

ai
ne

d
ra

nk
in

g

WS weights

0 20 40
Reference ranking

0

10

20

30

40

50
O

bt
ai

ne
d

ra
nk

in
g

Entropy weights

0 20 40
Reference ranking

0

10

20

30

40

50

O
bt

ai
ne

d
ra

nk
in

g

Std weights

Figure 6. Comparison of the results from the reference ranking and the ranking obtained by using
TOPSIS—minmax.

Table 5. Comparison of the results from the reference ranking and the ranking obtained by using
TOPSIS and different normalization techniques.

Normalization Weighted Method rw WS

minmax

rw weights 0.8959 0.9831
WS weights 0.2759 0.9415
Entropy weights 0.3887 0.6301
Std weights −0.2079 0.6634

max

rw weights 0.9283 0.9897
WS weights 0.4002 0.9698
Entropy weights 0.3369 0.6111
Std weights −0.2079 0.6634

sum

rw weights 0.4204 0.8302
WS weights −0.0655 0.7783
Entropy weights 0.0407 0.4963
Std weights −0.2162 0.6626

vector

rw weights 0.7311 0.9675
WS weights 0.1242 0.9200
Entropy weights 0.2651 0.7195
Std weights −0.2079 0.6634

Then, Figure 7 shows a comparison of results obtained using normalization max type. The rw

method again proved to be the most similar to the reference ranking results obtained with the COMET
method. This is confirmed by the numbers presented in Table 5. In this case, both coefficients also
inform us about the advantage of the WS method over the entropy and standard deviation methods.
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Figure 7. Comparison of the results from the reference ranking and the ranking obtained by using
TOPSIS—max.

Another normalization based on the sum does not bring such unambiguous results as in the two
previous cases. In all four methods presented in Figure 8, the dispersion is higher than in the previous
cases. However, based on the data from Table 5, it can be concluded that the rw significance test method
received relatively good results. It should be reminded here once again that the ideal situation is when
all the dots are exactly on the blue line. This means that the two rankings are identical, which was well
visible in Figure 7 when using the rw approach weights was the closest to this situation. At that time,
the rankings’ similarity coefficients were 0.9283 and 0.9897, respectively.
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Figure 8. Comparison of the results from the reference ranking and the ranking obtained by using
TOPSIS—sum.

The last examined case is vector normalization, presented in Figure 9, which again gives the
best results in the rw ratio approach, where similarity measures are 0.7311 and 0.9675, respectively.
Again, the least effective is the standard deviation approach. When comparing rankings using rw ratio,
entropy approach is more effective than WS approach. However, using WS coefficient, the situation is
the opposite. This is due to better matching of the ranking front in the WS method than in the case of
entropy. It is characteristic for the WS ratio because it is the top of the ranking that is most important
there, and the ratio itself is an asymmetric measure.
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Figure 9. Comparison of the results from the reference ranking and the ranking obtained by using
TOPSIS—vector.
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The complete list of results using the similarity of rankings is presented in Table 5.
The normalization methods that best managed to reconstruct the initial ranking were minmax and
max, and the worst managed to be the sum-based method.

To summarize the effectiveness of the proposed methods and standard approaches, we present
Figure 10. This is a visualization of the results obtained with a rw ratio. Its value can range from −1 to
1. As we can see, for all types of standardization, the method based on the standard deviation is the
least effective. The rw ratio method proposed in our article works most effectively as an alternative
approach. The entropy method and our second proposition are poorly matched when using the rw

similarity measure. However, the effectiveness advantage of the rw approach is undeniable.

minmax max sum vector
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0.0
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0.4

0.6

0.8
rw

WS

Entropy
Std

Figure 10. Visualization of the results from the reference ranking and the ranking obtained by using
TOPSIS and different normalization techniques (rw coefficient).

When using the second-ranking matching indicator WS, one should pay attention to its different
nature. In this case, the values may vary from zero to one. Figure 11 shows a comparison of the
proposed approaches. Again, the most effective approach seems to be the rw weighting approach.
In contrast to the previous list, the WS weighting method came second. Interestingly, the method
based on standard deviation was also used in three out of four cases and obtained better results than
those obtained using entropy. In the analyzed case study, both comparative approaches indicate the
highest efficiency using the rw ratio approach. In the next section, we will examine the efficiency of the
set significance criteria using the example of the VIKOR method.
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Std

Figure 11. Visualization of the results from the reference ranking and the ranking obtained by using
TOPSIS and different normalization techniques (WS coefficient).

4.2. VIKOR

The next stage of checking the effectiveness of the proposed approaches will be based on the
use of the VIKOR method without normalization and with four types of it. Although the method
does not require the use of normalization, quite often one can meet the opinion that it is convicted to
obtain better results. For readability of the paper, the drawings containing comparisons of the results
from the reference ranking and the ranking obtained by using VIKOR are shown in the Appendix A.
In Figure A1, all methods of determining the significance of the weights indicate high dispersion.
This is the first case when entropy proves to be more effective and moreover with both parameters
of ranking similarity measurement. In this case, the weakest match was obtained with the WS
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coefficient. However, it should be emphasized that all obtained results indicate low effectiveness of
the methods used.

Much lower dispersion is achieved when standardizing the decision matrix with the minmax
method. The VIKOR method then has a much better matching of results than without normalization.
This is visible in Figure A2, and the detailed measures of the matching are presented in Table 6.
The WS-based method is slightly more effective when testing the matching by WS coefficient than the
rw-based approach. The weakest results were obtained using a method based on standard deviation.
Identical results are obtained using max and vector normalizations. Figures A3 and A5 return
precisely the same results despite using a different normalization method. Thus, both cases are
entirely equivalent.

The last tested normalization is a sum, where the results are presented in Figure A4. In this case,
we obtain results similar to those of minmax, max and vector normalizations. The difference is that
the effectiveness of the approach based on the WS is deteriorated when using both meters. Detailed
results of the analysis are presented in Table 6.

Table 6. Comparison of the results from the reference ranking and the ranking obtained by using
VIKOR and different normalization techniques.

Normalization Weighted Method rw WS

none

rw weights 0.4447 0.3525
WS weights 0.0124 0.2462
Entropy weights 0.4802 0.4151
Std weights 0.1514 0.3822

minmax

rw weights 0.8032 0.9640
WS weights 0.5124 0.9792
Entropy weights 0.5091 0.6933
Std weights −0.1965 0.6596

max

rw weights 0.8032 0.9640
WS weights 0.5124 0.9792
Entropy weights 0.5091 0.6933
Std weights −0.1965 0.6596

sum

rw weights 0.7927 0.9642
WS weights 0.2498 0.9188
Entropy weights 0.5256 0.8346
Std weights −0.1917 0.6598

vector

rw weights 0.8032 0.9640
WS weights 0.5124 0.9792
Entropy weights 0.5091 0.6933
Std weights −0.1965 0.6596

Summary of the analyses based on the rw coefficient is presented in Figure 12. Using any
standardization, the determination of the significance of criteria with rw proves to be the most effective.
The weakest approach was the one based on the standard deviation when we use any transformation
of the decision matrix. Using VIKOR without normalization, the best result was obtained using the
method based on entropy. However, it should be remembered that all the obtained results were much
weaker. As many as three cases returned the same value. However, the highest effectiveness again
falls to the approach based on rw coefficient.

When analyzing the data in Figure 13 we get very similar results. Again, without the use of
techniques transforming the decision matrix, entropy turns out to be the best in the other two cases,
the two most effective methods are those based on ranking similarity coefficients. The weakest
approach is again, a standard deviation.
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Figure 12. Visualization of the results from the reference ranking and the ranking obtained by using
VIKOR and different normalization techniques (rw coefficient).
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Figure 13. Visualization of the results from the reference ranking and the ranking obtained by using
VIKOR and different normalization techniques (WS coefficient).

5. Conclusions

In this work, we present an entirely new approach to determining the relevance of criteria in
sustainable transport issues. Based on a comparative study, we analyze the similarity of the approach
to determining materiality using rw and WS as well as standard methods such as entropy and standard
deviation. The obtained materiality levels differ significantly. When analyzing which criteria were
indicated as the most relevant in the four approaches, it should be pointed out that the most logical
ones seem to be those related to the rw and WS. However, in order to empirically verify, an additional
study was carried out to check the effectiveness of the calculated criteria weights when using two
popular MCDA methods, i.e., TOPSIS and VIKOR. We also examined what the final rankings look like
when using different contact normalizations in two cases. We received precise results which indicate
that the most effective approach is based on the rw ratio. At the same time, it is essential to note that the
WS ratio approach also has its advantages. Only in one of the nine cases did the entropy method turn
out to be the best way to calculate the weighting values. However, it was a case where all the examined
methods had poor results. Therefore, based on the conducted research, it can be indicated that the
effectiveness of the proposed approaches is higher than the previously used approaches related to
entropy and standard deviation.

The limitations of our research are that it concerns one research field, i.e., sustainable transport.
Additionally, it should be noted that this is preliminary research which should be extended with
extended simulation. Further improvement of approaches related to ranking similarity coefficients
should be indicated as the main directions for future work. Further empirical tests related to the use of
other methods of determining criterion weighting and other cases of use should be conducted.
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Figure A1. Comparison of the results from the reference ranking and the ranking obtained by using
VIKOR without normalization.

0 20 40
Reference ranking

0

10

20

30

40

50

O
bt

ai
ne

d
ra

nk
in

g

rw weights

0 20 40
Reference ranking

0

10

20

30

40

50

O
bt

ai
ne

d
ra

nk
in

g

WS weights

0 20 40
Reference ranking

0

10

20

30

40

50

O
bt

ai
ne

d
ra

nk
in

g

Entropy weights

0 20 40
Reference ranking

0

10

20

30

40

50

O
bt

ai
ne

d
ra

nk
in

g

Std weights

Figure A2. Comparison of the results from the reference ranking and the ranking obtained by using
VIKOR—minmax.
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Figure A3. Comparison of the results from the reference ranking and the ranking obtained by using
VIKOR—max.
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Figure A4. Comparison of the results from the reference ranking and the ranking obtained by using
VIKOR—sum.
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Figure A5. Comparison of the results from the reference ranking and the ranking obtained by using
VIKOR—vector.
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