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Abstract: Road transport is the principal means of transporting freight and passengers in most
developing countries, but several factors, both alone and in conjunction, contribute to increased
inefficiency, risk and instability in the sector. The main factors are related to the high number
of accidents, structural precariousness, fleet obsolescence, low-skilled drivers and high rates of
greenhouse gas emissions. This paper evaluates the influence of implementing a training and feedback
procedure associated with event data recorder (EDR) systems for the promotion of better behavior
among professional drivers based on safety, operation and economy criteria. The analyses are based
on interventions that were carried out during four monitoring phases using data generated by
vehicles collected over 13 months of research. The data were converted into indicators and evaluated
individually against the criteria and through data envelopment analysis (DEA). The analyses led to
the conclusions that the use of EDR systems had positive impacts on all three of the criteria under
analysis, and that safety levels can be increased without having to reduce productivity or increase
fuel consumption. However, the safety criterion was more sensitive to the association between
the technology and training process applied, leading to significant reductions in the indicators
analyzed. The study contributes to the association between the methods of analysis and the adoption
of specific indicators derived from time variables, leading to the conclusion that the use of EDR
systems associated with management training and monitoring procedures can improve economic and
operational results in road freight transport (RFT). Furthermore, using the trip data as a structural
basis for the training and feedback proved to be very promising for the reduction of unsafe behavior
to avoid road accidents.

Keywords: road safety; event data recorder; drive behavior; training procedure; feedback;
consumption reduction; operation behavior; data envelopment analysis

1. Introduction

In Brazil, road transport represents 61% of transport volume. This creates an imbalance due to the
excess supply of road transport, which favors unfair competition with other modes of transport and
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limits the emergence of a scale that would justify investments in transport segments with higher fixed
costs [1]. According to [2], this fact generates a vicious circle in which the prices paid by shippers barely
remunerate the costs of carriers, causing narrow profit margins that contribute to lower maintenance
rates and slower fleet renewals [3]. Data from the National Registry of Road Transport of Goods
(RNTRC) and [4] show that in the current road transport of cargo, 85.6% of vehicles have an average
age of 13.5 years, meaning there is a high rate of obsolescence [4–6]. The association of this factor
with the precariousness of preventive and corrective maintenance means that there is a higher risk of
accidents and a lower energy efficiency in road transport, which can lead to reduced productivity.

Additionally, road freight transport (RFT) operates with precarious infrastructure, considering
that only 13.6% of the 1,563,447 km of roads in the country are paved [7]. This increases greenhouse gas
(GHG) emissions [8] and reduces energy efficiency [9]. The most serious problem is related to accidents
on Brazilian roads. According to data from the Seguradora Líder statistical bulletin, 37,492 deaths,
263,923 cases of permanent disability and 53,823 cases of reimbursement of medical expenses [10]
were recorded as a result of traffic accidents between January and November 2017. Data published
in [11] indicate that the total cost of traffic accidents on Brazilian roads has been about USD 7.89 billion,
which adjusted by the Hamonised Index of Consumer Price (HICP) to values of December 2017 reaches
USD 12.69 billion. This amount corresponds to 0.63% of Brazilian GDP in 2017, and was higher than the
government investment in road infrastructure and measures to mitigate factors generating accidents.

The problems identified above, combined with the importance of RFT for the economic
development of the country, gives rise to discussions on how to increase the level of safety, reduce the
cost of transport and improve the functioning of the trucking industry. Based on a study published
in [12] that compared the influence of event data recorder (EDR) systems on driving patterns after the
introduction of two short-term training sessions, it was perceived that the training process enhanced
the results obtained. Thus, this paper evaluates the results of applying a specific training procedure,
developed by us, based on the data collected by the EDR systems, and evaluates the efficiency indices
calculated from those data through data envelopment analysis (DEA) with respect to safety, operational
and economic criteria during different monitoring phases.

In this context, we respond to the following questions: (1) Can the data collected by EDR systems
be used as a basis for structuring training and feedback procedures aimed at reducing undesirable
behavior? (2) Do driver training procedures and feedback from managers influence results? (3) On
the basis of the variables collected, can indicators be defined that characterize the various criteria?
(4) Which of the criteria evaluated are most sensitive to the training and feedback procedures?

Thus, the objective of this work is to analyze the evolution of driving behavior through efficiency
indices calculated using DEA, incorporating criteria for the economy, operation and safety in road
freight transport fleets and taking into account the applications of specific training and feedback
procedures elaborated from the data obtained by the EDR systems in different monitoring phases.

2. Background

The economies of most developing countries are strongly dependent on the road transport of
goods and passengers. Despite this dependence, RFT has many factors that increase inefficiency.
To understand the causes of this inefficiency in Brazil, data presented by several authors were analyzed,
including [13–28]. Based on these sources, it was possible to prepare an Ishikawa diagram (a cause and
effect diagram) in which the problem (effect) was inefficiency in the Brazilian RFT, and the causes were
the following factors: vehicular, human, economic, environmental, safety and infrastructure (Figure 1).

Among these factors, the most serious consequences are related to safety. According to [29,30],
the human factor is the main reason for the occurrence of accidents, and is present in 93% of cases.
A previous study [31,32] found that a lack of training processes, drug use and a low remuneration
of drivers contributed to the adoption of unsafe actions that consequently reduced safety levels.
Furthermore, Ref. [33] found relationships among vehicular, human and structural factors in the
occurrence of accidents.
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Figure 1. Diagram of factors related to road freight transport (RFT) inefficiency in Brazil. 
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The safety level and economic factors are also affected by the infrastructure factor. In Brazil,
according to the [34], 58.2% of the 211,468 km of paved roads are considered regular, bad or very bad,
depending on their paving, signaling and/or geometry.

According to [16], operating on roads with better paving conditions allows a reduction of up to
7.8% in fuel consumption and 2.8% in travel time. Also in relation to roads, in the world competitiveness
ranking, comprehensive and efficient infrastructure ensure the proper functioning of a country’s
economy [35]. One of the main aspects cited by the study was quality of roads, and in this sense,
Brazil was ranked 111th out of the 138 countries evaluated.

Regarding energy efficiency, the main problems arise as a result of the use of obsolete vehicles,
with the average age of the fleet being 13.6 years [5]. These vehicles operate with less efficiency
and more pollution being emitted from their engines. In this respect, the Brazilian fleet on average
operates with engines at stage P2 of the Program to Control Air Pollution by Automotive Vehicles
(Proconve), which is equivalent to Euro 0, while current engines in Europe operate at P7 (Euro 5) or
higher. This an 87% increase in CO2 emissions, an 81% increase in HC emissions and an 86% increase
in NOx emissions [36].

In relation to risk reduction, some actions and tools such as safety devices and integrated
technologies have a good capacity to mitigate both the probability and severity of accidents in vehicles.
The study in [37] identifies five pillars that can increase safety, with the third being the need to
promote the development of safe vehicles through the implementation of technologies that are active,
passive or that combine the two. In this context, passive technologies aim to reduce the severity of
injuries (e.g., airbags, seat belts, bumpers), while active technologies have the function of preventing
accidents (e.g., EDR, electronic stability control, intelligent speed adapters) [38]. The relationship
between reducing the number of accidents and increasing the number of safety systems, combined with
associated and integrated technologies, is described in [39]. It is highlighted in [40] that human errors
are the main cause of road accidents, and that advanced driver assistance systems (ADAS) can reduce
exposure to risk, since their main function is to support drivers through alerts, and in some cases take
control in situations of eminent accident. A large number of integrated technologies that have enabled
the collection of relevant data on both safety and driving behavior are discussed in [41,42]. Four active
safety technologies (forward collision warning, lane departure warning, side view assist and adaptive
headlights) are evaluated in [43], which states that the combined use of these technologies could
prevent or mitigate 1,866,000 collisions per year, including 149,000 serious and moderate accidents and
10,238 deaths on US roads. Twenty-one safety technologies applied to road vehicles were assessed for
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their cost–benefit ratio (CBR) [44]. The report analyzed the impact of these technologies on reducing
the number of occurrences and the degree of severity of accidents, and event data recorder (EDR)
systems were ranked as the most promising technology by which to mitigate and minimize the factors
associated with primary accident risks, justifying the investment required for their implementation.

EDR systems normally comprise an electronic control unit (ECU) that incorporates an
Electrically-Erasable Programmable Read-Only Memory (EEPROM), with the objective of continuously
recording parameters measured and recorded by the sensors and systems of the vehicle [45].
These technologies are commonly known as “black boxes”, whose function is to capture all the
electronic signals and electrical impulses generated by the various modules of the system, transforming
these data into statistics via a proprietary platform [46,47].

According to [48], EDR has a preventive character, with the capacity to reduce accidents by
20%, deaths by 5.5% and serious injuries by 3.5%. On the other hand, Ref. [29] describes several
functionalities of these systems that can be exploited in the driver training process to promote safety
awareness and reduce accident rates—with significant benefits to companies, drivers and society.
In addition to the safety aspects, these systems can allow companies to improve their efficiency and
reduce fuel consumption.

The importance of EDR systems in reducing travel time and fuel consumption and improving
environmental quality is also highlighted in [49]. Feedback systems based on the Ecodriving concept,
which evaluates variations in consumption and emissions that are generated during idling, is discussed
in [50].

The benefits of EDR systems in three areas (accident research, driver performance and vehicle
maintenance) are evaluated in [51], which posits that fuel consumption profiles are clearly related to
the driving profiles, and that technology allows correcting errors and undesirable behavior in order to
reduce consumption. Concerning vehicle maintenance, that study corroborated the capacity of these
systems to provide continuous control and consequently identify defects and faults in fleets, generating
relevant data for maintenance personnel that allow preventive interventions instead of corrective
maintenance that could be more costly. The study also found that monitoring these variables over
time has the potential to provide fleet performance indicators that can reduce costs, mitigate problems,
prevent accidents and promote the improvement of environmental aspects.

According to [12], the introduction of a standardized training that combines existing common
and standardized training methods (based, for example, on the concepts of efficient driving,
vehicle maintenance and transport planning, among others described in EC59/2003 and EU
645/2018 [52,53]), can have a positive effect on safety, economic and operational criteria. However,
it is necessary to analyze the degree of efficiency of these criteria when analyzing drivers’ behavioral
patterns when involved in specific training processes where procedures and courses are structured
based on individual characteristics. For this reason, we developed a procedure based on the individual
data of drivers, allowing training procedures to be tailored to each driver’s unique driving profile.
The final aim of the study is to check whether there is a positive change in driving behavior when
using this procedure than when using a normal training program, and to check whether or not the
isolated use of this system guarantees that behavioral changes are maintained over time.

3. Data Envelopment Analysis (DEA)

Data envelopment analysis (DEA) is a nonparametric method that was originally developed
in [54] to compare the performances of homogeneous production units (HPUs) using multiple inputs
in the production of one or more outputs [55,56].

A decision-making unit (DMU) can represent any type of productive unit that has autonomy in a
decision-making process, including schools, industries, banks, private companies, military bases and
governments, among others [54,57].

The results presented by the DEA model permit the formation of a standard efficiency frontier that
is based on standard efficiency indices considering the optimal ratios of outputs to inputs. One of the
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advantages of the DEA method is the possibility of using several inputs and outputs whose units may
differ from one another without the results being modified [17]. Another advantage is the possibility
of considering outliers as a reference (benchmark) to be studied according to the other DMUs [58]. It is
mentioned in [59] that one of the greatest advantages of the DEA method is the flexibility of using
weighting parameters, since this allows the identification of inefficient DMUs.

Among the disadvantages of DEA are the sensitivity of the results to the inclusion or exclusion of
certain variables (inputs and/or outputs), as well as the inability to consider the differences between
the external environments of the DMUs, which can result in a false result affecting the management
capacity of the decision-makers [58,60].

To evaluate the performances of DMUs, the DEA method utilizes two types of models: classic and
advanced. The classic model is composed of a constant return to scale (CRS) model and a variable
return to scale (VRS) model [61].

The Charnes, Cooper and Rhodes (CCR) model, based on the CRS model type, considers that the
amount of resources (inputs) used is proportional to the amount of outputs produced [54]. Graphically
presented, the area of this model includes the values of the DMU variables that present the optimal
relationships between outputs and inputs, as shown by Equations (1)–(4) [62].

maxz =
m∑

k=1

ukykj (1)

Subject to
m∑

k=1

ukykj −

m∑
k=1

vkxkj ≤ 0 (2)

m∑
k=1

vkxko = 1 (3)

uk, vk > 0
k = 1, . . . , m

(4)

where xkj and ykj represent input and output data, respectively, for DMUk; and uk and vk represent the
weights associated with the inputs and outputs, respectively.

The Banker, Charnes and Cooper (BCC) model, based on the VRS model type, was developed
from the CCR model, in which the axiom of proportionality is replaced by the axiom of convexity (u∗),
as shown in Equations (5)–(8) (primal) and Equations (9)–(12) (dual) [63,64].

minho (5)

Subject to

hoxio

m∑
k=1

xikλk ≥ 0, ∀i (6)

− y jo +
m∑

k=1

y jkλk ≥ 0, ∀ j (7)

m∑
k=1

λk = 1

λk ≥ 0, ∀k
(8)

minE f fo =
s∑

j=1

u jy jo + u∗ (9)
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Subject to
r∑

i=1

vixio = 0 (10)

−

r∑
i=1

vixik +
s∑

j=1

u jy jk + u∗ ≤ 0, ∀k (11)

vi, u j ≥ 0, u∗ ∈ < (12)

Both models (CCR and BCC) have envelope and multiplier versions. The results presented by the
multipliers are the weights assigned by the DEA model and the efficiency indices, which allow the
formation of the efficiency frontier in the graph. The envelope determines the objectives, gaps and
benchmarks of the inefficient management mechanisms, which determine to what extent the inefficient
management mechanisms should increase (if they are production-oriented) or decrease (if the orientation
is an input) the values of the problem’s variables [63].

Classical DEA models can be input- or output-oriented. Output orientation occurs when the
maximum number of outputs is desired without changing the amount of inputs used. The objective of
this orientation is to identify the production potential of the DMUs. On the other hand, input orientation
occurs when resources (inputs) need to be minimized without changing the outputs. In this orientation,
the DEA model allows the free capacity of the DMUs to be identified [58].

The DEA method is benevolent in its evaluation of the DMUs, considering the variables that most
favor the calculation of efficiency and assigning greater weights to these variables and lower ones to
unfavorable variables [65].

As a result of this benevolence, it is possible for a high number of DMUs to be considered efficient,
which can affect the analysis. To overcome this drawback, the evaluation of the inverted frontier allows
increased discrimination of efficient DMUs, since they should be in the standard efficiency frontier,
which is located as far as possible from the inverted border. DMUs that integrate the two frontiers
(standard and inverted) are falsely efficient, as they are just as efficient as they are inefficient. Figure 2
shows the standard and inverted limits of the BCC in the DEA model [63].Sustainability 2020, 12, x FOR PEER REVIEW 7 of 24 
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k ) used to increase the discrimination of efficient DMUs is

calculated using Equation (13) [66–68].
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k =
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1− EInverted

k

)
2
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where EStandard
k is the standard efficiency of the kth DMU and EInverted

k is the inverted efficiency of the
kth DMU.

The EComposite
k results range from 0 to 1. The normalized composite efficiency index (EComposite∗

k ) is

a way of prioritizing EComposite
k , the ratio of each EComposite

k value to the highest EComposite
k of all DMUs

(Max
[
EComposite

k

]
), as shown in Equation (14) [66].

EComposite∗
k =

EComposite
k

Max
[
EComposite

k

] (14)

4. Materials and Methods

The procedure presented used a sample of 22 heavy trucks from a transport company. The trucks
were monitored using EDR systems over a period of 13 months, with each driver permanently assigned
to a truck, so that the observations regarding the behavior of vehicles pertained to the respective
drivers. The system used was equipped with the following modules: a global positioning system
(GPS), a driver identification card, a general packet radio service (GPRS) and a telemetry system.
These modules allowed a set of variables linked to the driving habits of the drivers to be obtained,
which were then converted into indicators based on economic, operational and safety criteria and
submitted to DEA in four different scenarios, as shown in Figure 3.Sustainability 2020, 12, x FOR PEER REVIEW 8 of 24 
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Step I—Implementation of the event data recording (EDR) system
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This step corresponded to the preparation and implementation of the EDR systems, including the
definition of the study objective and the variables used as parameters for the analysis (Table 1).

Table 1. Variables collected by the event data recorder (EDR) system.

Variables Description

Number of speeding periods Number of times the vehicle exceeds the speed limit

Number of severe decelerations Number of times deceleration of more than 11 km/h per
second occurs

Number of periods of excess engine revolutions
per minute (RPM) Number of times the engine is revved above the set limit

Initial odometer reading Initial mileage of each trip

Final odometer reading Final mileage of each trip

Excessive speed on dry road Maximum speed reached except in rainy conditions

Excessive speed on wet road Maximum speed reached in rainy conditions.

Idle time Total idling time (engine on at a speed of zero)

Time in movement Total time operated at a speed other than zero

Time speeding Total time of vehicle exceeding the speed limit

(%) of driving in the engine economy range Percentage of driving time in the economy range
(optimal consumption)

Step II—Definition of the monitoring and data collection stages

For the development of this stage, the structuring and implementation of monitoring phases
was proposed based on the model applied in [69], following parameters to allow the evaluation of
natural driving habits and their evolution based on the variables collected and in accordance with the
interventions proposed in the monitoring phases.

Hidden Monitoring (Hidden)—The objective of this phase was to evaluate the driving pattern of
each driver without any type of intervention by researchers, managers or technology (e.g., over-revving
alert). Thus, drivers did not accompany the process of installing the systems, and all sound signals
and alerts were muted so that the system did not interact with them.

Conscious Monitoring 1 (C1)—In this phase, the EDR systems continued to monitor the driving
pattern of the vehicles. However, all signals and alerts provided by the system were enabled and the
technology began to interact with the drivers. In addition, drivers received specific training developed
for this study related to knowledge of the use of the technology, safety aspects, operating efficiency
and fuel savings that were based on the aspects contained in ISO 39001 and CSEAA [70,71]. In this
specific phase, the managers began to analyze the data and disseminate regular information to drivers
on their behavior. The objective of this phase was mainly to evaluate the impact on the variation of the
data after enabling the alerts emitted by the EDR, and evaluate the results of the training procedure
carried out by the managers [72].

Conscious Monitoring 2 (C2)—In this phase, the data collection continued and the alerts were kept
active, but there was no training or feedback offered by the managers. The objective of this step was to
evaluate if the criteria related to economy, safety and operation would maintain the trend observed in
C1, or if they would return to the levels observed in the Hidden Monitoring phase. During this phase,
the intent was to evaluate the impacts related to the isolated use of the technology and compare them
with the applications with associated training and feedback.

Conscious Monitoring 3 (C3)—Based on the analysis of the data obtained in the previous phases,
the alerts issued by the system were maintained and the procedure involving continuous training and
periodic feedback was incorporated into the fleet management process as a way of maintaining the
improvement process.
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Step III—Development and implementation of the training procedure

For this stage, a training procedure for drivers and managers was developed and applied that
was aimed at improving skills and attitudes in relation to economic, safety and operational criteria,
based on the studies of [73–77]. Thus, the training procedure focused on aspects related to four
areas: operational safety, knowledge of the use of technologies, practical application of skills and
perception of aspects of fatigue and stress. All the drivers went through all the 30-h training sessions.
Associated with the training procedure during C1 and C3, the drivers began to receive feedback from
the fleet managers at the end of each trip with the aim of increasing operational efficiency, mainly in
relation to economy and safety [78,79].

According to [80], investment in systematic developments for road safety such as training and
control can improve profitability. Thus, the basis for the training process was structured in accordance
with the requirements established by ISO 39001 [70,74] and CSEAA [71], oriented mainly towards the
evaluation of aspects related to safety.

Step IV—Application of data envelopment analysis (DEA)

For the analysis of data using the DEA method, we chose to use the BCC model because it
considers the production scales in the efficiency calculation, which allows the technical efficiency of
the vehicles (DMUs) to be identified. This is important, since the objective is to analyze the driving
habits in consideration of the interventions made in the monitoring phases. In this way, the orientation
to results became more adequate, since the objective was to maximize the results obtained based on
the indicators related to safety and operational criteria (outputs).

The behavior of the DMUs was analyzed based on standard, inverted, composite and standardized
composite efficiency indices in order to increase the discrimination of the DMUs located in the efficiency
frontier. However, the results presented here are based on the composite values, since their calculation
considers the standard and inverted efficiencies. The graphical analysis of Composite allowed us
to observe the behavior of the average efficiency rates of the best and worst management practices
(standard and inverted efficiency) of each vehicle.

Step V—Development of scenarios, analysis and results

To assess the effect of the interventions, the analysis focused on statistical variations in driving
behavior based on the indicators described in Table 2.

Table 2. Distribution of indicators according to criteria.

Criteria Indicators Relevance

Safety

Number of speeding
events/1000 km

Evaluates the number of times the speed limit was exceeded
Analyzes risk acceptance

(%) of speeding time
Evaluates the percentage of time above the speed limit as a

function of total driving time and analyzes the exposure
to risk

Economy Consumption (l) Assesses consumption according to the distance traveled

Operation (%) of operation in the
economy range (Eco Zone)

Evaluates performance according to the optimal use of the
truck within the best performance zone

For the safety criterion, the indicators considered were the number of speeding events and the
percentage of speeding time. The first of these was the number of times the maximum speed set was
exceeded for more than 3 s. This indicator shows the driver’s acceptance of the speed limits imposed
by legislation and/or by the company. The second indicator referred to the percentage of driving time
above the speed limit, and was represented by the total driving time above the speed limits divided by
the time the vehicle was moving. This indicator represents the exposure to the risk of driving too fast.
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For the evaluation of the economic criterion, an analysis of the variation of fuel consumption was
considered with the weight, route and driver characteristics maintained.

For the operational criterion, the indicator of percentage time in the economy range was considered
in relation to the total time that the engine remained in operation. The economy range is determined by
the manufacturer and aims to inform the driver about the most efficient mode of operation. Operation in
this zone allows power and torque optimization, and hence fuel consumption optimization.

A second analysis was also proposed based on the results obtained from the data processing
through the DEA method and the scenarios involving these criteria. The analysis was subdivided
into individualized analyses, which included the behavior of each vehicle and a global analysis,
which included the response of the fleet according to the criteria of safety, operation and economy.
From the analysis of the indicators, it was possible to understand their influence, as well as to define
their relevance when performing an analysis that integrated all the criteria.

The analysis focused on the structuring of four scenarios based on the composite values calculated
with the DEA tool. The comparative scenarios included all the criteria under investigation (economic,
operational and safety), as presented in Table 3.

Table 3. Scenarios considered.

Scenario Orientation Variables Criteria

1

Input Fuel consumption (l) Economic

Output (%) of operation in the economy range (Eco Zone) Operational

(%) of speeding time Safety
Number of speeding events

2
Input Fuel consumption (l) Economic

Output (%) of speeding time Safety
Number of speeding events

3

Input Unitary Unitary

Output (%) of operation in the economy range (Eco Zone) Operational

(%) of speeding time Safety
Number of speeding events

4
Input Fuel consumption (l) Economic

Output (%) of operation in the economy range (Eco Zone) Operational

The development and analysis of the four scenarios made it possible to verify the variations in the
relative efficiency indices of the DMUs based on a global analysis of the criteria (Scenario 1) and a
paired analysis (Scenarios 2–4). Based on the analyses of all scenarios, we decided to use Scenario 1,
since it covered all three criteria, making it possible to establish an overall view of the indicators and
their correlation.

5. Results

The analyses proposed in this paper focus on verifying the variations in behavior of the indicators
according to the interventions applied throughout the monitoring phases. It is important to note that
the hidden monitoring phase was determined as a comparative reference, since there was no external
intervention in this phase, allowing us to infer that the data collected by the EDR system represented
the natural driving behavior. At the end of this monitoring period, three conscious monitoring phases
(C1–3) were initiated in which all audio and visual signals emitted by the system were enabled. In C1
and C3, all drivers underwent the training procedure, and began receiving feedback from managers at
the end of each trip based on an analysis of data collected by the system. These actions ensured that
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all participants were aligned with the objectives of the training procedure and the implementation of
the technology.

The only difference in the phases of conscious monitoring was that in C2 there was an interruption
in the training procedure to assess whether there was any variation in behavior due to the isolated
use of the technology. This revealed whether the training procedure and feedback had improved
the results.

5.1. Analysis of Indicators Based on Individual and Aggregated Driving Behavior Patterns

The analysis of the indicators made it possible to evaluate the behavior of the drivers according to
the criteria of safety, operation and economy throughout the monitoring phases. However, it was also
possible to make a general analysis of the fleet.

Regarding the safety criterion, Figure 4 shows the variation in the behavior of the vehicles in
relation to the monitoring phases. It can be seen that only three vehicles performed worse than during
the hidden monitoring; that is, 86.4% of the vehicles observed showed improvement in this indicator.
In particular, the number of speeding events in the fleet went from 2243 events per 1000 km traveled
during the hidden monitoring to 126 events per 1000 km traveled during C3, which is a significant
reduction in the level of risk acceptance. Figure 5 presents the global percentage variation of this
indicator in the conscious monitoring phases in relation to the hidden monitoring phase.
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Another important conclusion about this indicator concerns the comparison between the conscious
monitoring phases, where 95.5% of the vehicles performed worse during C2 than during C1 or C3.
This supports the hypothesis that this training procedure and feedback on driver behavior are effective.

Furthermore, in relation to the safety criterion, the indicator concerning the percentage of speeding
time as a function of total driving time was analyzed.

Figure 6 shows the individual behaviors of the vehicles, and it is possible to perceive a reduction
in risk exposure by reducing the driving time above the speed limit during the monitoring phases,
representing an increase in safety and a significant reduction in the risk of accidents. During the hidden
monitoring, the vehicles remained above the speed limit on average 3.6% of the total driving time.
Based on the average speed and distance traveled, this means vehicles traveled above the speed limit
for 5838 s on average per month. The interventions applied reduced the speeding time to 0.05% of the
total driving time, which is equivalent to driving above the limit for 83 s on average per month.
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Figure 7 shows a comparison of the reduction percentages obtained during the conscious
monitoring phases in relation to the data obtained in the hidden monitoring phase.

Through more extensive analysis of the criterion, we sought to relate driving behavior based on
the dispersion of the points obtained in the two indicators, and it was possible to evaluate the evolution
of driver behavior in relation to safety, as shown in Figures 8 and 9. These figures ratify the trend of a
reduction of the indicators and consequent standardization of behavior as a function of the monitoring
phases based on the reduction of variance, dispersion and averages. These figures show that driving
behavior was safer in the conscious monitoring phases than in the hidden monitoring phase, since both
speed-related indicators declined. The best performance occurred during C1 andC3, where the training
and feedback procedure was applied, and this reinforces the hypothesis that associated training,
feedback and technologies produces better results than the isolated use of EDR systems.
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In relation to the operation criterion, the indicator of percentage of time in the economy zone
was used, assuming that the higher the percentage of driving in this zone, the better the operational
performance of the vehicle will be. Figure 10 presents the behavior of the vehicles throughout the
monitoring phases, showing that this indicator was more sensitive to the monitoring phases in which
there were complementary training and monitoring actions. Ten vehicles showed better performances,
six remained the same and six showed worse results than those observed during the hidden monitoring.Sustainability 2020, 12, x FOR PEER REVIEW 15 of 24 
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These results indicate improvements of 5.06% and 3.4% in the driving patterns of the vehicles in C1
and C3, respectively, compared to the hidden monitoring. Furthermore, during C2, there was a 0.32%
worse result compared to the hidden monitoring, which can be explained by the absence of the training
procedure and the provision of feedback, since the EDR system did not perform any real-time interaction
with the driver such as audio warnings or visual alerts. It is important to highlight the relevance of the
analysis of this indicator, since during C1 and C3, the vehicles were driven for 61.06% and 60.09% of
the total moving time, respectively, in the most efficient engine operating zone. This means that in
addition to a reduction in fuel consumption, a decrease in greenhouse gas emissions was also achieved,
along with an increase in the maintenance of moving parts (e.g., the engine, transmission and tires).

With regard to the economic criterion, only the fuel consumption indicator was analyzed,
since variables such as weight carried, route and driver, among others, remained unchanged throughout
the interventions, reducing the level of external factors linked to the variability of this indicator.

Regarding consumption behavior, throughout the monitoring phases, 59.1% of the vehicles
showed a positive evolution and 22.7% remained practically stable, while 18.2% showed worse results.
However, these latter vehicles were among those that presented higher consumption during the
hidden monitoring.

Regarding an overall analysis of fuel consumption (Figure 11), behavior was similar to that
observed for the indicator of percentage of time spent driving in the economy zone. Furthermore,
although the reduction percentage seems small, when converted into cost and consumption based on
the results of the hidden monitoring, a monthly reduction of 345 L of fuel among the fleet (or 15.7 L
per vehicle) was achieved for C1, while 811 L was saved among the fleet (or 36.9 L per vehicle) in
the case of C3. The payback calculation reveals that the savings achieved during C3 could lead to an
amortization of the investment in technology within approximately 36 months.
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5.2. Data Envelopment Analysis (DEA) Applied to Safety, Operational and Economic Criteria

After analyzing the indicators, we performed a more in-depth analysis with the help of data
envelopment analysis (DEA) tools, based on the variations of the indicators. It was possible to calculate
the EComposite∗

k for each vehicle in each monitoring phase, and thus possible to calculate the probability
function, considering its distribution curves with a confidence interval of two standard deviations.
To verify the effectiveness of the interventions carried out in each of the monitoring phases, we assumed
the null hypothesis (H0) that all the means were the same and that there would be no difference in the
observed means. We also assumed as an alternative hypothesis (H1) that there was a difference between
the means and that these differences would be greater during the phases in which the interventions
related to training and feedback occurred.

The distribution of the data in Figure 12 shows that a change in driving behavior occurred in
relation to the hidden monitoring phase, with a reduction in the dispersion and increase of the mean
and frequency. Based on the statistical analyses, Table 4 shows a statistical summary in relation to the
monitoring phases, and Table 5 shows the analysis of variance, in which it can be seen that the p-value
was less than 0.05, indicating the existence of a statistically significant difference between the average
values in the monitoring phases.
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Table 4. Statistical summary of data from all monitoring phases.

Monitoring
Phases Mean Standard

Deviation
Coefficient
of Variation Minimum Maximum Range

Hidden 0.917836 0.060258 6.565% 0.7859 1.0 0.2141
C1 0.994414 0.005603 0.563% 0.9819 1.0 0.0181
C2 0.982509 0.014139 1.439% 0.9491 1.0 0.0509
C3 0.995541 0.002748 0.276% 0.9869 1.0 0.0131

Total 0.972575 0.044393 4.565% 0.7859 1.0 0.2141

Table 5. Analysis of variance.

Source Sum of Squares Df Squared Average F-Ratio p-Value

Between groups 0.090186 3 0.030062 31.07 0.0000
Within groups 0.081268 84 0.000967

Total (Corr) 0.171454 87

Figure 13 presents the results of a Fisher’s statistical significance test, showing that the average of
the data obtained in the hidden monitoring was different from the others monitoring phases, since there
is no overlap between the two.
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These observations are reinforced by the analysis in Figure 14, which shows the behavior of the
medians associated with a Mood’s statistical test, with a p-value of 7.40725 e−10 found for a chi-square
test of 45.4545. Thus, we can affirm that the medians presented pairwise statistical differences.
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The statistical tests applied to composite normalized data obtained by the DEA indicate a change
in driver behavior from the moment the technology was enabled and the training and feedback
procedure applied. In other words, there was a positive evolution in the criteria resulting from the
application of conscious monitoring.

Based on this result, it is important to verify whether the initial hypothesis that the association of
technology with the training and feedback procedures would produce better results in relation to the
isolated use of EDR systems is valid.

To this end, we performed an analysis using only data from the conscious monitoring phases.
It can be seen in Tables 6 and 7 that the p-value was lower than 0.05, indicating a statistically significant
difference between the average values in the conscious monitoring phases.

Table 6. Statistical summary of data from conscious monitoring phases.

Monitoring
Phases Mean Standard

Deviation
Coefficient
of Variation Minimum Maximum Range

C1 0.99441 0.00560 0.5634% 0.9819 1.0 0.0181
C2 0.98251 0.01414 1.4390% 0.9491 1.0 0.0509
C3 0.99554 0.00275 0.2761% 0.9869 1.0 0.0131

Total 0.99082 0.01060 1.0703% 0.9491 1.0 0.0509

Table 7. Analysis of variance of conscious monitoring phases.

Source Sum of Squares Df Squared Average F-Ratio p-Value

Between groups 0.00230 2 0.00115 14.41 0.0000
Within groups 0.00502 63 0.00008

Total (Corr) 0.00731 65

Analyzing the behavior of the data distribution in relation to proportionality, as presented in
Figure 15, similarity can be observed in the behavior of the data referring to C1 and C3, where more than
80% of the vehicles obtained results above the population average. In relation to conscious monitoring,
only 26% of the vehicles remained above this level, which shows that there was standardization of
behavior with a tendency toward better results and an improvement of the observed criteria.
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However, to define whether there was a statistically significant difference between the means,
we applied a Fisher’s test again, which determined that only C1 and C3 were part of homogeneous
groups, as can be seen in Figure 16, where there is no overlap between the results of C2 and the others.
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6. Conclusions

The analyses allowed an integrated assessment of the effects of introducing EDR systems into the
behavior of truck drivers based on objective criteria related to the improvement of safety levels and
operational standards and associated with a reduction of fuel consumption. Based on the results, it is
possible to conclude that the use of EDR systems enables an improvement of safety levels without
affecting operational efficiency or the cost of road transport.

The results show that the application of the technology had the capacity to improve indicators.
The experiment also demonstrated that associating the use of the technology with the application
of a structured training procedure based on continuous feedback substantially improved the results.
The data also show that after restarting the training and feedback procedure (C3), the results were
even higher than those obtained during C1, suggesting that the establishment of a training process and
long-term monitoring can improve the safety and efficiency of trucking operations.

The EDR technology is a tool that can actively improve both the safety and efficiency of road
transport. Furthermore, associating technology with training procedures and the provision of feedback
can enhance the positive results of the isolated technology (C2). In this study, the most immediate and
significant impact occurred to safety-related behavior, since the number of speeding events observed
throughout the phases of conscious monitoring was reduced by more than 46.35% (Figure 5), and the
time spent driving time above the speed limit was reduced by 81.17% (Figure 7). In addition, Figures 8
and 9 show that standardization of safety-related behavior led to a significant reduction in unwanted
behaviors, and comparison of this criterion with the other criteria revealed more significant short-term
reductions. Another issue raised by the study is the potential relationship between the monitored
variables and the proposed indicators when characterizing the investigated criteria. To this end,
we gathered 21 variables and converted them into four indicators; however, some EDR systems allow
the collection of up to 400 variables regarding the performance of a vehicle and its driver. Therefore,
while the variables used in this paper characterized the current criteria, it is necessary to expand
the collection of information regarding different variables so that researchers can better explain the
individual behaviors of drivers. These results allow transport companies to create a mechanism to
evaluate the behaviors of their drivers and to promote specific actions aimed at reducing unsafe acts
related to the occurrence of accidents, leading to increased operational quality.

A proposal for future research is to broaden the scope by including a sensitivity analysis focused
on individual DMU behaviors. Furthermore, it would be good to expand the sample size to diversify
the segmentation related to the type of transport. Finally, it would be edifying to investigate the effect
of structuring the entire training and feedback procedure as described by standards such as ISO 39001,
CSEAA and Directives EC 59/2003 and EU 2018/645.
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77. Topolšek, D.; Babić, D.; Fiolić, M. The effect of road safety education on the relationship between Driver’s
errors, violations and accidents: Slovenian case study. Eur. Transp. Res. Rev. 2019, 11. [CrossRef]

78. Toledo, T.; Musicant, O.; Lotan, T. In-vehicle data recorders for monitoring and feedback on drivers’ behavior.
Transp. Res. Part C 2008, 16, 320–331. [CrossRef]

79. Gonder, J.; Earleywine, M.; Sparks, W. Analyzing Vehicle Fuel Saving Opportunities through Intelligent
Driver Feedback. SAE Int. 2012, 5, 450–461. [CrossRef]

80. Almqvist, C.J. Segurança Qualidade. In Proceedings of the Seminário Volvo de Tecnologias de Segurança e
Comportamento Seguro—2013, São Paulo, Brazil, 24 September 2013; pp. 1–15.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0377-2217(01)00055-8
http://dx.doi.org/10.1108/BIJ-11-2016-0175
http://dx.doi.org/10.3390/su11216124
http://dx.doi.org/10.1016/j.trd.2013.02.011
http://dx.doi.org/10.7238/o.n4.1518
http://www.cseaa.insia.upm.es/insia/dynamic/auth/login
http://dx.doi.org/10.1016/j.ergon.2005.10.001
https://trid.trb.org/Results?q=&serial=%22HVTT12%3A%2012th%20International%20Symposium%20on%20Heavy%20Vehicle%20Transport%20Technology%22#/View/1366974
https://trid.trb.org/Results?q=&serial=%22HVTT12%3A%2012th%20International%20Symposium%20on%20Heavy%20Vehicle%20Transport%20Technology%22#/View/1366974
https://trid.trb.org/Results?q=&serial=%22HVTT12%3A%2012th%20International%20Symposium%20on%20Heavy%20Vehicle%20Transport%20Technology%22#/View/1366974
http://dx.doi.org/10.1016/j.trf.2011.09.002
http://dx.doi.org/10.1186/s12544-019-0351-y
http://dx.doi.org/10.1016/j.trc.2008.01.001
http://dx.doi.org/10.4271/2012-01-0494
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Data Envelopment Analysis (DEA) 
	Materials and Methods 
	Results 
	Analysis of Indicators Based on Individual and Aggregated Driving Behavior Patterns 
	Data Envelopment Analysis (DEA) Applied to Safety, Operational and Economic Criteria 

	Conclusions 
	References

