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Abstract: Molybdenum (Mo) in basic soils has high bioavailability and plant toxicity. This study
aimed to investigate the effect of increasing Mo concentration on its availability and toxicity threshold
in alfalfa plants grown in sandy loam calcareous soils, and the potential use of raw and acid- modified
clay deposits as soil additives to immobilize Mo and reduce its phytoavailability. Raw clay deposits
(RCD) were treated with H2SO4 to produce acid-modified clay deposits (AMCD). The first experiment
was performed using soils treated with 0, 0.1, 1, 10, 50, and 100 mg Mo kg−1. The second experiment
was conducted with soils treated with 10 or 50 mg Mo kg−1 and amended with RCD and AMCD
at application rates of 0, 2.5, 5, and 10% (w/w). After harvesting, water-soluble Mo, ammonium
bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA)-extractable Mo, and shoot Mo content as
well as dry matter were measured. The results showed that water-soluble Mo, AB-DTPA-extractable
Mo, and shoot Mo concentration increased at higher Mo soil addition. AMCD had a stronger influence
on Mo immobilization and reduction effect on plant shoots compared to RCD, depending on soil Mo
concentration and application rate. Applying AMCD decreased soil pH but increased salinity levels.
The shoot dry matter significantly increased in soils amended with RCD and/or AMCD compared to
control soils; with the highest improvement recorded for RCD at 10%. It was concluded that AMCD
is an efficient immobilizing agent to reduce Mo mobility and its phytoavailability in calcareous
soils. Additionally, both AMCD and especially RCD were able to create favorable conditions for
plant growth.
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1. Introduction

With the continually-rising global population, the increased demand for farmland is becoming
an urgent need, yet soil pollution has become a major global environmental issue. Trace elements
are found in the environment and may have beneficial or detrimental impacts. These elements are
introduced to soils from various sources, either natural or anthropogenic [1,2]. Among the essential trace
elements, molybdenum (Mo) can be introduced into the soils from various sources including naturally
occurring (with the average concentrations of 1–5 mg kg−1 in worldwide soils) and anthropogenic
activities (e.g., mining activities, atmospheric deposition near smelters, or application of biosolid and
fertilizers) [3,4]. Mo plays an important role in plant growth and development, given its influence
on plant metabolism (enzyme catalysis, nitrogen assimilation, potassium absorption, phytohormone
synthesis, sulfite detoxification; [5]). Despite this, the presence of Mo in high concentrations and
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bioavailability leads to its accumulation within plant tissues, which becomes toxic for the plant at
high concentrations and causes molybdenosis in cattle grazing [6,7]. Plant Mo toxicity is related to
its availability and the anionic forms in soil solution, depending on the soil properties [8–10]. In this
context, plants uptake Mo in the form of molybdate anions, which are more soluble and bioavailable in
neutral and alkaline soils compared to acidic soils [8,9,11]. It has been previously reported that the
adsorption of Mo in calcite and calcareous soils was very low compared to that of iron and aluminum
oxides and clay minerals, indicating that calcium carbonate (CaCO3) is not considered an important
component for preserving and holding Mo in calcareous soils [12].

The available pools of soil Mo mostly measure the actual toxicity for plants and its environmental
risk. Therefore, controlling the bioavailable pools of soil Mo is key for soil remediation. Basic soils
increase Mo mobility, hence the remediation of Mo-contaminated calcareous soils is necessary to reduce
excessive plant Mo uptake and toxicity. One solution for remediation in metal-contaminated soils is in
situ immobilization using immobilizing agents to decrease the bioavailability and toxicity of the metal
to plants. Among various soil additives, clay minerals have been widely applied as soil immobilizing
agents to improve soil properties and reduce metal mobility and bioavailability, hence helping to
remediate metal-contaminated soils [13–19]. Clay minerals also adsorb cationic metals due to their
permanent negative charge (cationic metal immobilization), reflecting their use in the remediation
of polluted soils [20]. Clay minerals also influence the mobilization of anionic metals such as Mo:
Neunhäuserer et al. [21] found that the mobile fraction of soil Mo was enhanced significantly by 90%
following vermiculite addition compared to the control soil. Contrastingly, He et al. [22] found that
applying bentonite, zeolite or dolomite to metal- contaminated soils reduced the bioavailability of
arsenic (As), which is mainly found in its anionic forms of arsenate, As(III), and arsenite, As(V).

In the Kingdom of Saudi Arabia, the majority of soils are characterized by a high sand content,
high pH, high CaCO3 concentration, low cation exchangeable capacity, and low organic matter content.
Despite these unfavorable conditions, national agriculture has grown quickly over the past decades,
requiring large quantities of agrochemicals which have led to soil pollution with trace elements [1].
In such sandy soils with high pH, phytoavailability and toxicity of Mo are expected. To improve
the properties of sandy soils for agriculture, naturally-occurring clay minerals can be applied as soil
conditioners, given their environmental benefits and cost-effectiveness, as well as their suitability
for large-scale application. Several studies have shown that additions of natural clay deposits can
potentially improve sandy soil properties [23–26]. In studies conducted by Al-Omran et al. [23,24],
applying natural clay deposits to sandy calcareous soils improved their hydrophysical properties,
including available water content, wetting front, relative swelling, infiltration, and water conservation.
Sheta et al. [27] found that adding clay-rich deposits increased clay content and cation exchange
capacity (CEC) while reducing intermittent evaporation in sandy soils. Adding clay deposits increases
the soil’s ability to retain water and nutrients due to an increase in the proportion of clay, which in
turn leads to an increase in the total size of pores. Despite the increasing attention around the use of
naturally-occurring clay minerals in the remediation of heavy metal-contaminated soils, there is lack
of up-to-date scientific data on the influence of natural clay minerals/deposits on the alleviation and
immobilization of toxic anionic metals such as Mo. As anionic metals and clay minerals both have
negative charges, clay minerals cannot efficiently adsorb/immobilize anionic metals. It is, therefore,
necessary to modify clay mineral soils to enhance their anionic adsorption properties. Previous studies
have shown that the modification of clay minerals and deposits enriched with clay surfaces plays
a significant role in the removal of metal anions from aqueous solutions [28–31], suggesting that
this method may be used for the in-situ immobilization of anionic metals in contaminated soils,
depending on clay properties, activation/modification, anionic metal type, and the soil properties.

Based on the above, this study aimed to investigate the following: (I) the effect of the contamination
of calcareous soil with high Mo concentrations on its bioavailability and toxicity threshold for
alfalfa plants, and (II) the efficacy of sulfuric acid-activated and non-activated clay deposits on the
immobilization of Mo and its bioavailability to alfalfa plants.
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2. Materials and Methods

2.1. Sample Collection, Preparation, Modification, and Characterization

Clay deposits samples were collected from Mahouez Mountain, in the Al-Kharj region,
Saudi Arabia. Samples were prepared by grinding the collected clay deposits and passing them
through a 50-µm sieve. The clay fraction (<2 µm) was separated from the clay deposit samples using
the sedimentation method [32] to identify their mineral composition with X-ray diffraction (XRD-7000;
Shimadzu Corp, Kyoto, Japan). The semi-quantitative analyses of the X-ray patterns were carried out
to estimate the mineral contents in the clay fractions of the clay deposits [33].

The sieved clay deposits were then treated with H2SO4 (3 M) at a clay deposit: acid ratio of 1:10
(w/v). The suspension was stirred continuously for 24 h, after which it was filtered, washed with
deionized water several times, dried, and ground. Similarly, the raw (unmodified) clay deposits were
also washed, dried, and ground. The mineralogical analysis of activated and inactivated clay deposits
with acid was performed using X-ray diffraction (XRD diffractometer Shmadzo 7000). Changes in the
surface functionality of clay deposit surfaces before and after activation were also estimated using
FTIR (Nicolet 6700 FTIR).

2.2. Soil Sample Collection, Preparation, and Characterization

Sandy calcareous soil samples used in the experiment were collected from farms in Al-Kharj,
Saudi Arabia. The collected soil samples were air-dried, ground, and passed through a 2-mm sieve.
The soil texture was determined according to Gee and Bauder [34], pH was measured in a suspension of
soil:water (1:1, w/v) and electrical conductivity (EC) was measured in the extracts [35]. The total content
of calcium carbonate (CaCO3) was measured according to Loeppert and Suarez [36]. The soil organic
matter was measured using the Walkley–Black method [37]. The total content of Mo was measured
using the inductively coupled plasma optical emission spectroscopy (ICP-OES) after digestion with
HClO4-H2SO4-HF according to Hossner [38]. The analyzed soil samples indicated that the soil
texture was a loamy sand with 78% sand, 10% silt, and 12% clay; while its pH and EC were 7.75 and
1.87 dS m−1, respectively. Additionally, the soil samples contained 17.1% CaCO3, 0.11% organic matter,
and 1.0 mg kg−1 Mo.

2.3. Greenhouse Pot Experiments

In this study, two greenhouse pot experiments were conducted. The first experiment was
performed in a greenhouse (potted experiment) to study the impact of Mo soil amendments on the
availability of soil Mo and its toxicity to alfalfa plants. Specifically, a pot experiment with alfalfa plants
was performed using 500 g of soil treated with 0, 0.1, 1, 10, 50, and 100 mg Mo kg−1. Meanwhile,
a second experiment was performed to investigate the impact of different additives from inactivated
and activated clay deposits by H2SO4 on Mo immobilization and shoot Mo content in alfalfa plants
grown in calcareous sandy loam soils. To achieve this objective, a greenhouse pot experiment with
alfalfa plants was conducted. Specifically, each pot consisted of 500 g of soil amended with either 0, 2.5,
5, and 10% (w/w) of the unmodified and acid-modified clay deposits. The treated and untreated soil
samples of the first and second pot experiment were then filled in pots and 50 alfalfa seeds were sown
in each pot. After seedlings occurred, the alfalfa plants in each pot were thinned to thirty. During the
growth period, pots were frequently irrigated and soil moisture content was maintained at 70% of the
field capacity by weight loss. After 35 days of planting, soil samples and alfalfa shoots were collected
from each pot and prepared for further analyses.

Soil samples were air-dried and passed through a 2-mm sieve. The soil pH was measured in a
(1:1) suspension using a pH-meter and the EC was measured in the extracted suspension of soil:water
using an EC meter. Soil samples were extracted using water at a ratio of 1:1 (50 g soil: 50mL distilled
water), then shaken for 24 h. Next, the solution was filtered to determine the concentration of soluble
Mo in the water extraction. Additionally, soil samples were extracted using AB-DTPA (20 g of soil with



Sustainability 2020, 12, 8203 4 of 17

40 mL of AB-DTPA extract solution) according to Soltanpour and Schwab [39]. In the extracts of water
and AB-DTPA, Mo concentrations were determined using ICP-OES.

Shoot samples of plants were collected at the end of the experiment. Shoot dry weight was
recorded after drying at 70 ◦C. Then, plant shoots were ground and digested using the dry digestion
method described in Chapman and Pratt [40]. In the digestion extracts, shoot Mo content was
determined using ICP-OES.

2.4. Statistical Analysis

The mean and standard deviation (±SD) of the obtained data were calculated and the data were
statistically analyzed using ANOVA in the TIBCO Statistica 13.5.0 software [41]. Pearson’s correlation
coefficients (r) between Mo plant concentration and Mo bioavailability in soil were measured, as well
as those for correlations between Mo concentration and other soil characteristics.

3. Results

3.1. XRD and FTIR Analyses of Activated and Inactivated Clay Deposits

The XRD analysis of RCD clay fractions (<2 µm) showed peaks at d spacing of 14.44, 4.29,
and 3.13 Å, suggesting the presence of montmorillonite with 41.3% (Figure S1). Meanwhile, we also
identified peaks at d spacing of 7.24 and 3.5 Å, suggesting the presence of kaolinite with 24.3%. Some
associated minerals of quartz and feldspar were also detected (9.0 and 5.6%, respectively). These
results indicate that montmorillonite is the dominant mineral in clay deposits, followed by kaolinite.

Our XRD results also highlighted differences between the XRD peaks of RCD and AMCD,
mainly due to acid modification (Figure S2). It was noted that the mineral composition of raw clay
deposits was dominated by smectite, followed by kaolinite and associated minerals (quartz and
feldspar), whereas the intensity of peaks in acid-modified clay deposits either decreased, reached their
maximum, or disappeared altogether.

The FTIR results showed that the investigated sorbents presented bands at 3621 and 3697 cm−1

for RCD and 3621 and 3698 cm−1 for AMCD (Figure S3). This is generally thought to be because the
presence of H–O–H stretching and O–H linked with numerous bonds with Al and Mg (Al/Mg–O–H
stretching) between the clay layers. Additionally, both RCD and AMCD exhibited bands at 3429 cm−1

and 3405 cm−1, respectively, due to the H–O–H stretching. RCD and AMCD sorbents also exhibited
bands at 1634 cm−1 and 1626 cm−1, respectively, as a result of the –O–H bending-deformation of
water. Active functional groups expressing the proportions of silicate minerals were also observed
in the tetrahedral layers of the clay minerals (Si–O stretching) at 1032 cm−1 for RCD and AMCD.
Additionally, the presence of active functional groups of siloxane and aluminol groups (Si–O–Al
stretching) was recorded at 534 cm−1 for RCD and 535 cm−1 for AMCD, as well as other active functional
groups associated with Si and O bonds in the Si surfaces of the tetrahedral layer within activated
and inactivated clay deposits. It was generally observed that the positions of the observed peaks for
AMCD showed some deviations at low intensity when they were compared to RCD. Additionally,
the observed peak at 1433 cm−1 for RCD disappeared after acid modification. The new peaks were
also detected in AMCD samples, which were at 1114, 1148, 2345, and 3549 cm−1. The newly appeared
peaks (at 2345, and 3549 cm−1) suggest the presence of free OH sites in acid-modified clay deposits.

3.2. Effect of Mo Addition on Soil Mo Availability and Plant Toxicity

Recently, a significant amount of research has been focused on the extraction of soil-available Mo
using various extraction methods to predict its uptake by plants [8,9,21,42]. In this study, two extraction
methods (water and AB-DTPA) were applied to measure the solubility and availability of Mo addition
to calcareous soils. Our results show that water-soluble and AB-DTPA-extractable Mo concentrations
were positively correlated with the concentration of Mo added to the soil (Figure 1). In soils treated
with 0, 0.1, 1, 10, 50, and 100 mg Mo/kg, the water-soluble Mo in the soil was 0.025, 0.065, 0.46, 2.27,
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4.51, and 8.71 mg kg−1, respectively; while the corresponding concentrations when extracted with
AB-DTP were significantly higher: 0.39, 0.45, 1.50, 8.2, 42.2, and 48.1 mg kg−1.

 

Figure 1. The water-soluble Mo (A) and AB-DTPA-extractable Mo (B) influenced by different 
contamination levels of Mo. Bars (means ± SD, n = 3) with different letters within the same Mo 
treatment is significantly different based on LSD (p ≤ 0.05). 
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Figure 1. The water-soluble Mo (A) and AB-DTPA-extractable Mo (B) influenced by different
contamination levels of Mo. Bars (means ± SD, n = 3) with different letters within the same Mo
treatment is significantly different based on LSD (p ≤ 0.05).

Concerning Mo toxicity to alfalfa plants, the plant dry weight was found to decrease with
increasing added Mo concentration in the soil (Figure 2). The plant dry weight accounted for 906 mg
pot−1 in control pots and 923 mg pot−1 in pots treated with 0.1 mg Mo kg−1, decreasing by 10.9% at
1 mg Mo kg−1, 28.5% at 10 mg Mo kg−1, 63.6% at 50 mg Mo kg−1, and 87.6% at 100 mg Mo kg−1. In soils
artificially contaminated with 0.1, 1, 10, 50, and 100 mg Mo kg−1, the shoot Mo content increased from
1.92 mg kg−1 to 3.72, 10.3, 55.5, 179, and 318 mg kg−1, respectively (Figure 2).

 

Figure 2. The shoot dry matter (A) and its concentrations of Mo (B) influenced by different 
contamination levels of Mo. Bars (means ± SD, n = 3) with different letters within the same Mo 
treatment is significantly different based on LSD (p ≤ 0.05). 
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Figure 2. The shoot dry matter (A) and its concentrations of Mo (B) influenced by different contamination
levels of Mo. Bars (means± SD, n = 3) with different letters within the same Mo treatment is significantly
different based on LSD (p ≤ 0.05).

Figure 3 shows the toxicity threshold based on applied Mo, water-soluble Mo, AB-DTPA-
extractable Mo, and shoot Mo content. The toxicity threshold (EC50) values amounted to 24.6 mg kg−1

(based on added Mo concentration), 3.37 mg kg−1 (soil water-soluble Mo), 15.5 mg kg−1 (AB-extractable
Mo), and 108 mg kg−1 (shoot Mo).
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3.3. The Effect of Treatments on Soil Properties and Mo Availability

The addition of modified and raw clay deposits increased the content of clay fraction in the soil;
with the highest increases at the highest application rate (Table S1). Similarly, the soil sand content
tended to decrease after the addition of RCD and AMCD. The results also showed that adding only
H2SO4 acid-modified clay resulted in a significant decrease in soil pH compared to the control (Table 1).
In soils contaminated with 10 mg Mo kg−1, applying 2.5, 5, and 10% AMCD led to a decrease in
soil pH from 7.74 to 7.56, 7.57, and 7.33, respectively. In soils contaminated with 50 mg Mo kg−1,
applying 2.5, 5, and 10% AMCD led to a decrease in pH from 7.82 to 7.60, 7.56, and 7.37, respectively.
These results indicate that the highest decrease in soil pH was achieved by an application rate of 10%.
Soil EC increased significantly after AMCD treatments but was not significantly affected by RCD
treatments (Table 1). AMCD addition also increased EC values from 1.89 dS m−1 in the control soil to
2.34–3.0 dS m−1 in soils contaminated with 10 mg Mo kg−1; and from 1.76 dS m−1 to 2.2–3.15 dS m−1 in
soils contaminated with 50 mg Mo kg−1, showing that the highest EC values were generally found at
the highest Mo application rate.

Our results showed that water-soluble and AB-DTPA-extractable Mo were significantly influenced
by the addition of clay deposit amendments (both modified and unmodified; Figure 4). At 10 mg
Mo kg−1, the addition of 2.5, 5, and 10% AMCD decreased the soil water-soluble Mo by 33.2, 55,
and 63.3% of that in control soil, respectively. We also observed significant decreases in water- soluble
Mo with RCD treatments, amounting to 4.24% (2.5% RCD), 30.6% (5% RCD), and 22.3% (10% RCD)
compared to untreated soils. In soils amended with 50 mg Mo kg−1, water-soluble Mo significantly
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decreased by 37.3–43.8% with AMCD treatments compared to the control, with no significant difference
between application rates. However, it was not significantly influenced by RCD additions. It was
generally observed that the highest immobilization of water-soluble Mo (63.3% compared to the control
soil) was recorded at the highest application rate of modified clay deposit treatments and at low
Mo concentration.

Table 2 shows Pearson correlation coefficients (r) between soil pH or clay content and water-
soluble Mo or AB-DTPA-extractable Mo. Our results show a significant positive relationship between
soil pH and the availability of soil Mo (extracted with water and/or AB-DTPA). Additionally, a negative
relationship was found between the soil clay content and water-soluble Mo or AB-DTPA-extractable Mo.

Table 1. Soil pH and EC (dS m−1) influenced by different contamination levels of Mo and
amendment additions.

Treatments Application Rate pH EC

% value ±SD 3 value ±SD

Soil contaminated with 10 mg Mo kg−1

CK 1 0 7.74 a 2 0.05 1.89 a 0.15

RCD
2.5 7.72 a 0.02 1.91 a 0.05

5 7.74 a 0.06 1.80 a 0.16

10 7.66 ab 0.05 1.81 a 0.08

AMCD
2.5 7.56 b 0.00 2.34 b 0.13

5 7.57 b 0.06 2.70 c 0.16

10 7.33 c 0.10 3.00 d 0.08

F-value 13.91 - 29.93 -

p-value 0.0000 - 0.0000 -

Soil contaminated with 50 mg Mo kg−1

CK 0 7.82 a 0.10 1.76 a 0.10

RCD
2.5 7.78 a 0.01 1.87 a 0.06

5 7.74 ab 0.07 1.73 a 0.05

10 7.62 bc 0.02 1.78 a 0.13

AMCD
2.5 7.60 bc 0.02 2.20 b 0.11

5 7.56 c 0.02 2.63 c 0.05

10 7.37 d 0.13 3.15 d 0.12

F-value 9.73 - 65.21 -

p-value 0.0003 - 0.0000 -
1 Treatments include CK: control soil, RCD: raw clay deposit, AMCD: acid-modified clay deposits. 2 Different letters
within the same Mo treatment are significantly different based on LSD (p ≤ 0.05). 3 Means ± SD.

Table 2. Pearson correlation coefficients (r) between soil pH or clay content and water-soluble Mo or
AB-DTPA-extractable Mo.

Parameters In the Soil Contaminated with 10 mg Mo kg−1 In the Soil Contaminated with 50 mg Mo kg−1

Water-Soluble Mo AB-DTPA-Extractable Mo Water-Soluble Mo AB-DTPA-Extractable Mo

pH 0.7377 *** 0.3259 0.6560 ** 0.6471 **

Clay −0.6425 ** −0.7183 *** −0.1015 −0.7632 ***

* Significant at p ≤ 0.05; ** Significant at p ≤ 0.01; *** Significant at p ≤ 0.001.
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Figure 4. The water-soluble Mo (A) and AB-DTPA-extractable Mo (B) influenced by different
contamination levels of Mo and amendments additions. Bars (means ± SD, n = 3) with different letters
within the same Mo treatment are significantly different based on LSD (p ≤ 0.05).

3.4. The Effect of Treatments on Plant Dry Matter and Shoot Mo Concentration

Figure 5 illustrates the effect of adding raw and acid-modified clay deposits on the dry matter
weight of alfalfa shoots and their Mo concentration. In soils contaminated with 10 mg Mo kg−1, the dry
matter weight of alfalfa shoots increased by 17.8% (2.5% RCD), 23.5% (5% RCD), 69.4% (10% RCD),
38.3% (2.5% AMCD), 25.3% (5% AMCD), and 26.1% (10% AMCD) compared to the control. Meanwhile,
in soils contaminated with 50 mg Mo kg−1, the dry matter weight of alfalfa shoots increased by
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117% (5% RCD), 171% (10% RCD), 56.2% (2.5% AMCD), 108% (5% AMCD), and 8.89% (10% AMCD)
compared to the control. Among all treatments, in soils contaminated with 10 mg kg−1, only 10% RCD
and 2.5% AMDC showed significant higher increases in shoot dry matter compared to control soil.
However, in soils contaminated with 50 mg Mo kg−1, all treatments (except for 2.5% RCD and 10%
AMCD) caused significantly higher increases in shoot dry matter compared to control soil.
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In soils contaminated with 10 mg Mo kg−1, shoot Mo concentration decreased by 15.7% (5% RCD),
27.8% (10% RCD), 18.8% (2.5% AMCD), 57.5% (5% AMCD), and 55.0% (10% AMCD) compared to the
control. Meanwhile, in soils contaminated with 50 mg Mo kg−1, shoot Mo concentration decreased by
4.29% (2.5% RCD), 8.76% (5% RCD), 19.0% (10% RCD), 2.85% (2.5% AMCD), 37.5% (5% AMCD),
and 48.4% (10% AMCD) compared to the control. These results indicate that the addition of
acid-activated clay reduced shoot Mo concentration more significantly than RCD.

Significant Pearson’s correlation coefficients (r) were reported between dry matter or shoot Mo
concentration and measured soil parameters (Table 3). The results showed a significant positive
correlation between soil pH and Mo concentration in plant tissues, while a significant negative
correlation was found between soil clay content and shoot Mo concentration. The water-soluble soil
Mo and AB-DTPA-extractable Mo were significantly correlated with Mo plant concentration in soils
contaminated with 10 mg Mo kg−1, while only the AB-DTPA-extractable Mo was significantly correlated
with Mo plant concentration in soils contaminated with higher Mo concentrations (50 mg kg−1).

Table 3. Pearson correlation coefficients (r) between soil properties or the extractability of Mo and dry
matter or shoot Mo content.

Parameters
In the Soil Contaminated

with 10 mg Mo kg−1
In the Soil Contaminated

with 50 mg Mo kg−1 Combined Data

Dry Matter Shoot Mo Dry Matter Shoot Mo Dry Matter Shoot Mo

pH −0.0309 0.6697 *** −0.0902 0.7258 *** −0.1014 0.3649 *

EC −0.0643 −0.7633 *** −0.2170 −0.7728 *** −0.0952 −0.3618 *

Clay 0.4840 * −0.6670 *** 0.4121 −0.6919 *** 0.3266 * −0.2538

Water-soluble
Mo −0.1593 0.8519 *** 0.1396 0.4085 −0.4692 ** 0.8582 ***

AB-DTPA-Mo −0.2571 0.6498 ** −0.4816 * 0.6894 *** −0.6915 *** 0.9345 ***

Shoot Mo −0.2310 1.0000 −0.1489 - −0.6012 *** 1.0000

* Significant at p ≤ 0.05; ** Significant at p ≤ 0.01; *** Significant at p ≤ 0.001.

4. Discussion

The obtained results clearly show that increasing the concentration of added Mo results in an
increase in the availability of soil Mo and its concentration in plant tissues (inducing toxicity), and a
corresponding decrease in plant dry matter (Figures 1 and 2). This suggests the toxicity of Mo and
its adverse impact on plant biological processes and resulting growth. In Axelon [43,44], the author
showed that Mo concentrations exceeding 5 mg kg−1 dry matter were found in 38 out of 95 plant
samples. The highest Mo content observed in forage plants was 58.7 mg kg−1, and the animals on that
farm suffered from molybdenous. In another study, Kubota and colleagues [6] observed an increase
in Mo concentration in forage plants with increasing calcareous soil Mo concentration but no such
consistent increase in plant Mo concentration in acidic soils. They also found that Mo concentration in
the plant tissues was still within the toxic range (10 to 20 ppm) for grazing animals. In this context, the
results obtained in this study also show that shoot Mo content of alfalfa plants increased with increasing
soil Mo content and the plant toxicity to ruminants may be significant at soil Mo of ≥1 mg kg−1.

The toxicity threshold (EC50) values in this study were assessed based on the concentration of
spiked Mo, water-soluble Mo, AB-DTPA-extractable Mo, and shoot Mo by determining the effective
concentration that occurs when a 50% reduction in the dry matter of plant shoots (EC50) occurs (Figure 3).
The EC50 values obtained in this study, which were 24.6 mg kg−1 (based on added Mo concentration),
3.37 mg kg−1 (soil water-soluble Mo), 15.5 mg kg−1 (AB-extractable Mo), and 108 mg kg−1 (shoot Mo),
are significantly lower than those obtained from previous studies, mainly due to the high alkalinity
of soils used in this experiment. For example, McGrath et al. [8] showed that the EC50 values based
on shoot Mo concentrations of oilseed rape, red clover, ryegrass, and tomato amounted respectively
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to 525–6815, 780–2058, 1008–4270, 680–6833 mg kg−1 in soils having pH < 7.0 but they were in the
range of 603–1348, 499–1285, 863–1670, and 631–1740 mg kg−1 in soils having pH > 7.0. They also
indicated that EC50 for Mo in neutral and basic soils is much lower than that in acid soils, suggesting
more pronounced phytotoxicity in basic and calcareous soils. Unlike cationic toxic trace elements,
the solubility, bioavailability, and phytotoxicity of Mo generally increases with increasing soil pH
(increasing alkalinity). Previous studies have indicated that the retention of Mo on the surfaces of
calcareous soils and calcite is low, suggesting that calcium carbonate is not an important sink for Mo
to restrict its solubility, bioavailability, and plant toxicity in calcareous soils [12]. Goldberg et al. [45]
further reported that Mo adsorption onto soils is heavily influenced by pH, with the greater adsorption
capacity recorded at pH 2–5. The adsorption capacity then starts to decrease as pH increases to 8.0
and becomes very low at pH > 9. In another study, McGrath et al. [9] stated that Mo concentration in
the soil solution and the corresponding plant uptake increased when soil pH was artificially raised,
as Mo sorption to amorphous oxides is greatly reduced at high pH. However, they also reported the
influence of other factors (e.g., organic C or ammonium oxalate-extractable Fe) in predicting the toxicity
threshold of Mo. In this study, therefore, the high calcium carbonate content and pH value of the soil
used might explain the increased solubility and availability of added Mo and its high toxicity to alfalfa
plants. Therefore, soil properties need to be taken into account to assess the risk of Mo exposure.

The toxicity threshold based on AB-DTPA-extractable Mo (EC50 = 15.5 mg kg−1) is relatively
close to that based on added Mo concentration (EC50 = 24.6 mg kg−1), suggesting the importance of
using AB-DTPA to predict the bioavailability and toxicity of Mo in alkaline soils. Zhang et al. [46]
similarly reported that using AB-DTPA to extract potentially available metals and nutrients is an
efficient method in alkaline soils. Another study by Wang et al. [47] also suggested that the AB-DTPA
extraction method was suitable to evaluate the availability of soil Mo and its potential phytotoxicity.

The effect of treatments on some soil properties (including soil texture, EC and pH) and Mo
availability was also investigated in the current study. As expected, applying modified and raw clay
deposits increased the content of clay fraction in the soil. Additionally, applying AMCD decreased soil
pH but increased EC values. The effect of acid-modified clay deposit addition on decreasing pH could
be attributed to the acid components of the chosen amendment. The amendment increases ion release
from the added clay deposits after being activated by sulfuric acid, which would explain the increasing
soil EC values. Therefore, the addition of clay deposits after this activation may lead to an increase in
soil salinity. The concentration of soluble salts in the soil can be controlled by the mineral’s solubility.
Therefore, the low pH values obtained after the addition of modified clay may be the driving force
increasing the EC values by increasing mineral solubility.

In terms of Mo immobilization by using soil additives, our results clearly showed that water-soluble
and AB-DTPA-extractable Mo were significantly influenced by both modified and unmodified
clay deposits (Figure 4). It was generally observed that the immobilization of water-soluble and
AB-DTPA-extractable Mo was significantly higher in soils with added modified clay deposits compared
to those with raw clay deposits, regardless of Mo treatment concentration. Past research successfully
used AB-DTPA to predict Mo availability in polluted and unpolluted soils [47,48]. In Kirby et al. [49],
a good relationship was found between the labile pool (MoO4

2−) and AB-DTPA-extractable Mo.
The results showed that applying RCD and AMCD amendments can potentially have a significant
effect on the immobilization of AB-DTPA-extractable Mo. In soils contaminated with 10 mg Mo kg−1,
the concentrations of AB-DTPA-extractable Mo were significantly reduced (11.4–59.1%) in soils treated
with RCD and by 8.85–67.0% in soils treated with AMCD compared to the control. Contrastingly,
in soils contaminated with 50 mg Mo kg−1, the AB-DTPA-extractable Mo reduced by 7.21–45.3% in
RCD treatments and by 28.0–56.9% in AMCD treatments compared to the control. Previous studies
used clay minerals as immobilizing agents to reduce metallic ion mobility and bioavailability to
remediate contaminated soils [13–17]. Applying clay minerals can reduce the labile and available
pools of potentially toxic metals in contaminated soils, converting them into more stable, less toxic
fractions. The surface sites of clay minerals are usually negatively charged, indicating their potential
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use in the remediation of heavy metal-polluted soils through the immobilization of cationic metals [20].
Ou et al. [14] used two clay minerals (maifan stone and illite/smectite clay) to immobilize in situ
potentially toxic metals. They found that these clays significantly reduced DTPA-extractable Cd, Ni,
Cr, Zn, Cu, and Pb in alkaline soils. In this context, they suggested several mechanisms for soil metal
immobilization using clay minerals, including physical and chemical adsorption, ion exchange and
specific adsorption, complex formation, isomorphic substitution, and diffusion [14,20,50]. Additionally,
the high pore density in clay could be responsible for providing new available adsorption sites for metal
immobilization in soils [14]. By contrast, Neunhäuserer et al. [21] found that soil NH4OAc-extractable
Mo increased significantly (90%) following vermiculite (clay mineral) addition compared to the control
soil. The increase in the extractable amount of soil Mo after vermiculate application could be attributed
to an increase in the number of negatively charged sites in soils, enhancing the release of molybdate
through exchange with other soil anions [21,51]. In this study, however, clay deposits play a key
role in Mo in situ immobilization, depending on Mo concentration, application rate, and activation
method. For instance, in soils contaminated with a relatively low level of Mo (10 mg kg−1), a higher
immobilization rate of AB-DTPA-extractable Mo was recorded for both RCD and AMCD at an
application rate of 5 and 10%, with no significant difference between them. Meanwhile, in Mo-
contaminated soils (50 mg kg−1), the highest immobilization capacity of Mo extracted using AB- DTPA
was found in 10% AMCD, followed by 5% RCD or 10% RCD or 5% AMCD. In most cases, the lowest
water-extractable and AB-DTPA-extractable amount of Mo were found in soils treated with AMCD
(except those contaminated with 10 mg Mo kg−1); the addition of AMCD showed almost similar
efficiency to RCD in immobilizing AB-DTPA-extractable Mo. This suggests that acid- modified clay
deposits have a strong influence on reducing the extractability of soil Mo compared to unmodified clay
deposits. This could be explained by the activation of clay using sulfuric acid, which enables its use as
an immobilizing agent to adsorb anionic metals. The organic and inorganic acid-activation of mineral
surfaces was found to improve their binding capacity to heavy metals [52,53]. Moradi et al. [30] found
that clay modified with sulfuric acid enhanced the porous external surface, providing more active sites
and inducing a positive charge on the clay surface, leading to higher adsorption of Cr(VI) anions via
the electrostatic attraction mechanism. It may be that using acid for clay modification might neutralize
a portion of the negatively-charged sites onto the clay surface and result in an increase in the number
of positively charged sites and the functionalization of clay surfaces with effective groups. This in turn
leading to the increased immobilization capacity of clay minerals for anionic metals (e.g., molybdate).
This mechanism might explain the low amount of water-extractable and AB-DTPA-extractable Mo as
anionic metal in soils treated with AMCD in our experiment.

The solubility and availability of soil Mo are influenced by a variety of factors including soil pH,
soil texture, CEC, clay minerals, oxides, inorganic carbon content, and organic matter content [9,54,55].
The efficiency of Mo immobilization in RCD- or AMCD-amended soils relies mainly on the effects
of soil amendments, which strongly influence Mo availability. In this study, the decrease in soil
pH after AMCD amendments increases Mo immobilization more significantly than RCD. We found
a significant positive relationship between soil pH and the availability of soil Mo (extracted with
water and/or AB-DTPA; Table 2), suggesting that Mo availability is dependent upon soil pH. Previous
studies also suggested that alkaline soils increase Mo availability [8,9,56,57]. Another study by
Rutkowska et al. [57] also found a significant positive correlation between Mo availability and soil
pH in the soil, which further supports this interpretation. They suggested that this relationship was
mainly caused by an increase in free negative charges onto the soil colloidal surfaces, which led to
electrostatic repulsion between Mo anions and soil particles [56,57]. Additionally, the excess amount of
hydroxyl anions in alkaline soils can compete strongly with Mo anions onto the soil adsorption sites,
resulting in more available soil Mo concentration [57,58].

Our results showed a negative relationship between the soil clay content and water-soluble Mo
or AB-DTPA-extractable Mo, suggesting that the clay fraction might act as an important sink for Mo
in alkaline soils, lowering soil Mo availability through adsorption onto the exchange sites of the soil
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colloidal surfaces. Previous studies have also shown that soil clay is an important factor in controlling
Mo adsorption and bioavailability [54,57], however, the extent to which soil pH and clay content affect
the partitioning of Mo between different soil pools remains unclear.

The dry weight of plant shoots was generally lower in soils contaminated with 50 mg Mo kg−1

compared to that contaminated with 10 mg Mo kg−1 (Figure 5), mainly because of the toxicity effect
induced by higher Mo concentration. When examining the effect of soil amendments, the dry weight
of plant shoots showed significant increases in soils treated with RCD and/or AMCD compared to
the control; no negative impacts on plant growth were observed. Overall, our results indicate that
the highest application rate of RCD had the greatest enhancing effect on plant growth. For example,
in soils contaminated with 10 mg Mo kg−1, the shoot dry matter increased significantly by 69.4% and
38.3% in soils treated with 10% RCD and 2.5% AMCD, respectively. Meanwhile, in soils contaminated
with 50 mg Mo kg−1, the shoot dry matter increased significantly by 117% for 5% RCD, 171% for
10% RCD, 56.2% for 2.5% AMCD, and 108% for 5% AMCD compared to the control soil. The effect
of applying soil amendments on accelerating plant growth might be influenced by changes in the
soil’s physical and chemical properties such as pH, EC, clay content, CEC, fertility, and water holding
capacity. Several studies have shown that clay additions have the potential to improve sandy soil
properties [23,24,26,27]. Applying clay deposits increases the soil’s nutrient absorption and retention
capacity, thus enhancing plant growth. Previous research also suggested that clay amendments to sandy
soils increase crop yield [25,59,60], mainly due to improved water and nutrient retention capacity [26].
In this experiment, plant growth significantly increased following the addition of vermiculite (56%
compared to control soil).

We also observed that the highest AMCD application rate (10% w/w) led to lower shoot dry weight
than the 2.5 and 5% AMCD as well as the 5 and 10% RCD treatments, but was not significantly different
compared to the control. This may be because of a higher increase in the soluble salts induced by the
high application rate of acid-modified clay deposits combined with the high Mo contamination level.
Increased levels of soluble salts in soils are usually associated with decreased plant biomass [61,62].

The results indicated that the addition of acid-activated clay reduced shoot Mo concentration
more significantly than RCD (Figure 5). The magnitude of this decrease is strongly influenced by Mo
availability in the soil. Previous research has shown that applying amendment-based minerals to
contaminated soils was effective in reducing soil metal availability and their concentration in plant
shoots, resulting in increased plant growth [17,63]. He et al. [22] found that bentonite addition at
4% (w/w) to metal-contaminated soils reduced the exchangeable form of As by 4.05% and shoot As
concentration by 36.2% in Brassica chinensis L. compared to the control. They also found that the
addition of bentonite enhanced the dry matter weight of plants by 289% compared to that in control
soils. In this study, despite the high application rate of AMCD leading to a greater reduction in shoot
Mo content, the amendment did not significantly improve plant growth in Mo-contaminated soils.
This suggests that metal immobilization might have an interactive effect with another factor on plant
growth, such that its effects on reducing toxicity and metal uptake by plants, as well as the nature
and modification of soil additives and application rate, might play a considerable role in accelerating
plant growth.

It is clear from our findings that the decrease in the shoot Mo concentration in alfalfa plants is due
to a reduction in soil available Mo due to the addition of AMCD and RCD, and that this relationship is
further influenced by soil pH and clay content, subsequently enhancing the capacity of alkaline soil to
retain Mo anions onto the soil exchange sites.

5. Conclusions

This study investigated the effects of Mo application on phytotoxicity in alfalfa plants grown on
sandy loam calcareous soils, as well as the influence of natural clay deposits and its acid-activation form
on Mo immobilization and bioavailability. Our findings show that AMCD treatment is more efficient
for Mo immobilization and reducing shoot Mo content than RCD. However, the RCD amendment
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(particularly at higher application rates) increased the maximum dry matter in plant shoots. Our results
suggest that acid-activated clay deposits are ideal soil amendments to increase Mo immobilization
and its uptake by plants in contaminated agricultural calcareous soils. Additional long-term research
is required to understand the behavior of acid-activated and non-activated natural clay deposits in
Mo immobilization.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/19/8203/s1,
Figure S1. XRD analysis for clay fraction (<2 µm) of raw unmodified clay deposits. Figure S2. XRD analysis for
raw (RCD) and acid-modified clay deposits (AMCD). Figure S3. FTIR analysis for raw (A: RCD) and acid-modified
clay deposits (B: AMCD). Table S1. The overall changes in soil sand, silt and clay following the addition of
modified and unmodified clay deposits, regardless of levels of added Mo.
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