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Abstract: In the built environment, one of the main concerns during the design stage is the selection
of adequate structural materials and elements. A rational and sensible design of both materials and
elements results not only in economic benefits and computing time reduction, but also in minimizing
the environmental impact. Nowadays, Artificial Neural Networks (ANNs) are showing their potential
as design tools. In this research, ANNs are used in order to foster the implementation of efficient
tools to be used during the early stages of structural design. The proposed networks are applied to a
dry precast concrete connection, which has been modelled by means of the Finite Element Method
(FEM). The parameters are: strength of concrete and screws, diameter of screws, plate thickness,
and the posttensioning load. The ANN input data are the parameters and nodal stresses obtained
from the FEM models. A multilayer perceptron combined with a backpropagation algorithm is used
in the ANN architecture, and a hyperbolic tangent function is applied as an activation function.
Comparing the obtained predicted stresses to those of the FEM analyses, the difference is less than
9.16%. Those results validate their use as an efficient structural design tool. The main advantage of the
proposed ANNs is that they can be easily and effectively adapted to different connection parameters.
In addition, their use could be applied both in precast or cast in situ concrete connection design.

Keywords: efficient structural design; artificial neural networks; dry precast concrete connection;
artificial intelligence; sustainable built environment

1. Introduction

In different engineering fields, the use of Artificial Neural Networks (ANNs) is gaining a noticeable
position in the material design and selection stages. These computational models are powerful tools
that allow for not only reducing computing times, but also designing adequate shapes and reducing
the amount of raw materials used. As a consequence, ANNs have the potential to significantly reduce
both economic cost and environmental impact.

Artificial Neural Networks (ANNs) are biologically inspired computational models that are based
on the interconnection mechanisms of the human brain’s neurons. These mathematical models are
able to solve complex multivariable linear or nonlinear problems and to obtain relationships between
different patterns. ANNs have been traditionally applied to different fields, such as financial analysis,
image processing (e.g., target recognition and image completion), medical test diagnosis, robot control,
and speech recognition. In addition to performing complex computations, they allow for recognizing
patterns that can be applied in the learning computation process. ANNs are especially appropriate if
the problem has a difficult or non-defined solving procedure [1].
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The main advantage of using neural networks is their ability to learn from experience, generalizing
from previous situations to new cases and differentiating essential information from that which is
irrelevant. ANNs are able to represent and learn both linear and non-linear relationships directly from
the data [2].

Since 1986, the use of ANNs was spread due to the feasibility of developing an error
back-propagation training algorithm, which was based on a gradient-descent optimization technique [3].
In addition, ANNs have gained a relevant position in solving industrial design problems. It is worth
mentioning that the identification of the optimum design within an industrial process is not always
possible due the size of the problem and lack of knowledge, as the design stage is essential [2]. However,
ANNs are able to perform constraint checks, requiring less computing time to provide adequate results.

Focusing on civil engineering, it is worth mentioning that although ANNs were developed in
the seventies [4], their applications in civil and structural engineering date from 1989 [5]. In 2001,
Hojjat published a review on Neural Networks in Civil Engineering [5], where the use of ANN
from 1989 to 2001 in civil, structural, and building engineering fields was analyzed. Gupta et al [6]
analyzed the feasibility of using ANNs in structural analysis and building design from 1990 to 2011.
Amezquita-Sanchez et al. [7] published a review paper analyzing the ANNs’ applications in civil
infrastructures. That research focused on structural system identification, structural health monitoring,
structural vibration control, structural design and optimization, prediction applications, construction
engineering, and geotechnical engineering.

In civil engineering, ANNs have been successfully used in automation and optimization [2,5,8], in
material formulation [9], and in system identification and monitoring [10,11]. In structural analysis and
design, the following applications could be highlighted [2,6,12]: structural analysis of systems with
large degrees of freedom, size optimization of structural members, joint location, shape optimization
of structural types (e.g., truss geometry), topology optimization (based on deletion of ineffective
structural members), and maximum stress identification and location. Focusing on the application to
specific structural problems, Intelligent Finite Element Analysis (IFEA), which combines the Finite
Element Method (FEM) together with an ANN, has been used for simulating or predicting constitutive
models [13–15]. Waszczyszyn and Ziemianski [16] applied a hybrid ANN to analyze elastoplastic
beams together with the Finite Difference and Finite Element methods. Neural Networks have been also
applied in structural analysis pattern recognition [17,18]. Regarding prediction applications of ANNs,
Lee [19] and De-Cheng et al. [20] analyzed their use for predicting the concrete strength; Yan Cao et al.
(2020) analyzed their application in the behavior of beam-to-column connections; Van Dao et al. [21]
applied these computational models in the compressive strength prediction of concrete mixed with
geopolymer; and Abambres et al. [22] predicted the fatigue strength of concrete. Stoffel et al. [23]
proposed an ANN to predict deformations in non-linear metal plates, while Kamgar et al. [24] designed
a feed-forward back-propagation neural network (FFBPNN) to be used to propose a new formulation
for predicting the compressive strength of fiber-reinforced polymer (FRP)-confined concrete cylinders,
and Komleh and Maghsoudi [25] applied an Adaptative Neuro-Fuzzy Inference System (ANFIS) and
multiple regression analysis in the prediction of the curvature ductility factor of FRP-strengthened
reinforced high-strength concrete beams. Focusing on the use of metaheuristic optimization algorithms
to optimize structures, the works by Kaleh et al. [26] and by Kaleh and Dadras [27] are remarkable.
Focusing on economic issues, Kamgar et al. [8] proposed a fuzzy inference system to evaluate the
building design codes from an economic point of view.

It is worth noting that the use of ANNs in precast concrete elements or connections is an open
research field. In fact, neither the prediction of complex nonlinear structural stresses and deformations
nor their use in the design stage has been widely analyzed.

The main objective of this research is threefold:

• To contribute to the optimal design of precast structural components by using ANNs;
• To minimize the computation time in structural analyses by means of ANNs;
• To contribute to the implementation of ANNs within the building sector.
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2. Materials and Methods

In order to accomplish the aforementioned objectives, this work focuses on the structural design
of a specific dry beam–column connection, which has been recently proposed and analyzed by
Navarro-Rubio et al. [28]. Four ANNs are designed to predict the structural response of the connection,
aiming at designing the materials in an effective way. Each ANN is trained by using numerical data
that are obtained from Finite Element analyses (FEM). These analyses are performed with Ansys FEM
software [29]. The input data include: (i) material parameters, (ii) relations between adjacent stresses
in nodes, and (iii) deformations. All the FEM model parameters are implicitly considered in the ANN
input during the learning process. Four Multilayer Perceptrons (MLPs) are proposed to predict the
behavior of the elements using a Hyperbolic Tangent Function (HTF) as the activation function.

Due to the stresses’ variability in the precast concrete connection (e.g., nodal stresses are positives
and negatives in the same element, in the beam or plate) the HTF function is the most adequate.
This function provides a faster convergence and lower error than those of the sigmoidal one. After
analyzing the results, the proposed ANNs are validated to be used as a design tool, aiming at reducing
computation time, and making easier the structural design stage. The main advantage of the designed
ANNs is the easy and effective adaptation to different connection parameters, as well as the feasibility
of being used both in precast or cast in situ concrete connections. In general, the numerical software
solves one model for each parameter configuration; it is a time-consuming process if many different
parameter combinations are required. Actually, in common practice, a considerable number of element
connections are expected, and defining the appropriate design for each connection would demand
significant computational times. The main reason for developing an ANN is that once it is properly
trained, it can be used for solving the design problem for any set of input parameters in a highly
efficient manner and with lower computational times (if compared to common numerical procedures).

In the following subsections, the analyzed case study (including the main characteristics of the
FEM model) is described. The discrete optimization method that has been used is also presented.

2.1. Description of the Case Study

In order to study both the feasibility and the potential of using ANNs for the design of structural
materials and elements, this research focuses on a single case study, the analysis of a dry precast
concrete connection that has been recently designed and analyzed by Navarro-Rubio et al. [28].

The connection is designed as follows: Precast concrete beams are connected to a precast concrete
column with bolted steel plates (Figures 1 and 2); non-contact tubes inside the column are added for
the screw yielding (Figure 1e). A post-tensioned tendon is located in the middle of the beam (Figures
1a and 2).

The connection elements are fabricated in the workshop and connected on-site. In the workshop,
after the formwork is built, the steel elements and rebars are located in the final position inside the
connection. The final elements are composed of precast concrete beams or columns, with steel plates
or tubes for screws or tendons inside them to achieve a faster on-site construction. After removing the
formwork, small plates are welded at the bottom of the column’s steel device. The on-site fabrication
steps are the following: (i) To place the beams over small plates, the use of cranes is minimized and the
on-site construction times are reduced. (ii) Once the beam is placed in the final position, the screws are
fastened to connect precast elements. (iii) Finally, the tendon is put inside the strand, and the elements
are posttensioned.
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Figure 1. (a) Three-dimensional conceptual model. (b) Three-dimensional view of the Finite Element 
Method (FEM) model mesh and loads applied. (c) Steel plate inside beam. (d) Three-dimensional view 
of the connection. (e) Steel device inside column. 

 

Figure 2. Geometric description (dimensions in mm) and loads applied. 

The connection elements are fabricated in the workshop and connected on-site. In the workshop, 
after the formwork is built, the steel elements and rebars are located in the final position inside the 
connection. The final elements are composed of precast concrete beams or columns, with steel plates 

Figure 1. (a) Three-dimensional conceptual model. (b) Three-dimensional view of the Finite Element
Method (FEM) model mesh and loads applied. (c) Steel plate inside beam. (d) Three-dimensional view
of the connection. (e) Steel device inside column.
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Focusing on the advantage of this connection, two main features can be highlighted: the faster
on-site construction stage and the feasibility of achieving a monolithic behavior without cast-in-place
concrete. In addition, due to the configuration of the elements, it provides better resistance under
horizontal loading. An in-depth discussion on the details of the connection design and its advantages
is presented in Navarro-Rubio et al. (2019).
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The connection structural response is analyzed by means of numerical simulations. A three-
dimensional Finite Element Model (FEM) is developed by using the commercial software Ansys [29].
The concrete elements are modelled by means of eight node solid elements (Solid 65), while linear
Link180 elements are used to model rebars inside the concrete. These elements are commonly used in
structural analyses (e.g., [30]). Solid steel elements, such as plates and tendons, have been modelled
with the element Solid 185. To model the contact between elements (concrete–steel in the beam–column
interface), the Target170 and Conta173 elements are used. Those elements can simulate pressure under
contact, as well as free volume when there is no contact. The elements also consider friction and
cohesion. The mesh comprises 37,631 elements (Figure 1b).

Focusing on the materials, a nonlinear behavior is assumed for concrete and for contact areas.
Table 1 provides the material control parameters according to the Spanish Concrete Code EHE-08 [31],
where the ultimate strength is Fu = Fck + 8 and Young’s modulus is E = 8500 3√Fu.

Table 1. Material control parameters according to Spanish Concrete Code.

Material
Compressive
Strength,
Fck (MPa)

Tensile
Strength,
Ft (MPa)

Yield
Strength,
Fy (MPa)

Ultimate
Strength,
Fu (MPa)

Poisson
Ratio, ν

Young’s
Modulus,
E (MPa)

Internal
Friction

Concrete C25/30 25 2.56 – 33 0.2 27,264 Steel–Steel
Concrete C30/35 30 2.897 – 38 0.2 28,577 0.3
Concrete C35/40 35 3.210 – 43 0.2 29,779
Concrete C40/45 40 3.509 – 48 0.2 30,891

Rebar steel B500SD – – 400 480 0.3 200,000

PT Steel (1860S3) – – 1674 1860 0.3 200,000 Conc–Steel
Steel in plates (S355) – – 355 490 0.3 200,000 0.5

Screws 4.6 240 600 0.3 200,000
Screws 5.6 300 600 0.3 200,000
Screws 6.8 480 800 0.3 200,000
Screws 8.8 640 800 0.3 200,000

Screws 10.9 900 900 0.3 200,000

The Drucker–Prager (DP) perfectly plastic criterion [32] and the Willam–Warncke (WW) failure
surface [33] are the theories that are applied to define the behavior of the concrete. As is well known,
both theories yield accurate results on solid 3D models. Three-dimensional cracking is permitted
in tension and crushing in compression. In a first stage, the material is isotropic, until either the
tensile or the compressive strength is exceeded. As the yield surface does not change with progressive
yielding, there is no hardening rule, and the material behaves as elastic—perfectly plastic. The values
of cohesion, equal to 6.5 MPa, and friction angle, equal to 35◦, have been selected to obtain a good
match with uniaxial strength in tension and compression. The dilatancy angle, ψ, is equal to 35◦.
Two shear transfer coefficients for open and closed cracks, βt equal to 0.85 and βc equal to 0.15, are
also included. With regard to the steel elements, elastoplastic models are applied for screws, plates,
tendons, and rebars.

Regarding the boundary conditions, the base of the column is completely constrained, and both
external sides of the beams are partially constrained, allowing only vertical displacement (but neither
horizontal nor nodal rotation are allowed), acting as a symmetry axis.

Nonlinear elastic analyses (under incremental loading) are performed. The loading has been
gradually applied on the top face of the beams. The loading steps range from 0 to 0.20 MPa, with a
step load of 0.02 MPa. A compression load in the beams is also applied by means of the posttensioned
tendon (PT-Load). No other load has been applied in the structural elements. The iteration method is
that of Newton–Raphson. The controls, force, and displacement tolerances are activated [30] with a
limit of 0.05. The calculation finishes when an element joint reaches its strength limit.

As the main focus of the analysis is the material design, different FEM models are built, varying
these parameters: (i) concrete strength, (ii) screw diameters, (iii) plate thickness, (iv) PT-Load, and (v)
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screw strength. The parameter variation is defined in the following section. The results of each step
and sub-step are recorded and used as input for the ANNs.

2.2. Efficient Design

In structural analyses, one of the most relevant objectives within design procedures is minimizing
the weight of the used materials [2]. It is worth noting that in order to obtain the best and minimal
solution that optimizes a structural element or part (e.g., joint or connection), different material and
parameter combinations should be compared. Focusing on FEM analyses, the most common and
conventional numerical methods require both high pre-processing and computing times.

The applied design and state variables and the objective function are:
(1) Design variables:

- DT: Diameter of the screw: 12, 16, 20, 22, and 24 mm;
- EC: Thickness of the beam plate: 15, 20, 25, 30, 35, and 40 mm;
- PT: Posttensioning load applied: 0, 50, 100, 150, and 200 kN;
- Concrete strength: 25, 30, 35, and 40 MPa;
- Screw steel strength: 4.6, 5.6, 6.8, 8.8, and 10.9, where A.B represents the yield (A × B × 10 MPa)

and ultimate strength (B × 100 MPa), respectively.

(2) State variables: The main focuses are the stress field distribution and the deflection in the
external face of the beam, where the maximum deflection is expected. The vertical surface load
increases in each step, while the material strength in the connection keeps under the stress limits.

(3) Objective function: This is the maximum material nodal stress in the connection according to
the design variables, as indicated in point number 1.

By using the proposed ANNs, the results of the different combinations are immediately obtained,
and it is easier and faster to compare the different structural design configurations.

3. Results and Discussion

The main result of this research is the proposal of an ANN-based procedure to be used in the early
design stages of structural materials and elements. In order to guarantee that the designed ANNs are
reliable tools, a validation of the network is also required. In the following subsection, the ANN input
and the design, selection, and validation procedure are described and explained in detail.

3.1. The FEM Model as ANN Input

As indicated previously, some of the parameter combinations are used in the ANN learning
process. If all the combinations were used, the network does not learn; in fact, it only would provide
the given data. In ANN design, the learning stage is carried out with a representative sample, and
the validation is performed by using data that have not been applied in the learning stage. Once the
validation is done, the network will be ready to use.

For the input learning process, the FEM model, as described in Section 2 (description of the case
study), has been implemented. The parametric calculations have been carried out by using different
values of the variables (Section 2). Figure 3 summarizes the parameter combinations and those used in
the learning process.

A main concern is to perform a proper selection of the learning process data. For this reason, in this
research, the selected sample is representative of all the possible variables, but it is taken into account
that most of the parameters (plate thickness, screw diameter and strength, and concrete strength) are
not continuous, as they are normalized and standardized discrete industrial values; for instance, screw
diameters are 12, 16, 20 mm, etc., but no decimal values are used. The only continuous value could
be the post-tensioning load. However, following the actual practice in construction works, common
discrete values are also selected for the PT-Load. The number of variables includes the design variables
defined in Section 2.2 and provided in Figure 3: (i) six for the plate thickness (15, 20, 25, 30, 35, and
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40 mm), (ii) five for the screw diameter (12, 16, 20, 22, and 24 mm), (iii) five for the PT-Load (0, 50,
100, 150, and 200 kN), (iv) four for the concrete strength (25, 30, 35, and 40 MPa), and (v) five for the
screw resistance (4.6, 5.6, 6.8, 8.8, and 10.9). Once a variable set has been chosen and fixed, one of
them within the set is varied along its range. For instance, keeping the rest of variables fixed (screw
diameter, PT-Load, concrete strength, and screw resistance with a fixed value), results will be obtained
by varying the sheet metal thickness from 12, 16, 20, 22, and 24 mm, using the results as input for the
learning step. That process is repeated with the other variables. For each variable value variation, an
FEM model has been built and the numerical data are obtained step by step. This procedure provides
a reliable input (2 million units of data), as the ANNs can learn the relationship between stresses in
different elements when a parameter is modified, but also the relationships when other parameters
are selected.
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For each FEM model, an increasing value of the load has been applied over the beam surface.
The vertical deformation and nodal stress values have been recorded step by step for each node.
All the steps (including the intermediate ones) from the initial and the final stage have been analyzed
and saved to be used as input for the learning process. The recorded data have relevant implicit
information, as the relationships between stresses and deformations in adjacent nodes are considered
in the FEM analysis.

In the combinations that have been used as input, the parameters are recorded in each sub-step of
the FEM numerical model, as shown in Table 2. In each combination, the followed structure is the same
for all the files in order to allow for an adequate reading and operation for the ANNs. The columns
include the step and node number for an easy identification in the numerical model, as well as the
material stresses, where σx and σy are the concrete stress in the X and Y directions, Vxy and Vxz are the
concrete shear stress along the XY and XZ planes, respectively, and σvm is the Von Misses stress in the
steel elements.

Table 2. Recorded parameters to be used as Artificial Neural Network (ANN) input data.

FILE COL1 COL2 COL3 COL4 COL5 COL6

Ten_columnVL Step Node σx σy Vxy Vxz
Ten_beamVL Step Node σx σy Vxy Vxz

VMplates Step Node σvm
VMPT Step Node σvm

VMscrews Step Node σvm
defVL Step Node Vertical deformation

VL Step Node Load applied
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3.2. Implementation of the ANNs: Design and Selection of the ANN Models

In this research, four different ANNs have been designed, one per each element: beams, plates,
post-tensioning tendon (PT), and screws. The same ANN that has been modelled for the beam could be
used to predict column stresses. It is worth mentioning that the column nodes have not been studied
because the stresses in the column nodes are lower than those of beams, and no relevant results would
be provided.

In the ANN design, a key factor is to obtain a network that is as simple as possible and that does
not include non-relevant data. It is worth highlighting that all the information that is provided in FEM
model calculations would be high enough to make the network unfeasible.

In this work, as the FEM model implicitly takes into account the strain–stress relation, it is possible
to eliminate or neglect the node position, as well as the relation among nodes. The main goal is to
predict when a network element is going to collapse. Thus, the network can be dimensioned. Once
each element is analyzed for both materials (concrete and steel), the main interest is locating the most
loaded node step by step, and comparing it with its limit value. In this way, the network learns
the stress increase that is produced by the elements, and that depends on the applied load. Thus, a
network for each different element allows for predicting the stress field. Additionally, the designed
network learns how a parameter variation influences the stress path (e.g., changing the concrete or
screw strengths). Therefore, the network can be applied to any parametric change (e.g., an increase
in the structural element dimensions). Moreover, it does not depend on the number of nodes of the
numerical model. In the case of not having made the simplification, the number and name of each node
should be kept. In this way, a main concern is to be clear on the required data and how to locate them.

The initial stage of the ANN design consists of defining the network architecture. The most
common neural networks include an input layer, a hidden layer, and an output layer, as this is enough
to solve most problems [17]. In this research, all the ANNs have the same basic structure: a multilayer
perceptron developed in C# by using Visual Studio community 2019 [34]. A simple backpropagation
algorithm is implemented [3]. The input layer has six neurons that are the input variables: steps,
screw diameter, concrete strength, screw strength, PT-Load, and plate thickness (Figure 3). Regarding
the hidden layers, it is worth noting that, in general, one hidden layer is sufficient. However, when
the number of neurons in a single layer increases, the predictive efficiency does not increase, and for
complex problems, two hidden layers could be required [10,17]. After a trial-and-error stage with
one hidden layer and with a neuron number increase, the networks do not converge. For that reason,
two hidden layers are required to obtain a faster and better convergence. The number of neurons
in the hidden layer depends on the complexity of the ANN, including the number of inputs and
outputs or input variable continuity [35]. A minimum number of neurons is required to minimize the
output error and to reduce the learning process, but the stability of the network must be guaranteed.
The two hidden layers have different neurons depending on the complexity of the calculation and
on the dispersion of the input data. The output layer has only one neuron, which is the maximum
prediction stress in any element node. Figure 4 depicts the ANN configuration scheme.

In the definition of the ANN topology, a trial-and-error process is required at different
stages ([13,17,35–38]): (i) in the definition of neurons in the hidden layers, (ii) in the testing and
learning process, and (iii) in the selection of the random weights. Those trial-and-error procedures
make it possible to establish a suitable and stable network. Trial and error may be extended to building
several networks, stopping and testing them at different stages of learning, and initializing the network
with different random weights. Each network must be tested and analyzed, and the most appropriate
network must be chosen in each project. In this research, the followed process required trial-and-error
iterations on each network to obtain both good convergence and stability. The numbers of neurons in
the hidden layers were gradually increased to reach convergence, and the structure of each ANN is the
minimum required to reach that objective. The final configuration and parameters of the designed
ANNs are summarized in Table 3.
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Table 3. ANN parameter and layer structure.

ANN
Plate Screws Beams PT Tendon

Number of input nodes 6
Number of hidden layers 2

Number of neurons in hidden layer #1 20 12 25 8
Number of neurons in hidden layer #2 12 8 15 4

Number of output nodes 1
Activation function hidden nodes Hyperbolic-Tangent

Initial learning coefficient 0.0001
Final learning coefficient 0.000002

Weight range from −0.5 to +0.5
Learning data-set 2,126,000

Validation data-set 1,200,000

Due to the field variability of the nodal stress in plates and beams (tensions and compressions are
located simultaneously in the element, as well as the sign variation along steps), the ANNs require
extra hidden layers to guarantee good convergence.

For a better understanding of the ANN configuration, a flowchart of the ANN algorithm is
provided in Figure 5.

One of the main advantages of implementing the use of ANNs within the structural material
design stage is the significant decrease in the required computing time if compared to conventional
FEM analyses (e.g., those exclusively performed via FEM). Indeed, once the ANN has learned, the
estimation is immediately provided for any new configuration. In this study, the time consumed in the
learning process was 16 hours for each ANN, using approximately 1.8 million iterations.

The proposed ANN predicts the stiffness matrix solved in the FEM model, providing the maximum
expected nodal stress for each element: plates, screws, beams, or tendons. It is worth noting that
solving that matrix is one of the most time-consuming steps in FEM analyses. Moreover, the computing
time increases exponentially in nonlinear analyses. The data prediction is immediately provided
according to the applied input and for any surface loading value applied on the upper face of the beam.
In addition, the ANN can solve the nonlinear behavior (in terms of both material and geometry) of the
designed connection.
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Each step from the FEM model has a direct relationship with the load applied, so an implicit
relation between the applied load and the element stresses could be easily obtained (step = load).

3.3. ANN Validation

In the ANN validation, 1.8 million entries have been used. Those entries are distributed in 40 files
by randomly varying the parameters. Ten additional numerical calculations have been performed,
comparing the elements of the FEM results to the ANN prediction step by step. The parameters that
have been applied in the validation are summarized in Table 4. In the selection procedure, a random
variation of the parameters has been applied. After that procedure, the FEM model is updated, and the
results are compared with those predicted by the ANN.

Table 4. Parameters used in the validation files of the ANN.

Screw
Diameter SD

Concrete
Strength Fck

Screws
Strength SS

Post tensioned
Load PT-Load

Plate
Thickness PTh

(a) 20 25 5.6 100 20
(b) 20 25 8.8 50 20
(c) 20 25 8.8 50 20
(d) 20 25 8.8 100 30
(e) 20 30 8.8 100 20
(f) 22 25 8.8 0 20
(g) 24 40 6.8 100 40
(h) 16 30 4.6 150 30
(i) 24 30 6.8 200 15
(j) 12 35 10.9 50 35

The maximum and average errors in the learning process are assessed by comparing the actual
stress value with the curve of adjustment that the ANN provides. Table 5 summarizes the average
nodal stress error in all the steps and sub-steps. The maximum difference, in percentage, between
the actual and the predicted stresses is also provided in every node for all the steps and sub-steps.
The average error value would be monotonically reduced with the same input in case more iterations
were done in the learning process. However, there is a point where its reduction after many iterations
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is negligible, that is, it becomes asymptotic. If more entries were used, a new learning process would
be necessary, and the final error is expected to be lower than the one obtained.

Table 5. ANN’s average and maximum error in the learning process.

ANN Average Error Max. Error

Plate 2.19% 7.36%
Screws 3.50% 6.68%
Beams 2.82% 6.09%

PT Tendon 1.85% 5.47%

As observed, a maximum error of 7.36% is detected in plates, while the average error is 2.19%.
That indicates deviations in some nodes that are located in areas of concentrated stresses (Figure 6), or
in steps that are close to the material strength limit. Similar results are detected in screws, beams, and
posttensioned tendons.
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Four different ANNs have been developed to predict the element results: beam, plate, tendons,
and screws. For each FEM model, four comparisons have been made (Figure 7), one for each ANN.
In the comparisons, maximum nodal stresses in each element (beam, plate, PT, or screws) per step are
provided and compared (in red) with the maximum nodal stress of each step from the FEM numerical
analysis (in blue). For concrete, the maximum stress is compared to the maximum principal stress
(σx− σy). In the steel elements, the Von Misses stress criterion is used. The load values range from
0 to the maximum obtained in the corresponding FEM analysis. The maximum and average errors
are provided.
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Regarding FEM values, in Tables 6 and 7, step-by-step comparisons for each element are depicted.
Only the final steps are included.
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Table 6. Numerical comparison between calculated FEM values and predictions. Maximum and
average error in each element. Results from calculation (a) are described in Table 4 and Figure 7a.

LOAD SCREWS PT TENDON PLATE BEAM

MPa
Calc.

Stress
MPa

Pred.
Stress
MPa

%
error

Calc.
Stress
MPa

Pred.
Stress
MPa

%
error

Calc.
Stress
MPa

Pred.
Stress
MPa

%
error

Calc.
Stress
MPa

Pred.
Stress
MPa

%
error

0.052000 58.36 56.29 3.53 768.82 763.39 0.71 62.08 61.10 1.58 15.22 15.11 0.74
0.056500 61.28 59.34 3.17 768.79 763.24 0.72 65.25 64.51 1.13 16.08 15.75 2.10
0.060000 63.63 61.74 2.96 768.79 763.13 0.74 67.72 67.15 0.83 16.52 16.24 1.67
0.062000 65.09 63.13 3.02 768.83 763.07 0.75 68.87 68.65 0.32 16.59 16.53 0.38
0.064000 66.48 64.52 2.95 768.83 763.01 0.76 70.24 70.14 0.14 16.92 16.82 0.60
0.065500 67.49 65.57 2.84 768.82 762.97 0.76 71.44 71.26 0.26 17.19 17.03 0.92
0.065594 67.55 65.64 2.84 768.82 762.97 0.76 71.51 71.33 0.26 17.21 17.05 0.94
0.065688 67.62 65.70 2.83 768.82 762.97 0.76 71.58 71.40 0.26 17.23 17.06 0.97
0.065828 67.70 65.80 2.81 768.82 762.96 0.76 71.63 71.50 0.18 17.25 17.08 1.00
0.066040 67.81 65.95 2.73 768.82 762.96 0.76 71.61 71.66 0.06 17.29 17.11 1.06
0.066356 67.99 66.17 2.67 768.82 762.95 0.76 71.83 71.89 0.08 17.35 17.16 1.14
0.066592 68.14 66.34 2.64 768.81 762.95 0.76 71.94 72.06 0.17 17.40 17.19 1.19
0.066608 68.14 66.35 2.63 768.81 762.95 0.76 71.95 72.08 0.18 17.40 17.19 1.18
0.066622 68.16 66.36 2.64 768.81 762.95 0.76 71.96 72.09 0.18 17.40 17.19 1.19
0.066628 68.16 66.36 2.64 768.81 762.95 0.76 71.97 72.09 0.17 17.40 17.19 1.20
0.066630 68.17 66.36 2.64 768.81 762.95 0.76 71.97 72.09 0.17 17.40 17.19 1.20
0.066632 68.17 66.37 2.64 768.81 762.95 0.76 71.97 72.09 0.17 17.40 17.19 1.20
0.066634 68.23 66.37 2.72 768.81 762.95 0.76 72.19 72.09 0.13 17.40 17.20 1.20
0.066636 68.16 66.37 2.63 768.83 762.95 0.77 71.83 72.10 0.37 17.38 17.20 1.04
0.066638 68.11 66.37 2.56 768.85 762.95 0.77 71.86 72.10 0.33 17.37 17.20 0.99
0.066640 68.10 66.37 2.54 768.85 762.95 0.77 71.87 72.10 0.32 17.37 17.20 0.98
0.066642 68.09 66.37 2.53 768.85 762.95 0.77 71.87 72.10 0.32 17.37 17.20 0.98
0.066644 68.10 66.37 2.53 768.86 762.95 0.77 71.87 72.10 0.32 17.37 17.20 0.98
0.066648 68.10 66.38 2.53 768.86 762.95 0.77 71.88 72.11 0.31 17.37 17.20 0.98
0.066656 68.10 66.38 2.53 768.86 762.95 0.77 71.88 72.11 0.31 17.37 17.20 0.98
0.066666 68.11 66.39 2.52 768.86 762.95 0.77 71.89 72.12 0.32 17.37 17.20 0.99
0.066682 68.12 66.40 2.53 768.86 762.94 0.77 71.91 72.13 0.31 17.37 17.20 0.98
0.066704 68.14 66.42 2.52 768.86 762.94 0.77 71.92 72.15 0.31 17.38 17.21 0.99
0.066738 68.16 66.44 2.52 768.86 762.94 0.77 71.95 72.17 0.31 17.38 17.21 1.00
0.066790 68.19 66.48 2.52 768.86 762.94 0.77 71.99 72.21 0.31 17.39 17.22 1.01
0.066868 68.25 66.53 2.51 768.86 762.94 0.77 72.05 72.27 0.31 17.41 17.23 1.02
0.066986 68.33 66.61 2.51 768.86 762.94 0.77 72.13 72.35 0.31 17.43 17.25 1.05
0.067160 68.45 66.74 2.50 768.86 762.93 0.77 72.26 72.48 0.31 17.46 17.27 1.08
0.067424 68.63 66.92 2.48 768.86 762.93 0.77 72.45 72.68 0.31 17.51 17.31 1.13
0.067818 68.90 67.20 2.46 768.86 762.92 0.77 72.73 72.97 0.32 17.58 17.37 1.22
0.068408 69.30 67.62 2.43 768.86 762.91 0.77 73.16 73.40 0.33 17.69 17.45 1.34
0.069296 69.89 68.24 2.36 768.86 762.89 0.78 73.78 74.05 0.36 17.85 17.58 1.54
0.070626 70.79 69.18 2.27 768.85 762.87 0.78 74.74 75.02 0.37 18.10 17.77 1.81
0.072620 72.16 70.59 2.18 768.85 762.84 0.78 76.25 76.46 0.28 18.45 18.06 2.14
0.075614 74.17 72.71 1.97 768.84 762.80 0.78 78.30 78.61 0.39 18.95 18.49 2.42
0.078606 76.15 74.82 1.74 768.83 762.79 0.79 80.33 80.72 0.48 19.47 18.92 2.83
0.080000 77.09 75.81 1.66 768.83 762.79 0.79 81.35 81.69 0.43 19.69 19.12 2.92
0.082000 78.46 77.22 1.58 768.83 762.8 0.78 82.81 83.08 0.32 20.05 19.40 3.24
0.084000 79.75 78.62 1.42 768.82 762.82 0.78 84.24 84.44 0.23 20.42 19.69 3.58
0.086000 81.05 80.02 1.27 768.82 762.85 0.78 85.65 85.79 0.17 20.79 19.97 3.93
0.089000 83.01 82.11 1.09 768.82 762.91 0.77 87.39 87.78 0.45 21.35 20.40 4.46
0.093500 85.95 85.20 0.87 768.81 763.06 0.75 90.64 90.70 0.06 22.19 21.03 5.23
0.098000 88.78 88.23 0.62 768.80 763.26 0.72 94.03 93.51 0.56 23.06 21.66 6.09
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Table 7. Numerical comparison between calculated FEM values and predictions. Maximum and
average error in each element. Results from calculation (d) are described in Table 4 and Figure 7d.

LOAD SCREWS PT TENDON PLATE BEAM

MPa
Calc.

Stress
MPa

Pred.
Stress
MPa

%
error

Calc.
Stress
MPa

Pred.
Stress
MPa

%
error

Calc.
Stress
MPa

Pred.
Stress
MPa

%
error

Calc.
Stress
MPa

Pred.
Stress
MPa

%
error

0.051500 56.69 60.32 6.40 729.11 738.20 1.25 60.67 61.64 1.61 15.44 16.02 3.76
0.058250 61.09 64.80 6.06 729.09 737.80 1.19 65.47 66.75 1.96 16.72 17.14 2.51
0.060000 62.22 65.96 6.02 729.09 737.68 1.18 66.50 68.09 2.40 17.06 17.43 2.20
0.062000 63.50 67.30 5.98 729.09 737.54 1.16 67.92 69.63 2.52 17.44 17.77 1.90
0.064000 64.74 68.64 6.02 729.08 737.40 1.14 69.28 71.18 2.74 17.81 18.10 1.65
0.066000 66.00 69.97 6.02 729.08 737.25 1.12 70.61 72.73 3.01 18.20 18.44 1.34
0.068000 67.16 71.31 6.17 729.08 737.11 1.10 71.36 74.29 4.10 18.59 18.78 1.04
0.071000 69.03 73.30 6.19 729.07 736.89 1.07 73.09 76.64 4.85 18.91 19.28 1.99
0.075500 71.95 76.29 6.03 729.06 736.57 1.03 76.11 80.16 5.32 19.33 20.04 3.65
0.080000 74.89 79.26 5.84 729.06 736.27 0.99 79.13 83.67 5.74 20.05 20.78 3.65
0.082000 76.21 80.57 5.72 729.05 736.14 0.97 80.56 85.23 5.80 20.41 21.10 3.38
0.084000 77.51 81.88 5.64 729.05 736.03 0.96 81.87 86.79 6.00 20.78 21.43 3.08
0.087000 79.44 83.83 5.53 729.04 735.87 0.94 83.95 89.10 6.14 21.34 21.90 2.63
0.091500 82.12 86.72 5.61 729.04 735.66 0.91 86.80 92.55 6.62 22.22 22.59 1.63
0.096000 85.02 89.59 5.36 729.02 735.52 0.89 89.94 95.94 6.67 23.07 23.24 0.77
0.100000 87.52 92.10 5.23 728.98 735.44 0.89 92.49 98.90 6.93 23.85 23.80 0.24
0.102000 88.86 93.35 5.05 728.98 735.43 0.88 93.95 100.36 6.82 24.07 24.06 0.02
0.103000 89.52 93.97 4.97 728.98 735.42 0.88 94.66 101.08 6.78 24.21 24.19 0.06
0.104000 90.18 94.58 4.88 728.97 735.43 0.88 95.40 101.80 6.71 24.40 24.32 0.32
0.104750 90.68 95.05 4.82 728.97 735.43 0.89 95.93 102.34 6.68 24.53 24.42 0.48
0.105500 91.17 95.51 4.76 728.97 735.43 0.89 96.46 102.88 6.65 24.67 24.51 0.65
0.105782 91.39 95.68 4.70 728.96 735.44 0.89 97.05 103.08 6.20 24.82 24.54 1.09
0.106062 91.57 95.85 4.68 728.95 735.44 0.89 97.43 103.27 6.00 24.92 24.58 1.35
0.106484 91.77 96.11 4.74 728.95 735.44 0.89 97.60 103.57 6.12 25.03 24.63 1.59
0.107118 92.15 96.50 4.72 728.95 735.45 0.89 97.77 104.02 6.39 25.14 24.71 1.74
0.107750 92.55 96.89 4.69 728.95 735.46 0.89 98.07 104.46 6.52 25.25 24.78 1.86
0.108700 93.15 97.47 4.64 728.95 735.48 0.90 98.68 105.13 6.54 25.42 24.89 2.08
0.110124 94.03 98.33 4.57 728.95 735.52 0.90 99.64 106.11 6.50 25.68 25.06 2.43
0.112258 95.35 99.62 4.49 728.95 735.59 0.91 101.08 107.57 6.42 26.07 25.30 2.96
0.115462 97.28 101.55 4.38 728.94 735.73 0.93 102.97 109.72 6.56 26.65 25.63 3.82
0.115662 97.42 101.67 4.36 728.94 735.74 0.93 103.12 109.86 6.53 26.69 25.65 3.88
0.115862 97.55 101.79 4.34 728.94 735.75 0.93 103.27 109.99 6.50 26.73 25.67 3.94
0.116164 97.76 101.97 4.31 728.94 735.76 0.94 103.49 110.19 6.47 26.78 25.70 4.03
0.116388 97.91 102.10 4.28 728.94 735.78 0.94 103.66 110.33 6.44 26.82 25.73 4.09
0.116502 97.99 102.17 4.27 728.94 735.78 0.94 103.74 110.41 6.42 26.84 25.74 4.12
0.116558 98.02 102.20 4.26 728.94 735.79 0.94 103.79 110.45 6.42 26.86 25.74 4.14
0.116614 98.41 102.23 3.89 728.94 735.79 0.94 104.30 110.48 5.93 26.87 25.75 4.16
0.116616 98.42 102.24 3.88 728.93 735.79 0.94 104.32 110.48 5.91 26.82 25.75 4.00
0.116618 98.42 102.24 3.88 728.93 735.79 0.94 104.32 110.49 5.91 26.82 25.75 4.00
0.116620 98.42 102.24 3.88 728.93 735.79 0.94 104.33 110.49 5.90 26.82 25.75 4.00
0.116622 98.41 102.24 3.89 728.93 735.79 0.94 104.30 110.49 5.93 26.83 25.75 4.03
0.116626 98.39 102.24 3.91 728.93 735.79 0.94 104.24 110.49 6.00 26.84 25.75 4.06
0.116630 98.38 102.24 3.93 728.93 735.79 0.94 104.18 110.49 6.06 26.85 25.75 4.11
0.116634 98.40 102.25 3.90 728.93 735.79 0.94 104.24 110.50 6.00 26.84 25.75 4.07
0.116642 98.44 102.25 3.87 728.93 735.79 0.94 104.35 110.50 5.90 26.83 25.75 4.00
0.116652 98.45 102.26 3.86 728.93 735.79 0.94 104.38 110.51 5.87 26.83 25.75 4.00
0.116668 98.47 102.27 3.86 728.93 735.79 0.94 104.41 110.52 5.85 26.83 25.75 4.00
0.116690 98.49 102.28 3.85 728.93 735.79 0.94 104.48 110.53 5.79 26.83 25.76 4.01
0.116724 98.51 102.30 3.85 728.93 735.79 0.94 104.53 110.55 5.76 26.84 25.76 4.01
0.116776 98.55 102.33 3.84 728.93 735.80 0.94 104.57 110.59 5.76 26.85 25.76 4.02
0.116854 98.60 102.38 3.83 728.93 735.80 0.94 104.61 110.64 5.76 26.86 25.77 4.04
0.116972 98.67 102.45 3.83 728.93 735.81 0.94 104.69 110.72 5.76 26.88 25.78 4.07
0.117146 98.78 102.55 3.81 728.92 735.82 0.95 104.81 110.83 5.75 26.91 25.80 4.13
0.117410 98.95 102.71 3.80 728.92 735.83 0.95 104.95 111.00 5.76 26.96 25.83 4.21
0.117804 99.20 102.94 3.77 728.92 735.86 0.95 105.22 111.26 5.74 27.04 25.87 4.33
0.118198 99.46 103.18 3.74 728.92 735.88 0.95 105.39 111.51 5.81 27.11 25.90 4.44
0.118788 99.86 103.53 3.67 728.92 735.92 0.96 105.94 111.90 5.62 27.21 25.96 4.61
0.119676 100.43 104.05 3.61 728.92 735.98 0.97 106.54 112.46 5.56 27.39 26.04 4.90
0.120000 100.63 104.24 3.59 728.92 736.01 0.97 106.73 112.67 5.56 27.45 26.07 5.03
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When the applied loads are increased and the concrete is close to the strength limit, maximum
deviations between the predicted stresses and the FEM solutions are obtained. Under 0.08 MPa, the
difference is lower than 3%. The maximum stress in concrete when 0.08 MPa is applied is 19.69 MPa.
Due to the applications of partial safety factors, as required by Codes [31,39], the maximum concrete
stress that is expected in real structures is close to 50% of the strength limit. Thus, the provided stress
field is satisfactory enough, accomplishing the Code requirements, and corroborating that the ANN is
an efficient design tool.

In the validation process, six different parameter combinations from the FEM analysis have been
used. The obtained average and maximum errors in each element are summarized in Figure 8.

Sustainability 2020, 12, x FOR PEER REVIEW 16 of 19 

0.120000 100.63 104.24 3.59 728.92 736.01 0.97 106.73 112.67 5.56 27.45 26.07 5.03 

 
In the validation process, six different parameter combinations from the FEM analysis have been 

used. The obtained average and maximum errors in each element are summarized in Figure 8. 

  

 
Figure 8. Average (a) and maximum (b) errors in the ANN validation (%). 

As observed, a maximum error of 9.16% is obtained in the worst scenario. The maximum errors 
are obtained in the final steps of each calculation due to the stress concentrations or to the first cracking 
in concrete. As this situation is an anomaly in the increasing stress curve, the ANN has difficulties in 
learning and predicting those values. Taking into account that in the most common structural design 
methods, safety factors are applied, the obtained stress field is around 50% of the strength limit. As 
observed in Tables 6 and 7 and Figure 7, the maximum errors appear at the end of the comparison, 
when concrete is close to the strength limit. It should be noted that for the PT, the maximum error is 
low, 0.79%. As the average error is lower than 8.38% in all the validation cases, it can be stated that the 
designed networks are reliable tools for stress prediction and design. The differences between the 
predicted and the FEM model values in the tensioned parts (i.e., screws or PT tendon) remain stable. 
More differences are detected in beams (1.47%–6.11%) and plates (0.33%–8.38%), although stresses 
remain within acceptable ranges. 

It is worth noting that the designed ANNs share some features with other research works. Thus, 
the procedure developed by Ashour et al. [14] is similar to that used in this work, where different ANNs 
were implemented by varying some parameters and using a back-propagation algorithm with a trial-
an-d-error process to determine the number of hidden layers and neurons. In the work by Ashour et al. 
[14], the network used fewer neurons in one hidden layer. In this research, due to both the variability 
of the nodal stress field and the number of input data, an extra hidden layer was required. In addition, 
the number of neurons needs to be increased to reach convergence. In the same research line, Lorenzi 

Figure 8. Average (a) and maximum (b) errors in the ANN validation (%).

As observed, a maximum error of 9.16% is obtained in the worst scenario. The maximum errors
are obtained in the final steps of each calculation due to the stress concentrations or to the first cracking
in concrete. As this situation is an anomaly in the increasing stress curve, the ANN has difficulties
in learning and predicting those values. Taking into account that in the most common structural
design methods, safety factors are applied, the obtained stress field is around 50% of the strength limit.
As observed in Tables 6 and 7 and Figure 7, the maximum errors appear at the end of the comparison,
when concrete is close to the strength limit. It should be noted that for the PT, the maximum error is
low, 0.79%. As the average error is lower than 8.38% in all the validation cases, it can be stated that
the designed networks are reliable tools for stress prediction and design. The differences between the
predicted and the FEM model values in the tensioned parts (i.e., screws or PT tendon) remain stable.
More differences are detected in beams (1.47%–6.11%) and plates (0.33%–8.38%), although stresses
remain within acceptable ranges.

It is worth noting that the designed ANNs share some features with other research works. Thus,
the procedure developed by Ashour et al. [14] is similar to that used in this work, where different
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ANNs were implemented by varying some parameters and using a back-propagation algorithm with
a trial-an-d-error process to determine the number of hidden layers and neurons. In the work by
Ashour et al. [14], the network used fewer neurons in one hidden layer. In this research, due to
both the variability of the nodal stress field and the number of input data, an extra hidden layer was
required. In addition, the number of neurons needs to be increased to reach convergence. In the same
research line, Lorenzi et al. [40], after using a back-propagating ANN, highlighted the feasibility of
using ANNs to predict concrete compressive strength based on a pull-out test on concrete. Those
authors applied different ANNs with three hidden layers and a variable number of neurons in each
layer, with a maximum of 80 neurons. In this work, two hidden layers were required, with a maximum
of 25 neurons in the beam. That is due to the great number of nodes and to the stress variability in
both value and sign when the load increases. Almeida Junior [15] also obtained satisfactory predictive
results on the load capacity of adhesive anchors, proposing an ANN with two hidden layers with three
and two neurons, and the training process time was 12 seconds. In this research, due to the number of
inputs, the number of neurons in the hidden layers, and the number of hidden layers, approximately
16 hours were needed to train the worst scenario. The similar conclusions on time reduction that the
ANN provides when compared to common numerical analyses are remarkable.

Taking into account the obtained dispersion in the values and the final step location (which are
close to the concrete limit strength), as well as the strength limit of actual structures, it can be stated
that the proposed ANN is adequate for designing structural materials. It can be concluded that the
designed ANN is a powerful and useful tool to be used in the design stage of structural materials
and components.

4. Conclusions

The use of ANNs for the efficient design of structural elements is an open research field where
successful developments have recently been achieved.

In this paper, ANNs have been developed to be applied in material design stages and to predict
the stress field in structural elements, particularly in the design of dry precast concrete connections.

As ANN input, data from FEM analyses were used in the learning process (i.e., material
parameters, nodal stresses, and deformations). The ANNs were designed by means of different
parameter combinations in order to enable an efficient learning process. Once the learning process was
finished, 10 parameter combinations were used to validate the ANN.

Four ANNs were designed. A multilayer perceptron and a backpropagation algorithm are
implemented. Six inputs were applied in the input layer. Two hidden layers with a variable number of
neurons, up to 25, were necessary to reach convergence; only one value was obtained in the output
layer—the predicted stress.

When the FEM analysis results were compared to those provided by the ANNs, a maximum error
of 9.16% was obtained for the stresses, when concrete strength was close to the limit value. The average
error value was less than 8.38% in the worst validation scenario. When the concrete stress was less
than 20 MPa, the maximum difference remained under 5%. Due to the application of the Codes’ safety
factors, such a difference is safe enough to design and calculate structural connections.

The designed networks can solve complex numerical analyses, allowing for prediction of reliable
results to be used as decision tools in the early design stages of structural elements. It is also
corroborated that the proposed networks reduce the computing time when compared to common
numerical methods (e.g., FEM analyses).

The proposed procedure is flexible and adaptable enough to be applied to different materials and
configurations, including new parameters, dimensions, shapes, and connections, by using ANNs for
predicting stresses of elements. This procedure is reliable enough to be used for optimal configuration
of elements in the early design stage of structures.

In future research, the proposed ANN could be combined with optimization algorithms
(e.g., metaheuristic) to foster the design of optimal, economical, and sustainable structural precast
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connections. In addition, the application of the proposed ANN to the design and optimization of
different precast elements could be applied and investigated. An especially interesting field could be
the application in precast concrete structure connections for industrial buildings, as well as in bus or
car canopy connections between beams and column.
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