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Abstract: Strength properties of grains have a significant impact on the energy demand of grinding
mills. This paper presents the results of tests of strength and energy needed the for destruction of rice
grains. The research aim was to experimentally determine mechanical and processing properties
of the rice grains. The research problem was formulated in the form of questions: (1) what force
and energy are needed to induce a rupture of rice grain of the Oryza sativa L. of long-grain variety?
(2) what is the relationship between grain size and strength parameters and the energy of grinding
rice grain of the species Oryza sativa L. long-grain variety? In order to find the answer to the problems
posed, a static compression test of rice grains was done. The results indicate that the average forces
needed to crush rice grain are 174.99 kg m·s−2, and the average energy is 28.03 mJ. There was no
statistically significant relationship between the grain volume calculated based on the volumetric
mass density Vρ and the crushing energy, nor between the volume Vρ and other strength properties
of rice grains. In the case of Vs, a low negative correlation between strength σmin and a low positive
correlation between the power inducing the first crack were found for the grain size related volume.
A low negative correlation between the grain thickness a3, stresses σmin and work WFmax was found
as well as a low positive correlation between thickness a3 and the force inducing the first crack Fmin.

Keywords: rice; grinding; compressive strength; rupture energy

1. Introduction

The strength properties of grains have a significant impact on the energy demand of grinders [1–4].
During grinding of grains in a five-disc mill, a complex state of stress occurs in the material, with shear
and compressive stresses prevailing [5,6]. Identification of the forces causing grain cracking (rupture)
can be considered as the first step to determine the energy demand in the grain grinding process [7,8].
Two cases can be distinguished: static squeezing of grains and shearing of grains [9]. In the case of
static compression, in order to determine the forces and stress and consequently, the work (energy)
needed to crush one grain and then more than a dozen grains, a static compression test can be carried
out. The ranges of probable forces destroying the grain may be determined in an experimental manner,
and subsequently, the energy ranges of destroying its structure [10].

The subject of research on the physical-mechanical properties of rice grains has already been
addressed by researchers, because the specificity of rice grain processing and the energy demand of
processing lines, e.g., grinding, drying, pelleting, etc., depends largely on these properties [11–17]. In
their research, Zeng, et al. [18] focused on modeling cracking of rice grains depending on the grain
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moisture and load speed, using the Discrete Element Method (DEM). The impact of humidity on the
strength properties of white rice was also addressed in the work of Sadeghi et al. [19], and brown
rice in the work by Cao et al. [20] and Chattopadhyay et al. [21]. Buggenhout et al. [22] studied the
influence of physicochemical properties, in particular, the impact of grain husks and moisture on
cracking phenomena during rice processing. Esehaghbeygi et al. [23] in turn, analyzed the effect of
drying temperature and kinetic energy during the drying process on grain susceptibility to breaking.
Similar research was conducted by Sarker et al. [24], Tajaddodi et al. [25], Nasirahmadi et al. [26] and
Bonazzi and Courtois [27]. The influence of grain orientation on its mechanical properties under load
was analyzed, among others, by Li et al., Shu et al., and Zareiforoush et al. [28–30]. They showed
that rice grains are more flexible in horizontal orientation based on the results of static compression
and three-point bending tests. Zareiforoush et al. [31], based on the conducted research, found that
increasing the speed of load during the compression test results in lowering crushing forces and energy.

From the point of view of energy demand, processing of grainy biomaterials, particularly grinding,
the strength of grains plays the key role. [32]. Considering the process of grinding, e.g., by means of
grinding machines or roller mills, these are the compressive loads which prevail in the grinded material,
whereas permanent deformation (fragmentation) occurs after exceeding the load value corresponding
to the compressive strength limit. Strength is closely related to the power necessary to cause the strain
and the grinded material cross-section field (hence being dependent on its geometric features). Thus,
material fragmentation occurs upon application of appropriate forces, which, in the system of grinding
machines, roller mills, is performed by rotary motion of rollers. In such a case, the force is a direct
effect of torques, which, in turn, are related to the power of the devices affecting the energy demand of
the grain processing. In general, the higher force to be applied the higher power, that is, the machine
energy, is needed. The aspects concerning calculation of energy demand for grain grinding systems
are described in detail in [33].

The strength of grains depends on the type of material, especially on its internal structure
(porosity), moisture, components of the grain, and biological properties [34]. In the case of biomass
grains, a significant diversification in terms of dimensions, physical and strength properties, can be
observed even within one grain species which, apart from biological characteristics, is conditioned by
the weather conditions and the cultivation method [35–37] Earlier research has shown that the energy
needed to grind hard materials with higher strength is larger [38–40]. It was also observed that along
with a moisture increase, the energy consumption increases as well [18–20,36]. The internal structure
of the grain endosperm and tegument has an impact on the strength properties and the energy needed
for grinding. The endosperms which are characterized by higher glassiness are usually harder; thus,
for permanent deformation, it is necessary to use higher forces which, in turn, results in an increased
energy demand as compared to materials whose endosperm is less glassy [36,41,42]. The glassiness of
the endosperm also has an influence on the material fragmentation efficiency and the size of particles
after division—the higher glassiness, the easier to separate the endosperm from bran and the grain
disintegrates into smaller parts. [38,42]. Tests of physical properties and grinding energy, carried out
for wheat grains have also revealed that the grinding energy is proportional to the grinded material
mass [35]. Dziki and Laskowski [37] indicate, using the example of wheat, that the values of work and
force to be applied for crushing the grain increase along with the grain thickness growth.

This study contains an analysis of strength properties of rice grains, mainly forces causing the
first violation of the grain structure (first crack) and grain stiffness.

The aim of the research is to experimentally determine the mechanical and processing properties
(strength and energy properties) of granular biomass (rice) accepted for research in the project
“Intelligent monitoring of the grinding characteristics of grainy biomass”. Determining the forces
needed to break grains is of key importance when developing energy and environmental efficiency
indicators for the grinding process and modeling grinding and crushing processes using the discrete
element method DEM.
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The research problem was formulated in the form of questions: (1) what strength and energy is
needed to induce a rupture of rice grain of the species Oryza sativa L. long-grain variety? (2) what is
the relationship between grain size and strength parameters and the energy of grinding rice grain of
the species Oryza sativa L. long-grain variety?

2. Materials and Methods

2.1. Rice Grains Preparation

To determine the force needed to break the grain, a static compression test was carried out for
100 grains of rice of the species Oryza sativa L., a long-grained variety with a stabilized humidity equal
to 13% ± 0.1%. Oryza sativa L., a long-grained variety of rice was accepted to be the research object due
to its popularity, among others, in food industry [32]. Knowing the processing properties of this species,
in particular, crushing energy, can significantly affect power demand of the processing devices, e.g.,
grinders. Samples of 100 individual rice grains were prepared and described by numbers (Figure 1).
Then, three dimensions were measured with the vernier caliper: length, width and height of the grain.
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Figure 1. Rice grains prepared for compression test.

2.2. Test Stand

A static compression test was carried out on an Instron 5966 testing machine (Figure 2). The samples
were placed in the machine in a horizontal orientation, in such a way that the dimensions a1 and a2

were the large axis and small axis of cross-sectional areas of the grain subjected to the load (Figure 3).
The load speed was 2 mm·min−1.
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Figure 3. Position of the rice grain during the static compression test.

2.3. Research Methods

The analysis of the grain strength properties during a static compression test of a single grain was
performed according to the plan shown in Figure 4. Three dimensions were measured with the vernier
caliper: length, width and height of the grain.
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Figure 4. Plan and research program.

The volume of the studied seeds was determined in two ways: on the basis of the three measured
dimensions a1, a2 and a3 (Vs) and on the basis of the relationship of the grain mass and density (Vρ).

The first method of determining the volume takes into consideration three basic grain sizes, i.e.,
the height and width length, and allows a simplified grain volume estimation with a certain error by
aligning the grain shape to the cuboid with dimensions a1, a2, a3 (Figure 5).
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Figure 5. Graphical representation of grain volume determination based on the knowledge of three
dimensions, a1—length of the grain, mm, a2—width of the grain, mm, a3—height of the grain, mm,
vs.—grain volume calculated based on three dimensions a1, a2, a3 (volume of a cuboid with dimensions
a1, a2, a3), mm3, Vρ—grain volume calculated based on the volumetric mass density, mm3.

For this interpretation, the formula for the estimated volume of grain will be:

Vs = a1·a2·a3, (1)
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and equal to the volume of a cuboid circumscribed on the grain.
The second method of determining the volume is based on the knowledge of density ρ of the

grain and its mass m. The grain density is determined from the dependence [43]:

ρ = m/Vρ, (2)

Hence, the volume determined on the basis of density Vρ, will be [43]:

Vρ = m/ρ, (3)

The relationship between computational volume (Vs) and determined based on the grain density
(Vρ) can be determined by calculating the correction factor for the grain volume kv taking into
consideration the grain spherical and uneven shape. It can be determined experimentally and
expressed by the dependence:

kv = Vρ/Vs, (4)

hence:
Vρ = kv·Vs, (5)

The static compression test is mainly used for brittle materials, i.e., not showing significant plastic
deformation. Rice can be considered as a fragile material with some (small) plastic deformability due
to the internal structure that differentiates it from the cross-linked metal structure. A feature that
characterizes fragile materials is compressive strength (Rc) [24]:

Rc = Fc/A0, (6)

where
Fc—the largest value of the compressive load at which the sample is crushed,
A0—the initial cross-section of the sample.

If the compression diagram l = f (F) has a part where shortening (∆l) is directly proportional to
compressive force (F), then, on this basis, we determine Young’s modulus (E) for this material. If this
relationship is not directly proportional, then based on the first few results (where it is possible to
assume that the material behaves linearly and elastically), we determine the mean value of Young’s
modulus (E). The value of the Young’s modulus is determined by Hooke’s law [24]:

E = F·l/(∆l·A0), (7)

where:
F—compressive force, kg·m·s−2,
∆l—sample shortening corresponding to force (F), m,
l—the initial length of the sample, m,
A0—area of the initial sample cross-section, m2.

During the compression, some force F affects the grain and causes it to break (displacement s), so
the elementary work done over the grain by force F causing the crack can be determined [24,44]:

dW = F·ds. (8)

During compression, we deal with a variable force F and displacement s → 0, then, this
characterized work can be determined by integrating both sides of the equation [24]:

W =

s2∫
s1

Fds (9)
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Then, the work during compression of one grain is the area under graph F = f (s) (Figure 6).Sustainability 2020, 12, x 7 of 17 
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Figure 6. Graphic presentation of work during compression of grains, F(s)—compressive force, kg·m·s−2,
s—displacement, m, W—work, J, s1—starting point of displacement, m, s2—final displacement, m.

2.4. Analytical Methods

The statistical analysis tools available in MS Excel and Statistica were used in processing the results.
Basic descriptive statistics of the examined physical and mechanical properties and rupture energy of
rice grains were determined. The relationship between the grain volume and physical-mechanical
properties and rupture energy was examined using Spearman’s correlation analysis. A significance
level p < 0.05 was adopted.

3. Results and Discussion

3.1. Results of Research on the Physical Properties of Rice Grains and Their Discussion

Firstly, the physical properties of rice grains were determined, such as grain length a1, grain width
a2, grain height a3, and grain volume determined based on the knowledge of grain mass and density
Vρ, volume determined on the basis of dimensions Vs, correction factor for volume kv. The results of
the tests after a basic statistical analysis are presented in Figures 7 and 8 in the form of a box plot.

Based on the analysis, it was found that the average grain length of rice was 6.38 mm, the average
width was 1.91 mm, the average height was 1.51 mm. The average grain volume determined on the
basis of the grain weight and density was equal to 14.82 mm3, while the volume determined on the
basis of grain size 18.44 mm3. The correction factor for given volumes Vρ and vs. assumed an average
value of 0.82. The obtained results allowed to formulate the dependence of the real volume of the grain
determined on the basis of density as a function of the volume determined on the basis of dimensions:

Vρ = kv·Vs = 0.82·Vs (10)

The results obtained for rice dimensions a1, a2, and a3, are similar, although slightly smaller
than those reported in the literature by other researchers, e.g., Sadeghi et al., Zareiforoush et al., and
Zeng et al. [18,19,30]. Differences in dimensions may be caused primarily by the difference in the
varieties and types of rice grains studied, the country of origin (the study of rice originated from
Burma), grain humidity and growing conditions of grains (e.g., extensive, intensive cultivation, weather
conditions that affect the grain size). The presented grain size results are an indispensable element of
building models in computer simulations based on the DEM discrete element method [18], e.g., in the
RockyDEM environment.
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Figure 8. Results of rice grains volume determination.

3.2. The Results of Testing the Strength Properties of Rice Grains and Their Discussion

Figure 9 presents examples of graphs showing the characteristic of rice grain cracks during a
compression test. Based on the presented curves, it can be stated that for each grain, the crack proceeded
differently. This is caused by differences in internal structure between each grain, which is characteristic
for biomaterials. However, noticeable are the characteristic points in the force-displacement graph
marked as Fmin and Fmax. The point marked as Fmin symbolizes the first crack of the grain, while
the Fmax point corresponds to the forces causing the breakdown of the grain into smaller fragments
(Figure 10). Similar conclusions are presented in the work of Sadeghi et al. [19].

For rice grains, the forces inducing fracture Fmin of the grain structure were within the range
(35.86–198.71) kg m s−2. The maximum forces Fmax during the crack growth for rice were within the
range (70.05–535.74) k g·m s−2. Stresses σmin for rice were in the range (2.21–17.38) MPa. Stresses σmax

for rice were in the range (5.00–29.61) MPa. Work WFmin for rice was in the range (1.88–56.55) mJ and
WFamx in the range (2.53–98.93) mJ (Figure 11).
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Figure 9. Exemplary curves for five rice grains from 100 tested illustrating the course of the rice grain
compression process in the force-displacement coordinate.
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Table 1 presents average values and basic results of a statistical analysis of the surveyed
quantities. The obtained mean values of forces Fmax are in accordance with the results presented
by Lu and Siebenmorgen [45] obtained in the compression test at the load speed vs. 2 mm·min−1

(174.4–188.8 kg·m·s−2), and higher than in the tests carried out by Sadeghi et al. [19] (169.06 kg·m s−2 for
the Sorkheh type and 125.10 kg·m·s−2 for the Sazandegi type with vs = 1,25 mm·min−1), by Zareiforoush
et al. [31] (125.69 kg·m·s−2 for the Alikazemi type and 109.96 kg·m·s−2 for the Hashemi type with
vs = 5 mm·min−1 and 117.38 kg m s−2 for the Alikazemi type and 88.33 kg m·s−2 for the Hashemi type
with vs = 10 mm·min−1). Differences in the obtained values may result from different grain moistures,
loading speeds of the samples and the type of rice used in the tests.

Table 1. Results of statistical analysis of examined mechanical properties of rice grains.

Parameter Average Standard Deviation Median

Minimal crushing force Fmin, kg m·s−2 117.29 40.71 111.23
Maximal crushing force Fmax, kg·m·s−2 174.99 80.38 158.12
Minimal compressive stress σkmin, MPa 12.47 4.83 11.53
Maximal compressive stress σkmax, MPa 14.71 7.45 12.72

Stiffness Ck, N·mm−1 1275.07 247.72 1322.11
Work for the first rupture WFmin, mJ 7.26 7.86 4.81

Rupture work WFmax, mJ 28.03 20.36 22.46

The average value of rupture work WFmax (28.03 mJ) is similar to the values presented, among
others, in the work of Nasirahmadi et al. [26] (26.9 mJ for Fajr and 28.5 mJ for Tarom) and Sadeghi et
al. [19] (24.45 mJ for Sazandegi) as well as in the work of Zareiforoush et al. [30,31], where the rupture
energy assumed values of about 30 mJ.

Figures 12–18 summarize the results of mechanical properties of rice grains depending on its
volume. The graphs show that mechanical properties of rice grains do not depend on its volume.
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Figure 12. The scatter diagram of forces Fmin for individual rice grains in relation to volume.
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Figure 13. The scatter diagram of forces Fmax for individual rice grains in relation to volume.
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Figure 15. The scatter diagram of stress σkmin for individual rice grains in relation to volume.
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Figure 18. The scatter diagram of stress WFmax for individual rice grains in relation to volume.

The analysis of the Spearman correlation shows that there are no statistically significant
relationships between the volume of the grain Vρ and the tested strength properties, so there are no
interdependencies between the variables (Tab 2). In the case of the grain dimension related volume
vs. a low negative correlation between strength σmin and low positive correlation between the force
inducing the first crack were found (Table 2). An analysis of the correlation between the grain size
related variables, that is, length a1, width a2, height a3, mass m and volumes Vρ and vs. showed that
the volume of grains Vρ is moderately positively correlated with length a1 and height a3 (Table S1).
The surface of compression cross-section A0 was in turn significantly correlated with the grain length
a1 and width a2 (Table S1). However, no relevant correlations between the grain dimensions, volume
and mass and its strength properties and energy needed to crush the grains, were found. Only low
correlations occurred, including negative ones between the grain width a2 and stresses σmin and σmax

(Table S1). Contrarily to wheat, a dependence of grinding energy proportionality and its mass was
not confirmed [35]. It was not possible to confirm distinct dependencies between the grain thickness
(a3) and the force value, either (for Fmin positive correlation R = 0.271, statistically significant p < 0.05,
for Fmax statistically insignificant correlation (Table S1)) and work (WFmin and WFmax low correlations),
which could be observed for wheat [37]. The volume is related to the grain dimensions, including
compression cross-section A0, whereas the cross section is related to compressive strength (according
to dependence (6)). However, it was not possible to show significant dependencies between the grain
cross section A0 and values of compressive strength (low negative correlations between A0 and σmin,
σmax (Table S1)). The obtained results, including the results of dimension and volume scatter, confirm
the significant variability and diversity of biological materials within one species. The diversity of the
values confirms that each grain is characterized by a different internal structure. Such a diversification
can indicate low quality of the grain and poor conditions of cultivation.

Table 2. Results of correlation analysis between the volume of grain and its strength properties.

Fmin
1 Fmax

2 Ck
3 σmin

4 σmax
5 WFmin

6 WFmax
7

Vρ
rhoSpearman coefficient 0.172 0.176 0.242 −0.018 −0.052 0.071 −0.057

Significance 0.088 0.08 0.015 0.859 0.604 0.482 0.573
Number of samples n 100 100 100 100 100 100 100

rhoSpearman coefficient 0.220 0.062 0.005 −0.280 −0.104 0.185 −0.138
Vs Significance 0.028 0.543 0.958 0.005 0.305 0.066 0.174

Number of samples n 100 100 100 100 100 100 100
1 Minimal crushing force, 2 Maximal crushing force, 3 Minimal compressive stress, 4 Maximal compressive stress,
5 Stiffness, 6 Work for the first rupture, 7 Rupture work.
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It is noteworthy that the grains were tested for only one orientation of grains in the strength testing
machines. It is expected that the longitudinal and transverse orientation of grains would provide
different values of destructive compression, forces and strength [28–30].

4. Conclusions

The main objectives of the study were achieved through the determination of energy (work) and
compressive forces in the test of static compression and analysis of the dependence between the grain
size and the grain strength parameters and grinding energy.

Based on the analyzes, it was found that the average grain length of rice was 6.38 mm, the average
width was 1.91 mm, the average height was 1.51 mm. The average grain volume determined on the
basis of the grain weight and density was equal to 14.82 mm3, while the volume determined on the
basis of grain size 18.44 mm3. The correction factor for given volumes Vρ and vs. assumed an average
value of 0.82. The values of the grain dimension distribution can be a determinant in selection of
structural features of the materials used, that is, performance parameters of roller mills: diameters of
rollers and the size of the inter-roller gap; selection of the screen eye sieve

The average values of strength properties of rice grains were determined, such as
Fmin = 117.9 kg·m s−2, Fmax = 174.99 kg·m·s−2, σmin = 9.80 MPa, σmax = 14.71 MPa, Ck = 1150.26 N·mm−1,
WFmin = 7.26 mJ, WFmax = 28.03 mJ, which coincided with the results of research carried out by other
researchers. The determined ranges of forces, strength and compressive energy (work) are of applicable
character and can be used in the design of machines dedicated to process rice. Knowing these values
will allow, among others, the estimation of the power of devices, e.g., grinding machines, and roller
mills, and in consequence, will minimize energy losses and energy demand for dedicated machines.

The analysis of the Spearman correlation showed that there are no statistically significant
relationships between the volume Vρ of the grain and the tested strength properties, so there are no
interdependencies between the variables. In the case of the grain size volume vs. a low negative
correlation between strength σmin and low positive correlation between the force inducing the first
crack (Table 2) were found. Dependence of grinding energy proportionality and the grain mass as
well as clear, distinct dependencies between the grain thickness and the value of force and work (low
negative correlation between thickness co a3 and stresses σmin and work WFmax, low positive correlation
between thickness a3 and force inducing the first crack Fmin), that was proven for other biological grainy
materials (wheat grains) could not be confirmed either. Based on these results, it was not possible
to find significant dependencies between the grain cross-section A0 and the values of compressive
strength (only low negative correlations were found).

Based on the conducted tests, the crack was found to be different for each grain (Figure 9).
The results, including the scatter of dimensions and volume, confirm the high variability and diversity
of biological materials within one species. Diversification of the obtained values confirms that each
grain is characterized by a different internal structure. Such a differentiation can indicate a poor quality
of grain and weak cultivation conditions.

An analysis of the test results of rice grain strength properties provides the basis for determining
the impact of biomass properties on the grinding process and, in subsequent stages, for the development
of procedures for monitoring the grinding process using energy-environmental grinding efficiency
models, the original CO2 emission index for the intelligent monitoring system of usable characteristics
of the grinding process.

The results can be used by other researchers to create models of materials (rice grains) for computer
simulations of cracking, crushing, mixing using the discrete element method DEM.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/2/552/s1,
Table S1: Results of correlation analysis between the size of grain and its strength properties
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List of Symbols

a1 length of the grain: mm
a2 width of the grain, mm
a3 height of the grain, mm
Vs grain volume calculated based on three dimensions a1, a2, a3, mm3

Vρ grain volume calculated based on the volumetric mass density, mm3

ρ volumetric mass density, kg·m−3

m grain weight, g
kv correction coefficient of the grain volume
Rc compressive strength, MPa
Fc the largest value of the compressive load at which the sample is crushed, kg·m·s−2

A0 the initial cross-section of the sample, m2

F compressive force, kg m·s−2

∆l sample shortening corresponding to force (F), m
l the initial length of the sample, m
A0 area of the initial sample cross-section, m2

s displacement, m
W work, J
dW elementary work, J
ds elementary displacement, m
Fmin minimal crushing force, kg·m s−2

Fmax maximal crushing force, kg·m·s−2

σkmin minimal compressive stress, MPa
σkmax maximal compressive stress, MPa
Ck stiffness, N·mm−1

WFmin work for the first rupture, mJ
WFmax rupture work, mJ
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