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Abstract: Urbanization intensity (UI) affects habitat quality (HQ) by changing land patterns,
nutrient conditions, management, etc. Therefore, there is a need for studies on the relationship
between UI and HQ and quantification of separate urbanization impacts on HQ. In this study,
the relationship between HQ and UI and the direct and indirect impacts of urbanization on HQ were
analyzed for the Yangtze River Delta Urban Agglomeration (YRDUA) from 1995 to 2010. The results
indicated that the regional relationship between HQ and UI was nonlinear and negative, with inflection
points where urbanization reached 20% and 80%. Furthermore, depending on different urbanization
impacts, the relationship types generally changed from a steady decrease to stable in different cities.
Negative indirect impacts accelerate habitat degradation, while positive impacts partially offset
habitat degradation caused by land conversion. The average offset extent was approximately 28.23%,
17.41%, 22.94%, and 16.18% in 1995, 2000, 2005, and 2010, respectively. Moreover, the dependency
of urbanization impacts on human demand in different urbanization stages was also demonstrated.
The increasing demand for urban land has exacerbated the threat to ecological areas, but awareness
about the need to protect ecological conditions began to strengthen after the antagonistic stage
of urbanization.

Keywords: urbanization; habitat quality; DMSP-OLS; spatiotemporal analysis; Yangtze River Delta
Urban Agglomeration

1. Introduction

Since the 20th century, urbanization, including population shifting, urban expansion,
economic development and so on, has been one of the most significant characteristics of human
civilization [1,2]. The progress of urbanization has led to more human demand that needs to be
provided for by the ecosystem services in natural ecosystems [3]. Grimm at al. found that the
unprecedented rates of urban population growth over the past century have occurred on less than 3%
of the global terrestrial surface, yet the impact has been global, with 78% of carbon emissions, 60% of
residential water use, and 76% of wood used for industrial purposes attributed to urban areas [4].
At the same time, urbanization has brought significant land conversion from ecological spaces to urban
usage, which creates seminatural or completely artificial ecosystems. In contrast to natural ecosystems,
the main driving force of habitat patterns in these ecosystems is anthropogenic activity. Fertilization,
irrigation, unified management, species introduction and other alterations are commonly seen in urban
landscapes and have caused various impacts on habitats in terms of soil composition and nutrients [5],
water, heat and carbon balance [6], species communities [7,8], atmospheric and climatic conditions [9],
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etc. In other words, the impact on natural ecosystems will affect the city itself. Therefore, quantifying
the eco-environmental dynamic variation in the urbanization gradient and identifying the ecological
impacts of urbanization provide an efficacious approach for decoupling human well-being from the
consumption of natural capital [10].

In the context of urbanization, eco-environmental variation is spatially organized and dominates
the composition and structure of habitats from the core urban area to the outskirts [11]. It has been
widely believed that urbanization threatens biodiversity, with areas of high urbanization levels having
impoverished species community composition [12–14] due to environmental stresses (e.g., poor soil
quality, high pollution, and limited habitat) and the artificial conversion of ecological spaces to
impervious surfaces [15]. However, the correlation trends are not completely consistent among different
studies. The relationships between urbanization and the diversity of plants [16], amphibians [17] and
mammals [18] have been separately analyzed, and it was found that there were no negative and even
positive effects in urban-rural gradients. In addition, using non-field survey approaches, the positive
influence of urbanization on environmental variation has been observed at the city, regional and
national scales. For example, Meng et al. found that the overall ecological conditions showed a
fluctuating increasing trend in the process of urbanization, with 20% of the area in the Yangtze River
Delta Urban Agglomeration (YRDUA) being deteriorated and 40% being improved [19]. Michael et al.,
upon reviewing 105 studies on the effects of urbanization on the abundance of non-avian species,
indicated that urbanization increases the species richness of plants, invertebrates and vertebrates by
approximately 65%, 30% and 12%, respectively [20]. Jia et al. observed that approximately 90% of
urban areas showed vegetation growth enhancement in the United States [21], which was also observed
in 32 major cities across China [22].

The main reason for the inconsistency in environmental dynamics can be summarized in two
aspects. First, simplified urbanization gradients, individual-level studies and the selection of study
sites contribute to the significant differences in relationship trends. The extent to which the selected
urban–rural gradient is representative of the pattern determines the sensitivity of variability in
environmental dynamics. As data availability and remote sensing techniques have increased, some finer
gradient approaches have been applied in the study of the abundance and community composition of
species in natural and urban ecosystems [23,24]. The “Habitat Quality (HQ)” module in the “Integrated
Valuation of Environmental Services and Trade-offs” (InVEST-HQ) model suite is a novel tool used for
assessing HQ of habitats under anthropogenic threats. It provides a means for conducting biodiversity
assessments at different scales, applied in study sites where there are multiple habitat types or a
lack of species distribution data [25]. Second, the relationship between environmental variation and
urbanization is also largely dependent on the selection of urbanization indicators. Commonly used
indicators of urbanization intensity (UI) were urban population conversion, finance aggregation,
and residential expansion [26]. However, in different urbanizing areas, the UI of each aspect shows
an inconsistent growth rate. In developed countries such as the United States, finance aggregation
increased without significant landscape pattern changes. In contrast, in some developing countries,
such as China, the residential expansion rate significantly exceeds the speed of urban population
conversion, which leads to the difference in responses to diverse UI indicators in identical study
sites [27]. For instance, Peng et al. found an “inverse U” shape between ecosystem services and UI
characterized by population and economy, while a negative-linear relationship existed when the UI was
measured by the proportion of construction land [26]. Therefore, selecting a spatially high-resolution
data source for multiple human activities is necessary.

The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) stable
nighttime light (NTL) data were used to detect urban lights and areas with low brightness, such as
small settlements and traffic distinguished from dark rural backgrounds. This unique dataset provides
a special perspective on the study of urban development and relevant human activities across various
spatiotemporal scales, such as urban extent [28], urban expansion [29], urbanization [30], population
density [31], socioeconomic activities [32–34] and energy consumption [35]. The spatial resolution of
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1 km× 1 km and long-term monitoring periods make it possible to study the details of HQ dynamics
in urban-rural gradients through a spatiotemporal perspective [36–38].

Previous studies have mentioned that there was a non-linear relationship between UI and
biodiversity [20], ecosystem services supply [39], and vegetation growth [21]. The status of HQ is
closely related to the diversity and abundance of species in the ecosystem, and its dynamics also affect
the supply capacity of ecosystem services. Assuming a nonlinear relationship between HQ and UI,
there must exist at least one inflection point, indicating where the ecological impacts of urbanization
will shift from having one influence to another. Predecessors have combined UI with vegetation
surface conversion [40], land use transition [41,42], and the distance from anthropogenic threats [43,44]
to understand the ecological impacts of urbanization, which has been investigated for multiple
HQ aspects, such as biodiversity status [7,45], ecosystem services [39] and landscape patterns [46].
Comparing and summarizing the results of these studies, which are based on field observations
and remote sensing approaches, is challenging. The research scales range from vegetation, species,
and ecological conditions to landscape types. The quantitative relationship between urbanization
indicators is not well understood. Zhao et al. developed a general framework for the quantitative
assessment of separate urbanization impacts in urban environments [22]. This framework has been
used to assess urbanization impacts on vegetation growth [21] and carbon storage [47], but very few
studies have investigated the direct and indirect impacts on urban habitat quality.

Urban agglomerations, consisting of densely populated, highly urbanized areas and
underpopulated surrounding townships, have become a dominant form of spatial organization
in urban development [48]. As one of the six world-class urban agglomerations, the Yangtze River
Delta Urban Agglomeration (YRDUA) has witnessed the evolution of humans and the environment
within urban ecosystems in China. The rapid urbanization of YRDUA is accompanied by indigenous
landscape changes and habitat degradation [49]. However, the relationship between the HQ and
UI in urban agglomerations is not clear. A systematic understanding of the ecological impacts of
urbanization in metropolitan areas is necessary. Hence, using the urban–rural gradient of YRDUA as a
case study, this study sought to address the following objectives:

• Identify the spatiotemporal variations in UI and HQ in YRDUA.
• Analyze the relationship between UI and HQ.
• Quantify the direct and indirect impacts of urbanization on HQ.

2. Material and Methods

2.1. Study Area and Data Source

Proposed in the Yangtze River Delta Regional Development Plan (2016–2030) and approved by
the State Council of China, the Yangtze River Delta Urban Agglomeration (29◦20′ W−32◦34′ W, 115◦46′

E−123◦25′ E) is located on the largest alluvial plain in China, which is formed at the point before the
Yangtze River enters the sea. It is situated in the coastal region of East China and borders the Yellow
Sea and the East Sea (Figure 1). The region occupies an area of 211,700 km2. A total of 49.4% of the
region is mountainous (the southwestern region), and the rest is plains (the northern and northeastern
regions). The YRDUA consists of 26 cities from four main basic jurisdictions, including the Shanghai
municipality, 9 cities in southern Jiangsu Province, 8 cities in northern Zhejiang Province and 8 cities in
parts of Anhui Province. This region has a subtropical monsoon climate, with an annual precipitation
of 1371.7 mm and an annual average temperature of 15.5 ◦C. The Yangtze River Delta region is rich in
water resources, with more than 200 lakes and dense river networks.
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18.5% ($2.07 trillion USD) of the gross domestic product in 2014 [50]. However, due to this rapid 
socioeconomic development and high population density, the YRDUA has had to face the challenges 
of habitat degradation and the construction of ecological cities. During recent decades, accelerated 
urbanization has exacerbated the negative impacts on local habitats, such as water eutrophication, 
soil erosion and natural ecosystem fragmentation. At the same time, the establishment of national 
parks to protect habitats, application of renewables to replace fossil fuels, disposal of pollutants to 
reduce environmental pollution, and other ecological protection and restoration measures were also 
widely used in China to reduce the adverse impacts of urbanization [51]. 

Considering the availability of data sources, two spatial scales (regional and city scales) and four 
temporal nodes (1995, 2000, 2005, and 2010) were used to investigate the spatiotemporal impact of 
urbanization on HQ. Land cover data for the years 1995, 2000, 2005 and 2010 at a spatial resolution 
of 30 m × 30 m and land cover types were divided into 11 different categories, supplied by the 
Resource and Environment Data Cloud Platform (http://www.resdc.cn/data.aspx?DATAID=99). 
DMSP-OLS nighttime light data for the same period (F121995, F152000, F162005, and F182010) with 
a 1 km spatial resolution were obtained from the National Geophysical Data Center 
(https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html). The digital number (DN) of 
these data ranges from 0 to 63. The study was carried out on each 1 km × 1 km pixel, corresponding 
to 900 land units and one DN value. 
  

Figure 1. The Yangtze River Delta Urban Agglomeration (YRDUA) study location in China showing
the topography and expansion of built-up areas during 1995–2010.

As the driving engine of China’s economic development, the YRDUA has experienced an
unprecedented rate of drastic and massive urbanization, which increased at an average rate of 1.41%.
The population has increased from 114.3 million in 1990 to 151.0 million in 2015, with the energy
consumption increasing from 114.3 million tons of coal equivalent (Mtce) to 630.4 Mtce during the same
period. The region has 2.2% of the whole country’s territory to support 11.0% of the total population,
making it one of the most densely populated areas in China. In addition, the regional average economic
growth rate of 11% is five times that of the national economic growth rate, with 18.5% ($2.07 trillion USD)
of the gross domestic product in 2014 [50]. However, due to this rapid socioeconomic development
and high population density, the YRDUA has had to face the challenges of habitat degradation and the
construction of ecological cities. During recent decades, accelerated urbanization has exacerbated the
negative impacts on local habitats, such as water eutrophication, soil erosion and natural ecosystem
fragmentation. At the same time, the establishment of national parks to protect habitats, application of
renewables to replace fossil fuels, disposal of pollutants to reduce environmental pollution, and other
ecological protection and restoration measures were also widely used in China to reduce the adverse
impacts of urbanization [51].

Considering the availability of data sources, two spatial scales (regional and city scales) and
four temporal nodes (1995, 2000, 2005, and 2010) were used to investigate the spatiotemporal
impact of urbanization on HQ. Land cover data for the years 1995, 2000, 2005 and 2010 at a spatial
resolution of 30 m × 30 m and land cover types were divided into 11 different categories, supplied by
the Resource and Environment Data Cloud Platform (http://www.resdc.cn/data.aspx?DATAID=99).
DMSP-OLS nighttime light data for the same period (F121995, F152000, F162005, and F182010)
with a 1 km spatial resolution were obtained from the National Geophysical Data Center (https:
//www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html). The digital number (DN) of these
data ranges from 0 to 63. The study was carried out on each 1 km × 1 km pixel, corresponding to 900
land units and one DN value.

http://www.resdc.cn/data.aspx?DATAID=99
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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2.2. Mapping Habitat Quality and Urbanization Intensity

2.2.1. Habitat Quality

As a proxy of biodiversity, habitat quality (HQ) refers to the ability of the ecosystem to provide
conditions suitable for survival, reproduction and population persistence [52]. In this study, HQ was
defined as the habitat status of the non-built-up part of a pixel. Due to the spatial heterogeneity in HQ,
we used the InVEST-HQ, which analyzes land use/land cover (LU/LC) in conjunction with suitability
and threats, to evaluate HQ throughout the study site. The model is based on the hypothesis that
higher quality habitat areas can support higher native species abundance and that a reduction in HQ
leads to a loss of biodiversity [44]. A half-saturation function of threats to translate habitat degradation
is estimated based on the habitat quality score in InVEST-HQ:

Qobs = H j

 k2

Dz
xj + kz

 (1)

where Qobs is the score of HQ, H j is the habitat suitability of land use type j, Dxj is the degradation
score of pixel x in land cover type j, k is a half saturation coefficient (usually half of the maximum value
of Dxj), and z is a constant to reflect the spatial heterogeneity.

Dxj =
R∑

r = 1

Yr∑
y = 1

 wr∑R
r = 1 wr

ryirxyβxS jr (2)

where R is the number of threats (r = 1,2,3 . . . R), Yr is the set of pixels occupied by the threat r,(
wr∑R

r = 1 wr

)
ry evaluates the relative impact of threat r, wr is the impact weight of r, ry is the degradation

score of threat r in pixel y, irxy is the degradation attenuation function through distance, which could
be expressed as a linear or exponential function of distance from threats to habitats, βx is the legal
reachability of pixel x, which defaults to 1 in this study, and S jr is the related sensitivity of each habitat
type j to each threat source r. The values used as input elements for the HQ model are reported in Table
S1, and the maps of habitat types and magnitude of threats in 2010 in YRDUA are shown in Figure S1.
To reduce the occurrence of accidental regional errors, the HQ layer was aggregated and resampled
from 30 m× 30 m to 1 km × 1 km pixels. Each output pixel contained the mean value calculated by
the input pixels around that pixel.

2.2.2. Urbanization Intensity

Urbanization intensity (UI) reflects multiple aspects of urbanization, including population,
industrial structure and regional space. Three recognized indicators were used in the study to calculate
the traditional urbanization level index (ULI), such as the proportion of urban population, the proportion
of secondary and tertiary industries, and the proportion of built-up area, which are representative of
population urbanization, economic urbanization, and spatial urbanization, respectively.

ULI =
∑3

i
(wi ×Ui) (3)

Ui is the three factors of traditional urbanization level evaluation, and wi is the weight of factors.
This study considers that these three factors have equal influence on urbanization level, so they were
given equal weight.

The average intensity of nighttime light in DMSP-OLS embodies the comprehensive responses of
the interaction among these factors [33]. Following Chen et al. and Yang et al., the UI of an urban pixel
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is defined as the night light compositive index (NLCI or β) within a pixel from the DMSP-OLS stable
light data, ranging from 0 to 1 [53,54].

β = NLCI = p1 ×NLII + p2 ×NLAI (4)

NLII =


∑63

i = t(DNi×ni)

Nt×63 × 100% Nt , 0
0 Nt = 0

(5)

NLAI =
Nt

Count
× 100% (6)

The average nighttime light intensity index (NLII) and nighttime light area index (NLAI) were
defined and calculated using the following indicators, which are linearly weighted to calculate NLCI.
p1 and p2 are the weight coefficients, ranging from 0 to 1. t is the DN threshold of illuminated pixels,
ranging from 0 to 63 [54]. DNi is the original DN value of pixel i, ni is the number of pixels with DN
value i, Nt is the number of pixels with a DN value greater than or equal to threshold t, and Count is
the total number of regional pixels.

The value of p1 and p2 has a great influence on the results of the NCLI index. In order to improve
the accuracy of the estimation model, a coefficient matrix with a combination of NLII and NLAI
weights was adopted with a step size of 0.1 (Table 1).

Table 1. Weight combination of nighttime light intensity index (NLII) and nighttime light area
index (NLAI).

Number p1 p2 Weight Combination

1 0 1 NLAI
2 0.1 0.9 0.1 NLII + 0.9 NLAI
3 0.2 0.8 0.2 NLII + 0.8 NLAI
4 0.3 0.7 0.3 NLII + 0.7 NLAI
5 0.4 0.6 0.4 NLII + 0.6 NLAI
6 0.5 0.5 0.5 NLII + 0.5 NLAI
7 0.6 0.4 0.6 NLII + 0.4 NLAI
8 0.7 0.3 0.7 NLII + 0.3 NLAI
9 0.8 0.2 0.8 NLII + 0.2 NLAI
10 0.9 0.1 0.9 NLII + 0.1 NLAI
11 1 0 NLII

To reflect the actual situation as authentically as possible, Pearson correlation coefficients
between the NCLI and the ULI under different weight combinations were calculated, using the
sample data of 26 cities in YRDUA in 1995, 2000, 2005, and 2010, respectively. The optimal
weight combination for each period was selected based on the criterion of “maximum correlation
coefficient”. It is interesting to note that under the selection of the best correlation coefficients
(R1995 = 0.727, R2000 = 0.731, R2005 = 0.714, R2010 = 0.786), the combination of weights for the
four time periods was consistent (p1 = 0.7, p2 = 0.3).

2.3. Analyzing the Relationship between UI and HQ

Due to the extensive amount of raw data, we first calculated the mean value of habitat quality
(Qmean) for all the UI pixels at intervals of 0.015 in YRDUA using R 3.4.2 software. Then, polynomial
regression was applied to clarify the relationship between HQ and UI. This approach ignores the spatial
heterogeneity of pixels and the development direction of the city. Since a lower polynomial order (order
<3) could not faithfully characterize the tendency of the scatters, and using higher orders resulted in a
trivial difference in the fitting effect because of the addition of outliers, cubic polynomial regression
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was used to identify the Qmean ∼ β relationship in each city from 1995 to 2010. The descending rate
(Q′) was calculated to find the threat level of the corresponding UI on HQ in each pixel.

Q′ =
dQmean

dβ
(7)

2.4. Quantifying the Urbanization Impacts on HQ

Urbanization has different impacts on habitats, including vegetation replacement, green
infrastructure development, the occurrence of heat islands, and changes due to agricultural management.
Zhao et al. proposed a framework that can identify the direct and indirect effects of urbanization on
the net primary productivity (NPP) [22]. To quantify the impact of urbanization on HQ, we have
improved the original framework of Zhao et al. (Figure S2).

The total impact of urbanization on HQ was decomposed into direct and indirect impacts.
The direct impacts were defined as the variation in HQ in a pixel due to the replacement of the
ecological land units by urbanized cover, either partially or completely. The indirect impacts were
defined as the variation in HQ in a pixel due to other anthropogenic factors.

Conceptually, the HQ of one surface pixel is the remainder of the local background HQ under the
overall impact of urbanization:

Qobs = (1−ω)Qb (8)

where Qobs is the HQ value of the surface pixel, ω is the overall impact of urbanization on HQ, and Qb
is the value of the background habitat quality before urbanization or in fully vegetated areas. There
are two ways to determine Qb. One method uses the mean or median HQ value of all the fully
vegetated pixels for each city. The other approach uses the intercept of the regression between Qmean

and β. The high correlation coefficient (R = 0.62~0.98) for all the cities and years indicated a significant
correlation between HQ and UI and the suitability of the background HQ measurement.

The direct variation in HQ caused by land conversion was expressed as a zero-impact line,
referring to the condition in which urbanization has no indirect impact on habitats and is determined
by two factors corresponding to local background HQ and the state of UI in a pixel. The indirect
variation in HQ is the difference between the overall impact and the direct impacts.

Qd = Qb −βQb (9)

Qid = Qobs −Qd (10)

The Qd and Qid are the HQ values under direct and indirect urbanization impacts, respectively. β
is the nighttime light composite index NLCI, used to represent the UI value.

In addition, the ratio of the indirect urbanization impact (ωd) to the direct urbanization impact
(ωi) is defined as the relative contribution coefficient τ:

τ =
ωi
ωd
× 100% (11)

The value of the relative contribution coefficient represents the extent to which the effect of other
anthropogenic factors on the remaining ecological patches can offset (if τ is positive) or exacerbate (if τ
is negative) the habitat degradation caused by the direct replacement of the original vegetation cover
with fully urbanized surfaces.

The direct and indirect impacts of urbanization on HQ were calculated as follows: ωd =
∆Qd
∆Q =

Qb−Qzi
Qb−Qobs

× 100%

ωi = ∆Qi
∆Q =

Qzi−Qobs
Qb−Qobs

× 100%
(12)



Sustainability 2020, 12, 669 8 of 20

where ωd and ωi are the proportions of direct and indirect impacts, respectively, and ∆Qd, ∆Qi and ∆Q
are the direct HQ change (i.e., Qb −Qzi), indirect HQ change (i.e., Qzi −Qobs) and total HQ change (i.e.,
Qb −Qobs), respectively.

3. Results

3.1. The HQ and UI Spatiotemporal Variations in YRDUA

3.1.1. The Spatial and Temporal Changes in Habitat Quality

Habitat quality and urbanization intensity maps have different spatial patterns across YRDUA
(Figure 2). The HQ varied from 0 to 1 for the four time periods analyzed. With two clearly isolated
high-value areas corresponding to Huangshan Mountain and the Taihu Lake, the HQ values were
generally higher along the southwestern mountains in Zhejiang Province and decreased in the
northeastern plains in Jiangsu Province. Furthermore, the lowest HQ values were concentrated around
the major urban areas of Shanghai, Suzhou, Nanjing and Wuxi, which have the highest population
densities. Among the different land use types, forestland was the main provider of HQ in YRDUA,
followed by cultivated land and water bodies. HQ was lower in urban areas than it was in the other
land cover types. This is mainly due to the small amount of ecological land resulting from the large
quantities of construction land, leading to a decline in the total habitat quality.
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Figure 2. Spatial patterns of habitat quality and urbanization intensity in different years in YRDUA.
(a) 1995, (b) 2000, (c) 2005, and (d) 2010.

With a decreasing rate of 4.95% (Table 2), the average values of regional HQ were 0.586, 0.581,
0.572 and 0.557 in 1995, 2000, 2005 and 2010, respectively. HQ decreased not only on a regional scale,
but also in 23 cities of YRDUA, the largest of which was Shanghai (−18.83%), followed by Suzhou
(−17.19%). HQ increased slightly only for Chuzhou, Xuancheng and Anqing, by 0.98%, 0.31% and
0.12%, respectively (Figure 3). In terms of jurisdictions, the change in HQ in Suzhou was the most
substantial (−0.098), while the lowest amount of change was found in Chuzhou (0.005). The average
HQ was highest in Hangzhou (0.79) and lowest in Shanghai (0.27) in 2010.



Sustainability 2020, 12, 669 9 of 20

Table 2. Habitat quality (HQ) and urbanization intensity (UI) for cities in YRDUA during 1995–2010.

HQ UI

Max Min Average Max Min Average

1995 0.803 (Hangzhou) 0.337 (Shanghai) 0.586 0.413 (Shanghai) 0.010 (Chizhou) 0.092
2000 0.800 (Hangzhou) 0.335 (Shanghai) 0.581 0.456 (Shanghai) 0.015 (Chizhou) 0.109
2005 0.791 (Hangzhou) 0.301 (Shanghai) 0.572 0.527 (Shanghai) 0.023 (Chizhou) 0.134
2010 0.785 (Hangzhou) 0.274 (Shanghai) 0.557 0.723 (Shanghai) 0.056 (Chizhou) 0.256

Value change 0.005 (Chuzhou) −0.098 (Suzhou) −0.029 0.456 (Suzhou) 0.045 (Anqing) 0.164
Change ratio 0.98% (Chuzhou) −18.83% (Shanghai) −4.95% 439.59% (Chizhou) 74.96% (Shanghai) 177.56%Sustainability 2020, 12, x FOR PEER REVIEW 9 of 19 
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decrease. The minimum negative urbanization impact on HQ, which was mainly distributed in the 
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Figure 3. (a) Annual average value of HQ and (b) the variation in HQ in YRDUA from 1995 to 2010.

3.1.2. The Spatial and Temporal Changes in Urbanization Intensity

The spatial distribution pattern of UI in YRDUA was opposite to that of HQ (Figure 2). UI was the
highest along the Yangtze River and Hangzhou Bay, especially in the Yangtze River Estuary (Shanghai,
Suzhou and Wuxi), where urbanization gradually decreased from the center to the outskirts. As an
important ecological barrier and drinking water source for YRDUA, a variety of ecological protection
projects were implemented in the southwestern region; therefore, the UI was relatively low compared
with that in other places. With a rate of increase of 177.56%, the average value of regional UI was
0.092, 0.109, 0.134, and 0.256 in 1995, 2000, 2005 and 2010, respectively. In 2010, the average value of UI
was highest in Shanghai (0.723), followed by Xuancheng (0.062), Anqing (0.063) and Chizhou (0.056)
(Figure 4). Suzhou, which had the largest decrease in HQ, was also the most prominent city for the
increase in urbanization (0.456), while Anqing had the smallest decrease (0.045).

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 19 

 

 
Figure 3. (a) Annual average value of HQ and (b) the variation in HQ in YRDUA from 1995 to 2010. 

3.1.2. The Spatial and Temporal Changes in Urbanization Intensity 

The spatial distribution pattern of UI in YRDUA was opposite to that of HQ (Figure 2). UI was 
the highest along the Yangtze River and Hangzhou Bay, especially in the Yangtze River Estuary 
(Shanghai, Suzhou and Wuxi), where urbanization gradually decreased from the center to the 
outskirts. As an important ecological barrier and drinking water source for YRDUA, a variety of 
ecological protection projects were implemented in the southwestern region; therefore, the UI was 
relatively low compared with that in other places. With a rate of increase of 177.56%, the average 
value of regional UI was 0.092, 0.109, 0.134, and 0.256 in 1995, 2000, 2005 and 2010, respectively. In 
2010, the average value of UI was highest in Shanghai (0.723), followed by Xuancheng (0.062), Anqing 
(0.063) and Chizhou (0.056) (Figure 4). Suzhou, which had the largest decrease in HQ, was also the 
most prominent city for the increase in urbanization (0.456), while Anqing had the smallest decrease 
(0.045). 

 
Figure 4. (a) Annual average value of UI and (b) the variation in UI in YRDUA from 1995 to 2010. 

3.2. The Relationship between HQ and UI 

3.2.1. Regional Scale 

To identify the threat level of UI to HQ in each pixel, the spatial pattern of the descending rate 
(ܳᇱ) between UI and HQ was analyzed among all the periods (Figure 5). Overall, HQ was negatively 
correlated with UI, i.e., the regression coefficients in all the regional pixels were less than zero. The 
threat level from the urban center to the outskirts is a “reverse U” trend, which is enhanced after the 
decrease. The minimum negative urbanization impact on HQ, which was mainly distributed in the 
surrounding suburban area, covered nearly 50% of the urbanization range (β = 0.2~0.7), while ܳ௦ 
declined significantly with increasing UI in the urban core districts (Shanghai, Suzhou, Wuxi, 

Figure 4. (a) Annual average value of UI and (b) the variation in UI in YRDUA from 1995 to 2010.



Sustainability 2020, 12, 669 10 of 20

3.2. The Relationship between HQ and UI

3.2.1. Regional Scale

To identify the threat level of UI to HQ in each pixel, the spatial pattern of the descending rate
(Q′) between UI and HQ was analyzed among all the periods (Figure 5). Overall, HQ was negatively
correlated with UI, i.e., the regression coefficients in all the regional pixels were less than zero. The threat
level from the urban center to the outskirts is a “reverse U” trend, which is enhanced after the decrease.
The minimum negative urbanization impact on HQ, which was mainly distributed in the surrounding
suburban area, covered nearly 50% of the urbanization range (β = 0.2 ∼ 0.7), while Qobs declined
significantly with increasing UI in the urban core districts (Shanghai, Suzhou, Wuxi, Changzhou,
Nanjing, Hangzhou and Hefei) and unfrequented areas. Similar to the mountains surrounding the
urban center, along the sides of the ridge, the impact of urbanization on HQ gradually increased. In the
temporal gradients, each threat level was continuously pushed outward and closer together until they
merged into a larger multicenter band, such as the Hangzhou Bay Belt, the Yangtze River Estuary and
the Yangtze River Belt. This was consistent with the result of the polycentric megaregion evolution
model in previous studies [49].
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Figure 5. Spatial pattern of Q′ (threat level of UI to HQ) and kernel density distribution of Qobs in each
UI gradient in 1995–2010 in YRDUA. The red curve is the cubic polynomial fit of Qmean to UI. (a) 1995,
(b) 2000, (c) 2005, and (d) 2010.

Based on the kernel density distribution of HQ, the Qmean had a distinct nonlinear relationship with
UI (p < 0.001) along the urban-rural gradients of YRDUA (Figure 5). There were two inflection points
in the relationship between HQ and UI. In the position where the urbanization was 20%, the response
of HQ to UI changed from a steady decrease to stable. However, when urbanization reached 80%,
HQ went from stable back to a steady decrease. In the early period, only some pixels with low Qobs
gradually evolved to a higher UI. Over time, the urbanized level of areas with a high value of Qobs
started to increase, and the medium value of Qobs appeared in all the urbanization gradients, even in
extremely highly urbanized areas. The transformation in the relationship indicated that more natural
areas were affected by urbanization and that the habitat quality in urban areas was improved in the
process of urbanization.

3.2.2. City Scale

The relationships between UI and HQ across cities in YRDUA in 2010 are shown in Figure 6,
and the results for other years in Figures S2–S4. Generally, HQ decreased with the enhancement
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of urbanization in each city, because the proportion of vegetation types in the grids was gradually
replaced by built-up areas along the range of urbanization. Comparing the relationship curves of
various cities, 15% of cities, such as Chizhou, Wuxi, Ningbo, and Suzhou, were linearly and negatively
correlated. Seventy percent of cities, such as Tongling, Nanjing, and Hangzhou, have the same
nonlinear relationship as that of the regional scale. Nevertheless, there were some exceptions, such as
Nantong, Shanghai, Yancheng and Jiaxing, where HQ was not significantly negatively correlated with
UI. The HQ maintained a relatively consistent value in areas of moderate urbanization. Different
forms of the relationships were largely related to the local development orientation and urbanization
level. The background value of each city may be associated with the local natural background and
climatic conditions.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 19 
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Figure 6. The relationship between UI and HQ across 26 cities in YRDUA in 2010. The red line represents
the polynomial fitting curve of Qobs in each scatter diagram, and the straight blue line represents the
zero-impact line. The HQ responses to UI for 1995, 2000 and 2005 are shown in Figures S3–S5.

3.3. The Direct and Indirect Impacts of Urbanization on HQ

3.3.1. Regional Urbanization Impacts on HQ

The preliminary findings showed that Qobs and Qd, which showed nonlinear and linear variation,
respectively, declined along the UI gradient across cities (Figure 7a,b). Some UI gradients were empty
(i.e., β = 0.0317 and 0.0476) because the DN values of 2 and 3 were not found in the DMSP-OLS
NTL data for YRDUA. To study the reason for the difference between the nonlinear relationship and
the linear relationship, the part of the HQ variation under indirect impacts was separately extracted
and studied (Figure 7c). The indirect impact of HQ (Qid) (i.e., below zero) was mainly concentrated
in the early stage of urbanization, and the Qid in moderate-high UI was above the zero-impact line,
with a maximum value of β = 0.8. As shown in Figure 7d, the relative contribution coefficient (τ) was
negative at values less than β = 0.4 and tended to stabilize after growth beyond zero, which indicated
that urbanization in the primary stage has a negative indirect impact on local HQ, but at a relatively
high urbanization level, it gradually turned into a positive impact. Conceptually, a negative indirect
impact will accelerate habitat degradation, while a positive indirect impact can partially offset the
habitat degradation caused by land conversion. The average offset extent was approximately 28.23%,
17.41%, 22.94%, and 16.18% in 1995, 2000, 2005, and 2010, respectively. Notably, the variation in τ
was more significant in areas of lower urbanization intensity because the observed HQs were higher
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than the background HQ value in pixels with relatively low urban intensity, especially for highly
ecologically sensitive areas.Sustainability 2020, 12, x FOR PEER REVIEW 12 of 19 
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Figure 7. The relationship between UI and HQ for YRDUA in 2010: (a) the observed HQ along the
UI gradients (Qobs); (b) the direct HQ value change (Qd); (c) the indirect HQ change (Qid), in which
the indirect growth of HQ peaked at approximately 0.8, indicated by the red dotted line; and (d) the
relative contribution coefficient (τ). The boxplot for τ in each box shows 25% and 75% (the black points
are outliers, the medians for each box are marked by the orange points, and the mean of the medians is
16.18%, as shown by the red lines).

3.3.2. Urbanization Impacts on HQ in Cities

It is worth mentioning that the HQ value of almost all the pixels in the areas with relatively
high urbanization intensity was above the zero-impact line for 26 cities, which indicated the positive
ecological impact of urbanization in the urban environment. The median of the observed habitat
quality (Qmean), the background habitat quality index (Qb) and the mean of the medians of the relative
contribution coefficient (τ) in all the urban pixels for 26 cities in YRDUA for the period of 1995 to 2010
are shown in Tables S2–S5. For example, the median observed HQ among all the pixels of Ningbo was
0.53, and the Qb was 0.80, which offset 22.21% of the loss of habitat quality through vegetation cover
reduction in 2010. The observed HQ in some pixels, which was even larger than the background value,
caused a higher offset of HQ, such as 54.34% in Yancheng and 53.98% in Hefei in 2010.

4. Discussion

4.1. Nonlinear Relationship between Habitat Quality and Urbanization Intensity

Based on land use [55], urban populations [26] and impervious surfaces [56], the overall ecological
urbanization impact on HQ was negative. Nighttime light data serve as the composite response to
the interaction of these factors and were used to characterize the overall urbanization intensity [57].
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We found that the nonlinear negative relationship between HQ and UI changed from a steady decrease
to stable and then back to a steady decrease, with inflection points where urbanization reaches 20%
and 80%. The transformation in the relationship indicated that more natural areas were affected by
urbanization, and the habitat quality in urban areas was improved in the process of urbanization,
which was consistent with the results of previous research. The ecological conditions in 20% of YRDUA
deteriorated, and the ecological conditions in 40% increased from 1995 to 2010 [19]. The improvement
in habitat quality in urban areas has also been testified in accelerating vegetation growth [21,22,58] and
enhancing species richness [18,20] in urban environments compared to those in rural equivalents.

Habitat quality is used as a surrogate to assess the status of extant biodiversity under human
activities [59]. Different dynamics of HQ were largely dominated by local ecological factors and complex
land use patterns (Figure 8). In woodland areas, the ecosystem structures were more complicated to
support the survival and reproduction of relatively diverse species. In contrast, under intensive human
intervention, cultivated land represents poor habitat, hosting relatively few species, which is equivalent
to urban areas [60]. In rural areas of YRDUA (β < 0.2), land use was bifurcated into woodland and
cropland, which established completely different ecological backgrounds. We also found some cities,
such as Changzhou, Nanjing, Nantong, Taizhou, Yancheng, Wuxi, Zhenjiang, Shanghai and Jiaxing,
where the HQ dynamics were relatively consistent in moderate or even higher UI. Cropland (53–85%)
accounted for the majority of the land cover in these cities and had stable relationships, while woodland
accounted for less than 10%, leading to landscape homogenization from the city center to the outskirts
(β = 0.2~0.8), with a relatively consistent habitat quality. At an extremely high urbanization level
(β > 0.8), urban land use was mainly converted from cultivated land to urban land, resulting in a drastic
reduction in habitat quality. The same relationship type has also been proposed in corresponding
studies of plant diversity [61], birds [43] and amphibian abundance [17].
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4.2. The Necessity of Distinguishing Urbanization Impacts on Habitat Quality

Some existing studies focused on overall impact rather than distinguishing the urbanization effect
into direct impact and indirect impacts [22,62,63]. Although the habitat in YRDUA degenerated with
urbanization growth, the HQ of the urban area increased during the urbanization process (Figure 7).
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The reduction in HQ was the result of ecological land being occupied by constructed land, while the
remaining habitats in the urban areas retained relatively good ecological conditions. The impact of
urbanization on HQ is difficult to fully explain with the replacement of ecological land, which was also
related to human demands in different urbanization stages [46]. Therefore, analyzing and quantifying
the direct and indirect impacts of urbanization on HQ dynamics is necessary.

The cities in YRDUA have varying urbanization stages, and the impact of urbanization on HQ
was also different. Based on the variations in HQ, UI and τ, the cities can be divided into four
clusters (Figure 9). (I) A total of 11.5% of the cities, including Jiaxing, Wuhu and Maanshan, were in
the first category, which was characterized by relatively low HQ values and an exacerbated rate of
habitat degradation as a result of urbanization. (II) A total of 42.3% of the cities, including Nantong,
Zhoushan, and Huzhou, were in the second category, which had relatively low HQ values and habitat
degradation. (III) A total of 34.6% of the cities, including Wuxi and Suzhou, were in the third category,
which had a relatively high HQ. In this category, the habitat degradation was offset by urbanization.
(IV) Approximately 11.5% of the cities, including Shanghai, Nanjing and Zhenjiang, were in the fourth
category, which had slightly improved HQ values. Urbanization still exacerbated habitat degradation
in this category.

Sustainability 2020, 12, x FOR PEER REVIEW 14 of 19 

 

which was also related to human demands in different urbanization stages [46]. Therefore, analyzing 
and quantifying the direct and indirect impacts of urbanization on HQ dynamics is necessary. 

The cities in YRDUA have varying urbanization stages, and the impact of urbanization on HQ 
was also different. Based on the variations in HQ, UI and ߬, the cities can be divided into four clusters 
(Figure 9). (I) A total of 11.5% of the cities, including Jiaxing, Wuhu and Maanshan, were in the first 
category, which was characterized by relatively low HQ values and an exacerbated rate of habitat 
degradation as a result of urbanization. (II) A total of 42.3% of the cities, including Nantong, 
Zhoushan, and Huzhou, were in the second category, which had relatively low HQ values and 
habitat degradation. (III) A total of 34.6% of the cities, including Wuxi and Suzhou, were in the third 
category, which had a relatively high HQ. In this category, the habitat degradation was offset by 
urbanization. (IV) Approximately 11.5% of the cities, including Shanghai, Nanjing and Zhenjiang, 
were in the fourth category, which had slightly improved HQ values. Urbanization still exacerbated 
habitat degradation in this category. 

 
Figure 9. The variation in the median observed habitat quality (ܳ), urbanization intensity (ߚ) and 
the offset of habitat degradation (߬) of 26 cities in YRDUA from 1995 to 2010. 

The diversity of the demands created by human beings in different urbanization stages impacts 
the approach used to manage landscapes [46,64]. Based on this study, the indirect urbanization 
impact on habitat quality dynamics was categorized into four stages: the damage stage (I), 
antagonistic stage (II), coordination stage (III), and degenerative stage (IV). The indirect urbanization 
impact was distinguished as negative impacts and positive impacts (Figure 10). In the damage stage, 
the negative impact on habitats increased significantly at low urbanization levels due to patch 
fragmentation, a shortage in the food supply, and a weakening of ecosystem resistance and resilience. 
Resource exploitation (e.g., deforestation and overkilling) also destroyed the ecological conditions in 
the available habitat. In the second stage, rapid urbanization accelerated the occupation of ecological 
land. At the same time, some ecological protection and restoration works were applied to match the 
urgent demand for blue-green ecological space (e.g., green space and aquatic landscapes) and 
corresponding ecosystem services. In the coordination stage, with awareness about human ecological 
protection and continuous investment in ecological restoration and management, some key 
ecological corridors and functions had been repaired, and the positive ecological impacts caused by 
urbanization had gradually offset the negative impacts [64]. In the degenerative stage, the extremely 
high proportion of built-up areas provided very limited space for species to thrive, which increased 

Figure 9. The variation in the median observed habitat quality (Qmean), urbanization intensity (β) and
the offset of habitat degradation (τ) of 26 cities in YRDUA from 1995 to 2010.

The diversity of the demands created by human beings in different urbanization stages impacts
the approach used to manage landscapes [46,64]. Based on this study, the indirect urbanization impact
on habitat quality dynamics was categorized into four stages: the damage stage (I), antagonistic
stage (II), coordination stage (III), and degenerative stage (IV). The indirect urbanization impact was
distinguished as negative impacts and positive impacts (Figure 10). In the damage stage, the negative
impact on habitats increased significantly at low urbanization levels due to patch fragmentation,
a shortage in the food supply, and a weakening of ecosystem resistance and resilience. Resource
exploitation (e.g., deforestation and overkilling) also destroyed the ecological conditions in the available
habitat. In the second stage, rapid urbanization accelerated the occupation of ecological land. At the
same time, some ecological protection and restoration works were applied to match the urgent demand
for blue-green ecological space (e.g., green space and aquatic landscapes) and corresponding ecosystem
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services. In the coordination stage, with awareness about human ecological protection and continuous
investment in ecological restoration and management, some key ecological corridors and functions
had been repaired, and the positive ecological impacts caused by urbanization had gradually offset
the negative impacts [64]. In the degenerative stage, the extremely high proportion of built-up areas
provided very limited space for species to thrive, which increased the hazard exposure of species to
the external environment. The positive ecological utility generated by manual management had a
threshold and could not be increased without limitation. The negative impact from the surrounding
environment increased persistently, resulting in a certain degree of reduction in comprehensive utility.
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4.3. Limitations and Future Directions

Although the application of the InVEST model to regional biodiversity conservation has proven
to be effective, the assessment of HQ has limitations related to two factors: the accuracy of the land
cover data and the impact threshold of the threat factors. In the estimation of HQ in YRDUA, 30 m
resolution land cover data were used and separated into 17 categories, and the variation in habitat
types was not sensitive at some lower scales with small patches. This may obscure the complexity of
the habitat, especially in Zhoushan, a city of multiple islands. Moreover, the isolated habitat fragments
present in urban areas often maintain different plant and insect communities, but they are most likely
only visited by individuals of the same widespread avian and mammal species. In our study, we
used a relatively small impact threshold (irxy) for each threat factor used to calculate HQ, which is
more appropriate for species such as plants, invertebrates, and small mammals, which have a range
of survival activities less than or equal to this value. In reality, the assessment of large-scale HQ
often contains uncertainty in its results due to the lack of corresponding observation data. Moreover,
the quality of the data is related to the issues that need to be addressed in the research. Although
the remote sensing approach to assessing HQ may simplify the understanding of complex ecological
processes, our study aims to analyze the prevalent dynamics of habitats in urbanization gradients to
achieve the vision of broad protection of biodiversity in rapid urbanization. It involves the protection
of not one species or community but multiple positive elements in a habitat (e.g., habitat quality,
ecological carrying capacity, and biodiversity) and the identification and control of threats that may
cause damage to habitats.

The urbanization characterized by NTL data could also create uncertainty. Urbanization can be
represented by economic aggregation and residential expansion, which is also related to the variation
in the NTL data. However, the quantitative relationship between nighttime light data and various
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urbanization indicators is not well understood [27]. The variation in NTL data may reflect the spatial
and aggregation statuses of economies and populations in YRDUA, although it was not consistent
with the actual urbanization at the pixel level [65]. The 1 km spatial resolution DMSP-OLS dataset
spans two decades (1992–2013), which leads to limited timeliness and spatial precision in this study.
The coarse resolution and blooming effect of DMSP-OLS NTL data require future improvements in the
accuracy of extracting urbanization information. The NPP-VIIRS NTL data collected on the Suomi
satellite have relatively high resolution and no pixel oversaturation; therefore, they could be used for a
higher quality evaluation of urbanization.

In general, although there is some uncertainty in the data sources, from a macro perspective,
our study is still valuable for the exploration of the ecological impact of different urbanization stages
on terrestrial ecosystems. Therefore, to achieve a more in-depth picture of the ecological impacts of
various urbanization stages on habitats, multisource, higher-resolution datasets (e.g., Quickbird images
and NPP-VIIRS NTL data) will be used, and field observation experiments will be added to lessen the
uncertainty of assessment results from remote sensing approaches.

5. Conclusions

In this study, the relationship between HQ and UI and the direct and indirect impacts of
urbanization on HQ were delineated and analyzed for YRDUA from 1995 to 2010 through the
application of remote sensing data. The results indicated that urbanization might lead to habitat
degradation, while awareness about protecting ecological conditions began to increase after the
antagonistic stage of urbanization. The main conclusions can be summarized as follows:

• The YRDUA underwent rapid urbanization from 1995 to 2010, intensifying urban expansion and
human activities. The vast majority of urban expansion was concentrated in the Hangzhou Bay
Belt, the Yangtze River Estuary and the Yangtze River Belt, accompanied by a large proportion of
habitat degradation.

• The overall dynamic of HQ was generally nonlinear and negative along the urbanization gradient,
whereas the nonlinear negative relationship between HQ and UI changed from a steady decrease
to stable and then back to a steady decrease, with inflection points where urbanization reached
20% and 80%. The transformation in the relationship indicated that more natural areas were
affected by urbanization and that the habitat quality in urban areas was improved in the process
of urbanization.

• With an improved conceptual framework, the difference between linear and nonlinear relationships
depends on the indirect urbanization impact. Negative indirect impacts will accelerate habitat
degradation, while positive impacts can partially offset habitat degradation caused by land
conversion. The average offset extent was approximately 28.23%, 17.41%, 22.94%, and 16.18%
in 1995, 2000, 2005, and 2010, respectively. Nearly 76.9% of the cities showed positive indirect
impacts, and 55% of them showed improved habitat quality.
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