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Abstract: Demand responsive transport (DRT) is operated according to flexible routes, dispatch
intervals, and dynamic demand, is attracting a lot of attention. The biggest characteristic of the DRT
service is that the vehicle routes and schedules are operated optimally based on real-time travel
requests of using passengers without fixed operating schedules. This study analyzed the feasibility of
implementing the DRT service by analyzing the benefits for the users and cost of the operator from the
effects of increasing public transportation use and providing personalized mobility service based on
DRT implementation by the introduction of DRT using multi-agent transport simulation (MATSim).
Through the simulation, the DRT is expected to provide convenient, fast, and cost-effective mobility
services to customers; provide an optimal vehicle scale to providers; and, ultimately, achieve a safe
and efficient transportation system.
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1. Introduction

Growing population and mobility needs are the problem of today’s cities. In order to overcome
different challenges, such as accessibility, congestion, pollution, and fuel conception; governments
have to explore new forms of sustainable transportation. One of the sustainable transportation forms,
is the demand responsive transportation (DRT) modes, which is mainly characterized by its flexibility
and door-to-door service. In fact, DRT has appeared since the 1960s in UK, within some rural transport
experiments, in form of a dial-a-ride, flexi-route, and community car and bus schemes [1]. Later, many
communities developed different forms of DRT services according to their local circumstances and
conditions, however, the service was depending of government sponsorship [2].

The concept of DRT itself has a potential to ensure a viable transportation service. The usage has
been greatly enhanced through transport telematics and its successful demonstration in a variety of
environments in EC-funded R&D projects such as SAMPO (System for Advanced Management of
Public Transport Operations) and SAMPLUS (System for Advanced Management of Public Transport
Operations Plus) [3].

The transport service that could be considered has a DRT form, has to fulfill the following
characteristics [4]:

• The service should be available to the general public, without restriction to any special group
(categorized by age, sex, disability, place of employment, etc.);

• The service should be provided by low capacity vehicles (small buses, vans, or taxis);
• The service has to be able to reply to different changes in demand by either altering its route

and/or its timetable;
• The system’s fare has to be charged per passenger and not a per vehicle basis.

Sustainability 2020, 12, 714; doi:10.3390/su12020714 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-4675-3895
http://dx.doi.org/10.3390/su12020714
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/2/714?type=check_update&version=2


Sustainability 2020, 12, 714 2 of 9

The topic was under investigation under many terminologies, like dial-a-ride [5], ad-hoc
ride-sharing [6,7], and paratransit in USA [8,9]. As stated in Ambrosino et al. [10], DRT is considered
an “intermediate form of transport, somewhere between the bus and taxi, which covers a wide range
of transport services, ranging from less formal community transport through to area-wide service
networks”. On the other hand, Bakker [11] defined DRT as the “transportation option that falls between
private car and conventional public bus services. It is usually considered to be an option only for less
developed countries and for niches like elderly and disabled people”.

This new form of transportation has the ability to fight against social exclusion, for example: of
elderly and disabled people [12]. Accordingly, the DRT has promising potential of competing against
the increase of private cars, especially in case of short distance and delivery trips within low density
urban areas [13].

In fact, DRT is considered a transport mode that could increase accessibility and security with a
relatively cheaper cost than taxis [14] while maintaining comparable flexibility. However, there are
several socio-economic, demographic, and trip characteristics of both individuals and households,
which affect the DRT. Since social impacts are very considered in any transportation mode [2,15], DRT
could be successful, if only the new form of transportation could overcome social issues.

Despite the great potential, DRT is believed to not given opportunity to be fully exploited, as it still
suffers from existing institutional barriers that weaken its growth. Moreover, it faces a big challenge
regarding the realistic prediction of travel demand in order to plan adequate supply, as well as the
enhancement of the financial viability of the service. The indirect competition with private vehicle
modes, and sometimes taxis, worsen the DRT situation and tied its success to other external factors
such as parking spaces and tolls. However, it has been acknowledged as an advantageous tool that can
efficiently contribute to expand and strengthen public transport schemes [16,17].

Nonetheless, with the recent development in information technologies and
telecommunications [18], and in optimization methods, DRT is believed to have a better
growth and prosper environment to achieve its fully potential. In fact, exploiting new technologies
offers ways to reduce the costs, and even increase profitability in some restricted markets. IT
development technology induced progress regarding enabling real-time or ad-hoc DRT [7].

Currently, DRT systems exist in many cities around the world, under several forms and using
many types of vehicles, but generally it offers a trip for fixed origins or destinations, or fixed routes, or
with some form of pre-booking.

This study aims to analyze the effect of operating a DRT that satisfies real-time travel demands. If
the DRT service is implemented additionally in the conventional public transportation system, it will
affect the transportation system. In other words, if DRT, which provides door-to-door service of the
first mile/last mile concept considered in this study, is implemented, private car users will switch to
public transportation, thus leading to a socioeconomic benefit. Therefore, to evaluate the DRT service
that provides personalized mobility service by corresponding to user requests instead of using fixed
routes such as public transportation does, it is crucial to perform simulation-based evaluation of the
DRT routing method by reflecting real-time travel behaviors, rather than using a conventional static
stochastic model-based optimization method. Therefore, this study analyzed the simulation-based
DRT implementation effect by using the activity-based model for transportation planning so that the
operation of individual vehicles with no fixed route can reflect the travel behaviors of users. This study
aims to establish a socioeconomic benefit maximization strategy according to DRT implementation by
applying a DRT routing algorithm that can minimize DRT users’ cost and providers’ operation cost
based on a dynamic vehicle routing problem (DVRP) that reflects specific and diverse travel behaviors.
In a usual DVRP, one vehicle accepts only one request at a time, but the proposed algorithm is devised
based on a dispatch algorithm so that pickup, drop, and boarding can all be performed at once [19].
DRT vehicles are dispatched to minimize total travel time of passengers after operating on attractive
routes such as the DVRP does, and this is implemented through the multi-agent transport simulation
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(MATSim). Furthermore, various effects such as the optimal DRT fare system, number and capacity of
vehicles, and transportation modal shift are analyzed through simulation-based evaluation.

2. Simulation Framework of DRT

To evaluate the effects of large-scale introduction of DRT, we decided to carry out a microscopic
simulation of a typical weekday in Seoul. The simulation runs in this study were made with MATSim.
The software is open-source and jointly co-developed by TU Berlin and ETH Zurich. MATSim allows
a microscopic simulation of agent behavior at high computational speeds. Thus, it is suitable for
large-scale scenarios and has been used worldwide. It combines a traffic-flow simulation with a
sophisticated scoring model for agents as well as provides co-evolutionary algorithms that can alter
the daily routines (“plans”) of agents. Specifically, in line with Kim and Lee [20], individuals’ trips
were aggregated from a clean data set according to the trip start time and OD(Origin-Destination), and
the plan data were generated by using trip-chain analysis and smartcard data.

To prepare a network to use as input data in MATSim, the following two processes were performed.
First, Seoul City’s network was extracted from a program called JOSM. In this study, the link attributes
were input by using the original Korea Transport DataBase network. Then, using a program called
the NetworkCleanser, the network was organized to satisfy the input data requirements of MATSim.
This enabled each link on the network to reach another link. The links not tied to other links were
deleted from the network. Nodes that do not have incoming or outgoing links were also deleted from
the network.

For the simulation of DRT, door-to-door service should be analyzed; therefore, the starting and
terminating points of the DRT mode should be set up to facilitate any place in the service area, even if
they are bus stops or taxi stands. In this simulation, a location where the demand occurs or the DRT
arrives is expressed as a point. In other words, in most transport-planning models, the TAZ is created
as a polygon shape, but this study reflected it in the form of points. Specifically, by using the MATSim
Converter program, trip plans of initial individual agents were composed from the cleaned data set,
and the locations where the demands occur were assigned coordinates. An arbitrary coordinate pair
(x, y) was based on an activity occurring in an administrative sub-district (dong) area of an existing
zone unit, and this study selected activity locations where the individual users’ demands occurred by
using activity coordinates, similar to Rieser et al. [21].

The initial model was based on the MATSim-Seoul model for the year 2018. It has been used in
several Seoul-related case studies on both public and private transport. The network contains about
18,440 road links and 7248 nodes. This allows the depiction of all major and minor roads within the city
boundary as well as all bigger roads in the surroundings. The initial network also contains designated
public transit links (used for railway and subway lines). The synthetic population depicts a typical
weekday in Seoul [20]. There are many agent activities throughout the day. In the original scenario,
agents make use of all relevant transport modes. These also include very short trips made by bikes or
walking. Traffic flow in the scenario was characterized by a morning peak, which was followed by a
constant amount of traffic flow during the day, leading to a remarkably strong afternoon peak. The
split of car and public transit trips (PT) in Seoul was roughly even, with both modes having a share of
35%. This scenario was validated against car counting stations throughout the city.

The simulation of DRT dispatching was carried out by MATSim’s DVRP extension that allows
simulation of on-demand transport services. DRTs are coordinated by a dispatcher, who reacts to
incoming events (such as new request submissions, vehicle arrivals, and departures) and dynamically
re-optimizes DRT routes and schedules to ensure the most efficient execution of DRT orders.

Conventional DRT usually serves requests according to the “first come, first served” rule, because
taxi demand is relatively small compared with the supply most of the time. However, in an overloaded
system, this strategy is highly inefficient. For instance, when all vehicles are busy, whenever a vehicle
turns idle, it is immediately dispatched to the longest waiting open request, regardless of the distance
between them. To avoid oversizing of the DRT fleet, the dispatching strategy must be implemented in
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a different way considering the demand. This issue was addressed by the demand-supply balancing
DRT dispatching strategy proposed by Bischoff and Maciejewski [22]. It classifies the system state into
two mutually excluding categories—oversupply, with at least one idle taxi and no open requests, and
undersupply, with no idle taxis and at least one open request—and it handles these two situations
differently. In the former case, when a new request is placed, the nearest taxi is dispatched toward it; in
the latter case, when a vehicle becomes idle, it is dispatched to the nearest open request. Under low
demand, the balancing strategy serves requests immediately as they arrive, exactly as in the traditional
approach. However, in an overloaded system, the focus is on maximizing vehicle utilization, which
results in an increased throughput and, consequently, reduces the amount of time passengers await
taxis. Despite its simplicity, this strategy provides solutions that are close to those of more complex
methods, such as iteratively solving a taxi assignment problem. Moreover, we used a dispatch strategy
based on Bischoff and Maciejewski [22] for adaptation to a large scale.

• A zone-based register of idle vehicles was maintained to quickly select a subset of k idle vehicles
that were nearest to a given location using pre-calculated distances between zone centroids.
This registry was used for a request-initiated dispatch, which is when a request is posed during
oversupply. Once the k nearest idle vehicles were selected, the backward shortest path search
was run, starting from the submitted request and moving backward until the nearest vehicle
was reached.

• A vehicle-initiated dispatch, which takes place when a vehicle becomes idle during undersupply,
was handled in a similar way. A zone-based register of open requests was used to pre-select
the nearest k requests, and then a search of the shortest forward path from an idle-vehicle to
k-open-requests was executed to determine the nearest open request and calculate the shortest
path to it.

The DVRT algorithm is based on MATSim’s ability to replan agents dynamically during the day.
The extension contains a framework for scheduling vehicles according to tasks. These are handled
by dynamic agents. So far, the DVRP and taxi extensions are only able to serve a single request per
vehicle at a time. This needs to be extended for the purpose of DRT, wherein several passengers are
onboard a vehicle at the same time. The DRT was hence equipped with the following [21]:

• Taxibus tasks that can serve multiple requests at a time;
• A taxibus scheduler that schedules pickups, drop offs, and rides in accordance with the requests

and as calculated by the dispatch algorithm; and
• An abstract dispatch algorithm that provides the typical dispatch infrastructure.

The dispatch algorithm, or optimizer, could then be implemented by extending the abstract
dispatch algorithm in accordance with the actual use case. The basic principle of each optimizer,
however, is usually the same: a list of requests, which may be pre-booked or not, need to be handled.
The optimizer should then return to a dispatch, consisting of a vehicle, the requests it is meant to handle
and the paths it is meant to travel between pickups and drop offs. With this approach, a large set of
use cases may be implemented with little additional effort. These could include classical dial-a-ride or
paratransit approaches as well as shared-taxi algorithms or even parcel deliveries.

3. Analysis of the Effects of DRT Implementation

3.1. Analysis Scenario

The case study assumed the use of door-to-station service by using the DRT system to use a bus
or subway train. In other words, the simulation was configured to analyze the effect of the DRT service
for the first mile/last mile concept. The scenario for the simulation was composed by changing the
number of DRT vehicles and fares. As for the DRT fare, cases of assigning the service free of charge
and at 50% and 100% of the taxi fare were composed. For the number of DRT vehicles, five cases were
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composed for the following scenarios: 10%, 30%, 50%, 70%, and 100% of the total number of registered
taxis in Seoul. Consequentially, 15 scenarios were composed based on the fare and number of operated
vehicles. For the analysis, it was assumed that the capacity of a DRT vehicle was 10 persons. The DRT
vehicle started the trip one hour before the arrival time, and the request of other users could be accepted
until 15 min before arrival at a destination (public transport stop) of the user who came on board first.
On this occasion, the DRT driver decides whether to accept or refuse the request. The public transport
users (potential DRT customers) change their request time up to 2 min while performing the first 200
iterations and thereafter they can select one of several possible plans. Furthermore, for the routing, the
next customers were only added to the end of the list of accepted customers to be picked up.

3.2. Analysis of Results

To analyze the scenario results, this study conducted comparative analysis on the benefits to
the users and to the cost of the operator. First, in the case of benefit to the user, the effect of the
total transport system’s operating hour reduction was analyzed through changes in the number of
passengers/public transport users due to DRT service implementation, based on the performance
indices proposed by Black [23]. This effect was produced because existing private car users switched
their mode use behaviors to public transport because of DRT service implementation. This effect
reduced the total travel time of all the modes while reducing the use of conventional private cars due
to the overall modal shift. Furthermore, the service quality index (level of service (LOS)) was analyzed
to determine the usefulness of the DRT service. When an agent whose private car traveling time is
expected to be 10 min switches to using the DRT, if the total sum of DRT waiting time and public
transport using time is 30 min, the LOS index is calculated as 3.0. If a relatively lower value is derived
for this, it implies better service quality. Regarding the cost of the operator, fixed costs and variable
costs are classified according to the vehicles based on DRT implementation (see Table 1). The fixed
costs consist of the vehicle depreciation cost, and other administrative costs (insurance fee), and the
variable costs consist of fuel cost and vehicle maintenance and management costs. Driver labor costs
were not included here, because it was assumed that DRT vehicles were operated on autonomous
driving technology.

Table 1. Demand responsive transport (DRT) introduction cost.

Category Description

Fixed Costs
Vehicle depreciation cost Vehicle price: 30 million won
Other administrative cost Average insurance fee per vehicle: 1918 won/day

Variable Costs Fuel cost
Fuel economy: 11.4 km/L

Fuel cost: 1369 won/L (http://wwww.opinet.co.kr)
Vehicle maintenance and management

cost
Average maintenance cost and tire cost per

vehicle: 1370 won/day

3.2.1. Fixed Costs

Among the fixed costs, the vehicle depreciation cost is calculated as follows by assuming that
the residual value of the manufacturer selling price is 35% (α) of the purchase price and applying
the vehicle age period of the bus (i.e., 9 years) as specified in a relevant law, and in the case of other
administrative costs (insurance fee), the average cost per vehicle for the bus company was applied.

C f ixed =
Cveh −Cveh × α

y
.

3.2.2. Variable Costs

Among the variable costs, the fuel cost is calculated by using the following equation, whereby the
fuel consumption is calculated using the operating distance and fuel economy, and then the fuel price
is applied to this. Here, TD is the total operating distance (km) by vehicle, β is the fuel economy (km/L),

http://wwww.opinet.co.kr
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and C f refers to the unit cost of fuel (won). In addition, for the vehicle maintenance and management
costs, the average daily cost per vehicle for the bus company is applied.

C f uel = TD× β×C f .

In the simulation results based on the DRT fare and number of DRT vehicles, the travel time
decreased as the DRT fare decreased and the number of times of the DRT’s operation increased.
However, as the number of DRT vehicles increased, the decreasing range of travel time reduced to
above a certain level (see Table 2). This seems to be because if too many DRT vehicles are operated, the
increase in congestion caused by the operating vehicles to pick up users, take users to destinations, or
operate on circular routes outweighs the increase in the congestion mitigation effect produced by the
decrease in operated private cars due to the modal shift. Based on this result, it is determined that it
will be more effective and efficient to operate an appropriate number of DRT vehicles. Based on the
result of the simulation analysis, this study used the vehicle’s time value by mode, as presented in
the “Preliminary Feasibility Study Guide, KDI,” to convert the user travel time savings derived from
DRT implementation into a monetary amount. Furthermore, when not conducting the business and
when conducting the business by vehicle type, the total travel time cost was calculated by applying the
different time values, respectively, to the total travel time calculated for each mode; afterwards, the
compared difference was calculated as the travel time saving benefit.

VOTS = VOTbe f ore −VOTa f ter,

where VOT =
∑

l
∑3

k=1(Tkl × Pk ×Qkl × 365), Tkl: each mode travel time oflink l, Pk: each mode value
of time, Qkl: each mode traffic volume of link l, and k modes (1. passenger car, 2. bus, 3. Truck).

Table 2. Benefit of travel time savings derived from DRT introduction.

Category
Demand Responsive Transit (DRT) Fare

Free 50% of Taxi Fare 100% of Taxi Fare

No. of DRT vehicles

10% 308.38 266.16 230.32
30% 1156.92 870.49 924.41
50% 1951.87 1911.61 1453.70
70% 2286.60 1798.55 1641.57
100% 2730.73 2583.40 1925.76

unit: 100 million/year.

When examining the LOS aspect, the LOS varied from 1.006 to 1.537 depending on the DRT fare
level and number of operated vehicles (see Table 3). In other words, in the aspect of service quality of
DRT implementation, there is no large difference when the DRT fare is expensive or there are many DRT
vehicles operated. However, when the number of DRT vehicles is small or the DRT fare is inexpensive,
the users have to put up with travel time increase caused by detours because the DRT service provided
is not sufficient as compared with the number of users.

Table 3. Level of service (LOS) analysis of DRT implementation.

Category Demand Responsive Transit (DRT) Fare

Free 50% of Taxi Fare 100% of Taxi Fare

No. of DRT vehicles

10% 1.507 1.537 1.531
30% 1.348 1.250 1.318
50% 1.156 1.221 1.157
70% 1.097 1.123 1.050
100% 1.006 1.031 1.077
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The required cost calculation results about the operator aspect according to the DRT operating
scenarios are shown in the Table 4. In the case of DRT, the vehicle cost (vehicle depreciation cost)
occupied the largest proportion, and the fixed costs were larger than the variable costs. Furthermore,
the variable costs changed according to the DRT fares, because the variable cost expenditure increased
from the operator standpoint as more vehicles were operated due to the DRT service implementation.

Table 4. Cost estimation by DRT introduction scenarios.

Category

Demand Responsive Transit (DRT) Fare

Free 50% of Taxi Fare 100% of Taxi Fare

Fixed Cost Variable
Costs Fixed Cost Variable

Costs Fixed Cost Variable
Costs

No. of DRT
vehicles

10% 266.4 36.1 266.4 23.9 266.4 17.3
30% 799.2 108.1 799.2 70.9 799.2 52.5
50% 1332.0 180.1 1332.0 125.5 1332.0 86.1
70% 1864.8 252.1 1864.8 171.3 1864.8 126.0

100% 2664.1 360.1 2664.1 236.6 2664.1 179.4

unit: 100 million/year.

As a result of the cost–benefit analysis based on the simulation results, that economic feasibility
was ensured for DRT service implementation when the number of DRT vehicles was at the 30–50%
level of the registered number of taxis, or the DRT fare was at 50% of the taxi fare or less (see Table 5).
Regarding the number of DRT vehicles, if the number of operated vehicles is too small or too large,
the benefit will be small compared with the cost injected for the DRT operation. Moreover, regarding
the DRT fare, if the fares are similar to the taxi fares, the users will not feel that the DRT is relatively
attractive, and, consequentially, the DRT will be not be economically justifiable.

Table 5. The results of benefit/cost analysis of introducing of DRT.

Category
Demand Responsive Transit (DRT) Fare

Free 50% of Taxi Fare 100% of Taxi Fare

No. of DRT vehicles

10% 1.02 0.92 0.81
30% 1.28 1.00 1.09
50% 1.29 1.31 1.03
70% 1.08 0.88 0.82
100% 0.90 0.89 0.68

4. Conclusions

Demand responsive transit can be called a paratransit system that can mitigate the time and
space constraints of using transportation to correct the operational problems of the conventional bus
system. DRT, which is a transformed form of the conventional public transportation service, is a public
transportation system providing a service that is operated freely according to the requests and demands
of using passengers, and it corresponds to individuals’ travel goals and user intentions. Recently,
the DRT, which is operated according to flexible routes, dispatch intervals, and dynamic demand, is
attracting a lot of attention. For the traditional public transportation system, which is operated on
the usual fixed routes and dispatch intervals, the characteristics of service quality and profitability
are high owing to the short dispatch intervals on routes where the demand is high. On routes where
the demand is low, however, the characteristics of both quality of passenger service and profitability
are low because of inefficient routes and long dispatch intervals. Furthermore, operating vehicles
that produce a large amount of exhaust fumes during low-demand hours have been pointed out as
a potential environmental problem. In contrast, the DRT is a public transportation service operated
without fixed routes according to the dynamic demand without constraints of route and dispatch time.
It is also known as a type of paratransit system.

This study analyzed the feasibility of implementing the DRT service by analyzing the benefits
for the users and cost of the operator from the effects of increasing public transportation use and
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providing personalized mobility service based on DRT implementation. Recently, ahead of the smart
city and autonomous vehicle commercialization era, the significant importance of a demand-responsive
door-to-door service such as DRT has emerged. Particularly, because the DRT service can solve the first
mile/last mile problem, it can contribute to the vitalization of public transportation; moreover, because
it can become a foundation of MaaS, it is meaningful to analyze the feasibility of implementing the DRT
service. Accordingly, this study reflected the real-time travel behaviors by using the activity-based
approach, and it used a DRT routing algorithm through the MATSim-based DVRP to satisfy a variety of
user demands. To analyze the DRT implementation effect targeting a large scale based on simulations,
this study comparatively analyzed the travel time saving effect of the entire transport system as well as
the operator costs incurred by the DRT operation by setting up the DRT fares and number of operated
vehicles in various scenarios. The results show that if the DRT service was provided at inexpensive
fares, the socioeconomic benefit would outweigh the cost. Furthermore, upon analyzing the quality of
the DRT service, the results show that the service quality was relatively good at an appropriate level of
the number of operated vehicles and fare system.

This study was significant as it analyzed the effect of DRT implementation that could satisfy
various travel demands in a large-scale network by using a simulation method. Particularly, this
study analyzed the effect of DRT implementation based on various scenarios, and it quantitatively
investigated the implementation feasibility by estimating the costs of the DRT operation. Especially,
this method has an advantage as it can assist the decision making of policymakers when implementing
the DRT, since the appropriate implementation size (number of operated vehicles) and service fares
can be investigated in advance. Moreover, the cost can be calculated, the benefit can be quantified, and
the LOS can be derived based on actual performance data similar to that of the DRT service.

The proposed simulation-based approach provides a demand-responsive service such as the DRT
in a real large-scale network, and it demonstrates an advantage of performing the cost–benefit analysis
based on this approach. However, compared with the conventional microscopic traffic simulation, it
has an inherent limitation as it does not consider the movements of vehicles while taking account of the
traffic operation and road sign system. Furthermore, a more realistic result will be derived from DRT
operation scenarios if a method of inputting more aspects (such as identification of moving patterns of
the potential demand by hour, deployment of appropriate types of vehicles, and fare differentiation
strategy) are used in the simulation environment.
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